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The formal paradox concerning the vanishing of the photon self-mass, obtained by a formal manipulation,
is examined in Kallen's formulation of electrodynamics. It is suggested that this difficulty can be removed,
and the formal manipulation retained, by a regularization of the Heisenberg operators. An alternate method
of obtaining the spectral function of the photon commutator is described, and a possible consequence of
regularization, in connection with the proof of the renormalization constants divergence, is briefly discussed.

INTRODUCTION sponding predictions inferred from the canonical com-
mutation rules. Since the formal operations to be
performed shall yield mathematically inconsistent re-
sults, this assumption appears necessary in order to give
meaning to the manipulations employed.

In Kallen's formulation of electrodynamics it is not
surprising to find the identical "inconsistency"; and
again, if one desires to retain the same formal manipula-
tions, this difficulty may be resolved by the assumption
of a regularization procedure. In this formulation, how-
ever, in addition to the requirement of "consistency, "
the necessity of such regularization may be related to
value of the renormalization constants by the following
statement: unless the mechanical mass of the photon is
regulated to zero, one of the renormalization constants
is necessarily infinite. For the present discussion of
Kallen's equations the assumption of regularization is
equivalent to the single requirement that the photon
mass be regulated to zero; in the usual formulation there
is an additional complication. 4 It may also be noted that
the method of Kallen's argument concerning the diver-
gence of the renormalization constants' may lead to an
inconclusive result when such regularization is con-
sidered.

'
PERHAPS the most striking paradox obtainable by

the application of certain commutation rules in
quantum electrodynamics concerns the vanishing of the
photon's self-mass. This is an old problem with much
history, encountered first in perturbation theory and
later in the exact (Heisenberg representation) formula-
tion of electrodynamics. The purpose of this note is to
remark that this difFiculty again appears in Kallen's
formulation, ' and is connected in a deceptive way with
the magnitude of the renormalization constants. The
only precise mathematical conclusion to be drawn from
this discussion is the oft repeated statement that one of
the formal manipulations employed is improper; how-
ever, one may imagine an alternate way out of this

difhculty (regularization of the Heisenberg operators)
with the eGect of preserving the validity of such formal
operations.

In the usual formulation of electrodynamics Lcorre-
sponding to Eqs. (1) and (2) below] an apparent
inconsistency arises upon calculating the photon self-
mass: a straightforward and eminently reasonable
inference drawn from the canonical commutation rules
requires that this quantity be zero, but its calculation
yields a nonzero, and infinite, result. In lowest order
perturbation theory one applies the Pauli-Villars method
of regularization' to eliminate this divergence, thereby
bringing the computed result into agreement with the
corresponding commutation relations. In higher orders,
one may imagine the application of the quite formal
regularization procedure of Gupta' as having the same
net eGect. It will be assumed in this discussion that there
exists a consistent method of regularization (allowed to
contain unobservable ficticious regulating masses for
which an indefinite metric and/or improper statistics
may be employed, as in the Gupta method) which may
be applied to the interacting fields in the Heisenberg
representation, and which will provide agreement be-
tween the computed predictions of the theory and corre-

* This work supported in part by the National Science Foun-
dation.' G. Kallen, Helv. Phys. Acta 24, 427 (1952).' W. Pauli and F. Villars, Revs. Modern Phys. 21, 434 (1949
Equivalently, such regularization causes the equal-times co
mutator of two fermion currents, constructed from free-6el
operators, to vanish.

3 S. N. Gupta, Proc. Phys. Soc. (I,ondon) A66, 129 (1953).

STATEMENT OF THE PARADOX

The equations for the unrenormalized field operators
in the usual formulation are

&A.=~.= —( /2)Lk, vA], (1)

(2)(y„B„+m) P = 5mg+t'eAQ,

where A—=yQ„. In Kallen's formulation, one writes the
equations for the renormalized operators and charge in
the form

ElA„=N'J„+L(DA„it„it A )=—j„, (3)— —
(y„B„+m)P =Kg+ t'eAQ.

From the conditions

(5)

(6)

LA „(x),A „(0)ixp=o=o,

Lit (x),A„(0)j.p=o=O,

The discussion leading to Eq. (13) indicates that the photon
). spectral function will contain a term proportional to 8'(~'); and it

m- is dificult to understand how this can arise from a sum-over-states
d derivation.

