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to all the rare earths, has been derived by de Gennes
and by Brout and Suhl":

e=4P'J (J+1)(g—1)srs/3k;

' P. G. de Gennes, Compt. rend. 247, 1836 (1958).
"R. Brout and H. Suhl, Phys. Rev. Letters 2, 387 (1959).

this reduces to Neel's formula when J=L+S, appro-
priate to the elements Gd to Lu, and to the formula

8=4p'S'J(J+1) 'I/3k,

when J=L,—5, appropriate to the rare earths La to Gd.
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Elastic constant measurements have been made on a single crystal of palladium in the temperature range
4.2-300'K. Extrapolation of the data to absolute zero gives

c» =2.341~0.027 X10~ dyne cm~,
c»= 1.761&0.027)(10~ dyne cm ~,

c44= 0,712%0.003)(10~ dyne cm~.

The corresponding value of Debye temperature is |t&=275+8'K, which compares well with the calorimetric
figure of 80= 274+3'K. Both shear constants show an anomalous temperature dependence. This dependence
can be correlated with the temperature variation of the contribution to C= c44 and C =ss (cn —c,s), resulting
from the presence of holes in the d band of palladium.

I. INTRODUCTION

HE elastic properties of the transition metals are
of considerable interest. If there is a contribution

to the bulk modulus of a metal arising from the conduc-
tion electrons, as has been suggested by DeLaunay, ' the
eGect should be most pronounced in the transition ele-

ments, which have narrow unfilled d bands containing a
considerable number of electrons. Again from the work
of Leigh, ' it might be anticipated that the holes in the d
bands should contribute to the shear constants. For
those metals having almost filled d bands, and hence a
low degeneracy temperature, this hole contribution
would vary significantly with temperature, thereby
causing an anomalous temperature dependence of the
shear constants.

Thus far, the only transition metal to be studied in
detail has been nickel, ' which has the added complica-
tion of being ferromagnetic. Of the nonferromagnetic
cubic transition metals, palladium is especially well

suited to an investigation of the above eRects, since it
has an almost filled d band and the grosser features of its
band structure are reasonably well understood from

susceptibility and specific heat measurements4' on

J. DeLaunay, in Solid-State Physics, edited by F. Seitz and D.
Turnbull (Academic Press, Inc. , New York, 1956), Vol. 2, p. 277.' R. S. Leigh, Phil. Mag. 42, 139 (1951).' G. A. Alers, J. R. Neighbours, and H. Sato, J. Phys. Chem.
Solids 9, 21 (1959).

F. E. Hoare, J. C. Matthews, and J. C. Walling, Proc. Roy.
Soc. (London) A216, 502 (1953).

5 F. E. Hoare and B.Yates, Proc. Roy. Soc. (London) A240, 42
(1957).

silver-palladium alloys. In addition, elastic data would
be of use in providing a reliable value for the Debye
temperature of palladium, since the accuracy of that
obtained from calorimetric data" is quite low owing to
the high electronic heat capacity of the metal. In this
paper the results of elastic constant measurements on
palladium from 4.2—300'K will be presented.

II. EXPERIMENTAL

The specimen of palladium used in these experiments
was prepared from a single crystal ingot having a purity
of 99.8% the principal contaminants being iron and
platinum. This ingot was prepared, using the Czochralski
technique, by Dr. James Kirn of the Virginia Institute
for Scientific Research. When etched electrolytically in
solution of sulfuric acid and glycerin, it revealed no ap-
preciable mosaic structure. The ingot was oriented by
the usual Laue back reQection technique and a cylinder,
approximately —', in. in length and 8 in. in diameter with
its axis along the $110j direction, was then cut from it.
The cylinder ends were lapped for parallelism to within
0.0001 in. , after which they were lightly etched using the
same solution as used previously.

The ultrasonic measurements were made using an
Arenberg~ ultrasonic pulse generator and wide band
amplifier together with a Tektronix type 545 oscillo-

graph. Details of the measuring techniques have been

J. A. Rayne, Phys. Rev. 107, 669 (1957}.
'Arenberg Ultrasonic Laboratory, Boston, Massachusetts.
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TABLE I. Values of the lattice parameter of palladium.

Temperature
( I)

Lattice arameter
A)

described previously ' and need no further elaboration,
except as regards the bonding used between the crystal
and transducer. Thus, in these experiments it was found
that glycerin gave satisfactory echoes from slightly
below room temperature down to 4.2'K. Salol was used
to obtain room-temperature values of the elastic
constants.

To obtain the temperature variation of the elastic
constants for palladium, it is necessary to know the
corresponding variation of its lattice parameter. Meas-
urements of the latter were made at 300'K, 77'K, and
4.2'K, in a cryostat to be described in a later paper,
using a counter spectrometer and crystal monochro-
mated molybdenum radiation. For the measurements a
slice of the crystal, cut adjacent to the ultrasonic speci-
rnen as to expose a (110) face, was employed. This slice
was electropolished and oriented in the cryostat so that
the L001j axis was vertical. Room-temperature data
were obtained for the unsymmetrical reflections (10,4,0)
and (10,2,0), using the E i and E s lines. Extrapolation
against cos'0 gave a mean lattice parameter at 300'K of
a=3.8896~0.0002 A, corresponding to a density of
12.038 gram cm '. Values in the literature for the lattice
parameter of palladium differ considerably. According
to Pearson, " the most reliable figure is that due to
Coles, "who gives a=3.8907~0.0001 A at 295'K for a
specimen having a purity of 99.95%. After correcting
for the di6erence in temperature between the measure-
ments, there is still a residual discrepancy outside the
combined limits of error. This could, however, be due to
the differences in purity between the samples, and hence
our value of lattice parameter has been used in obtaining
the elastic constants.

For the low-temperature measurements, the (10,4,0)
rejections alone were used to obtain the charges in

lattice parameter. On combining this data with the
mean value of the lattice parameter at 300'K, we obtain
the results in Table I. It is of interest that the present
work gives a total expansion coefficient between 300'K
and 72'K of n=23.5&&10 ', which figure agrees well

with the valuen =23.4&(10 'given by Nix and McNair. "
The changes in density at intermediate temperatures
were obtained graphically, assuming that the variation

was linear above 77'K and that the curve of density vs
temperature had zero slope near