~ G. Kallen, Kgl. Danske Vidensk. Selskab, Mat-fys. Medd. 27,
No. 12 (1953).
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N'(oil a,J„(x),w„(o)jlo)
Lap' (x),~.(0)1*p=p=o (7)

From Eqs. (6) and (7) one may then infer the relation' das dk e(k)e*'s *$(ks+gs)kpR
(2ir)' J p (11)

Lap J„(x),A„(o)]*p=p=o.

assumed valid in both formulations, and the respective from which one can calculate
equations for If, it follows that

The photon commutator

D„„(x)= —i&0ILA„(x),A„(0)jlo)
has the spectral representation

pr(~')
R„„=(1—L)a pr(a')+k k (1—L) — ——La(a')

K

At xp= 0 the left side of Eq. (11)must vanish, which, for
X~0, implies

"' f»("')~»+»(")a~a~) D(x i ") (1—L) I d~' n (s') =0
0

(12)

&ol LapJ„(x),~„(0)jI o&

(2m)' & p

XIr'k p(8„pi k,k.p p)
—(9).

At xp ——0 the left side of Eq. (9) must vanish which
implies

d~'a'p (a') =0 (1o)

In meson theory, this application of Eq. (8) yields the
mechanical mass of the meson, '

p, ps= da' a'p(~') d~' p(s');J,
in electrodynamics one obtains a statement of the
vanishing of the photon's mechanical mass. ' The "in-
consistency" then arises because Eq. (10) is incompatible
with thederivedformofpi p (~') =ah(a')+o(a') o(~'))0

In Kallen's formulation one may use Eq. (3) to
obtain

oD"(*)=i&0ILi.(x),~ (0)3lo»

In the usual formulation one may use Eq. (1) to obtain

D„„(*)= —i&olLJ. (x) ~ (0)ll»
or

Unless 1.=1, the mechanical mass of the photon must
again be set equal to zero. However, this choice of I. is,
at best, ambiguous, since the de6ning equation for 3„,
Eq. (3), is then meaningless; further, the charge re-
normalization, Zs '= (1—L) ', is then infinite, implying
that the integral of Eq. (12) will diverge. As was the
case with the integral of Eq. (10), the only precise
statement to be made is that these integrals are neces-
sarily infinite; assuming the consistency of the remainder
of the theory, the application of Eq. (8) is mathe-
matically improper. If the condition of Eq. (8) is to be
retained, a regularization procedure must be assumed.
The requirement that the integral of Eq. (12) must
vanish was found by Goto and Imamura' as necessary
in order to obtain agreement with a formal application
of the canonical commutation rules.

DISCUSSION

As is evident from the above considerations, the
source of this difhculty lies in the form of the spectral
representation for the commutator of the fermion cur-
rent with the photon field. Because J„(x) satisfies the
relation B„J„=—0, one can write

&ol LJ.(x) ~.(0)j I 0)

de' n(a')La„„~'—a„a.)D(x; a')
or 0

(1 L)&D~~(x)+Laia~a~~(x) where the spectral function Q(a') is composed of two
iN'(Ol LJ„—(x),A, (0)) I 0). essentially distinct parts: one part proportional to 5(a'),

f D ( )
and the other proportional to that spectral function
appearing in the commutator of two current operators.
The requirement

Dp (x) =
~~

da' dk e(k)e'" *B(k'+a')Q„„, .
(2ir)' &p

X'K g K

Q.,=a„~(")+— +k„k. —ma(. ),
K

This "inferred" commutation rule and that of Eq. (13)are the
mathematically dangerous suppositions.

7 H. Lehmann, Nuovo cimento 11, 342 (1954).
P M. Gell-Mann and F. E. Low, Phys. Rev. 95, 1300 (1954).

&0ILJ.(x),~.(0)llo) p=o=o (13)

will be satisfied" if Jp" d»' Q(~') =0, but the additional
requirement of Eq. (8) implies that Jp" ds'a'Q(a') =0,

9 T. Goto and T. Imamura, Progr. Theoret. Phys. (Kyoto) 14,
396 (1955). The same point has recently been noted by J.
Schrodinger, Phys. Rev. Letters 3, 296 (1959).

'0 In Kallen's formulation this condition reproduces the defining
equation for L in terms of ~(f~2).
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which cannot also be satisfied without the assumption of
regularization.

It may be remarked that the necessity of such
regularization can be demonstrated in an independent
manner, by noting that there exists an alternate pro-
cedure for the calculation of the photon commutator
from that used by Kallen. This method proceeds from
the observation that the commutator obeys a second
order partial differential equation, with specified "initial
values" given by the equal-times commutation relations.
One need not assume relations between matrix elements
of the photon operators and their asymptotic values, but
instead one may write the equations

OD„.(x) =E„.(x)—=i(0~ (j„(x),A„(0)j(0),
CIE„„(x)=or„„(x)= -i(0( fj„(x),j„(0)gt 0),

which have the unique solutions

D„„(x)=
~

d'y D(x—y, xo, 0)G„,(y)

+ d'y n(x,y)E„.(y),

conjecture concerning the nature of the positive definite
function m(44') is correct; that is, there exists a lower
bound to this quantity, say or'(44'), which possesses the
property"

hm s.'(44') ~ g hm rr&" (44')

Where P iS a dimenSiOnleSS COnStant and or&o&(44') repre-
sents the lowest order (Born) approximation:

rr"' (K') = rt8(44' —4m') (1+2m'/a') (1—4m'/44') '*

with g a constant independent of ns. It would then follow
that the integral Jo"(d14'/44')or'(44') diVergeS at itS upper
limit, which, following Kallbn, is equivalent to the
statement that at least one of the renormalization con-
stants is infinite. However, suppose that, in analogy
with the perturbation theory procedure, the eBect
of regularization is to replace rr'(44') by s,.s'(44')

=P; C s (x'), where the subscript i denotes the con-
tribution of the ith fermion field, and the C represent a
set of coeKcients so chosen as to ensure the vanishing of
the integral

Z„„(*)= d y D(x—y, *,; 0)e„„(y)
~42

11m dK 7l'res (K )
A2~00 0 p

(14)

+ dry BoD(x—y, xo; 0)I&.(y)

+) d'y n(x,y)or„„(y),

where $(x,y) is that Green's function satisfying"

Clx$=8(x —y), $[xo=o = BxoS (
xo=o=0.

The quantities G„„(x)and I„„(x)represent appropriate
initial conditions for D„„and E„„, inferred from the
canonical commutation relations; H„„(x) is obtained
from the requirement: B„E„„(x)=0, and is prop—ortional
to the integral of Eq. (12). Upon dropping all such
photon mass terms, straightforward integration repro-
duces Kallbn's expressions for E„„and D„„.

Finally, one may question whether a regularization
procedure used in conjunction with Kallen's discussion
of the magnitude of the renormalization constants does
not of itself imply an inconclusive result. This is sug-
gested by the following argument. Suppose that Ka116n's

"H. M. Fried, Phys. Rev. 115, 220 (1959). The necessary
integrals of this Green's function are

1
d'y $(x,y)D(y; 44') =—LD(x; 44') —D (x; 0)7,

eJ K

and

8 8
d'y n(X,y)——D(y; K')

~yIs ~y&

&Islay

PD(x' K )—D(x; 0)7 b„4b„4D(x; 0). —
K

From Kallen's conjecture one would expect

lim or (44') ~ (; lim rr;&'&(x') =r)P
tt2~00

and in order for the integral of Zq. (14) to vanish at its
upper limit one would then, among other conditions,
require P, C ];=0. (Actually, the C should be chosen
such that the complete photon mass integral vanishes;
but if the number of regulating fields allowed has only a
lower bound, as in perturbation theory, this condition
should always be realizable. Further, one might expect
that the (; would turn out to be independent of i,
whereupon this condition would reduce to one of those
familiar from perturbation theory and anticipated as
necessary for the vanishing of the complete self-mass
integral. ) But the asymptotic limit of s.„,'(44') is then
zero, and the renormalization integral constructed from
this function is "indeterminate" Lof form J'"(d44'/44') &(0$
at its upper limit; hence no statement concerning the
convergence of this integral can be inferred from this
type of argument.

Note added in proof. It should perhaps b—e empha-
sized that the regularized renormalization constant
(1—I...s) ' be considered as distinct from the unregu-
larized renormalization constant (1—I) '.

In fact, one might even expect a regularization pro-
cedure to yield arbitrary values for the renormalization
constants. This is suggested by considering the eGect of
regularization on that integral constructed from the

This point has been questioned by S. G. Gasiorowicz, D. R.
Yennie, and H. Suura, Phys. Rev. Letters 2, 515 (1959).
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lowest order approximation m~'&. The quantity

f
~'d~' 5 (A~

lllI1 If'i ~(K ) —+ ri ——+2 ln~
x Jo 3 &mi

is logarithmicaIly divergent and remains so when regu-
lated by means of the standard conditions' P;C;
=g; C,mj=0, where Ce=1 and ms denotes the elec-
tron's mass. It should be noted, however, that these
relations represent the minimum number of such condi-
tions required to ensure the vanishing of the photon
mass integral. There is nothing to prevent the adoption
of the further condition g, C; in(m;/me) =I', where I'
is zero or any selected finite number. The use of such an
"extended" regularization procedure requires an extra
regulating Geld and changes the values of the coeS-
cients C;, for i~&1 (they are now logarithmically di-
vergent with the regulating masses), but in no way
alters the results of the lowest order vacuum polariza-
tion calculation. Regularizing in this manner, the value

of this renormalization integral is proportional to the
arbitrary number I'.

This discussion should, of course, not be regarded as
exact in any way, or even correct; but rather as merely
a kind of plausibility argument. Certainly, any precise
statements concerning the effect of regularization on the
magnitude of the renormalization constants must await
the explicit demonstration of a consistent regularization
procedure for the coupled Heisenberg fields.
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The effects of possible superQuidity on the cranking moment of
.a large many-fermion system moving under periodic boundary
conditions are investigated within the framework of the theory of
superconductivity recently formulated by Bogolyubov. The
Hamiltonian is initially subjected to Bogolyubov's general unitary
transformation. The collective excitations of the fermions are
then considered in the usual pair approximation; the appropriate
cranking terms are linear in the boson pair operators. On perform-
ing a unitary transformation which transforms away these linear
terms, one obtains an expression for the moment of inertia of the
system which includes both the e6ects of possible superQuidity
and collective excitation. This expression, by virtue of its being
stationary with respect to arbitrary variations in the amplitude
associated with the latter unitary transformation, is then utilized
as a variational principle for the moment of inertia. For the
normal state, the result previously obtained by the author, that
the moment of inertia has the rigid value, is rederived in more

. compact form. For the superQuid state, one Bnds that collective
excitations effect a marked increase in the superQuid moment at
intermediate coupling strengths although the resulting moment is
still quite small compared to the rigid value. In contrast to the
normal state case, where particle-hole pairs play a major role, this
increase is almost entirely due to excitations consisting of particle-
pairs or hole-pairs. The precise magnitude of the apparent reso-
nance in the moment produced by the d-wave part of the cranking
interaction is dependent to some extent on the features of the
particle-particle potential which leads to the superHuid state.
Variational expressions for the moment are exhibited for both
Yukawa and delta-function shell potentials. These results are
identical in charged and neutral Fermi systems. A calculation of
the cranking moment at 6nite temperatures is presented in an
Appendix along with an interpretation of it in terms of Bardeen's
two-Quid model of superconductivity.

I. INTRODUCTION
' 'N a previous work by the author' (hereafter referred
~ ~ to as I), some of the consequences of particle-
particle interaction on the cranking moment of a large
many-fermion. system moving under periodic boundary
conditions were investigated. In particular, it was
shown that the shift in the rigid moment of inertia due
to collective excitations consisting in mass-renormalized
particle-hole pairs could be obtained exactly without

*Work performed under the auspices of the U. S. Atomic
Energy Commission.' R. M. Rockmore, Phys. Rev. 116, 469 (1959).

recourse to the usual perturbation theory. ' Further,
this shift was found to vanish exactly, although, ini-
tially, it had seemed likely that pair excitations would
furnish the major contribution to such an interaction
shift. One noted that stability requirements'4 in I re-

'The effect of interparticle forces in the lowest order of per-
turbation theory has recently been investigated by R. Amado and
K. Brueckner, Phys. Rev. 115, 778 (1959).

'K. Sawada and R. Rockmore, Phys. Rev. 116, 1618 (1959);
A. E. Glassgold, W. Heckrotte, and K. M. Watson, Ann. Phys.
6, 1 (1959).4¹N. Bogolyubov, V. V. Tolmachev, and D. V. Shirkov, A
New Method in the Theory of Sgperconductimty (Consultants
Bureau, Inc. , ¹wYork, 1959).


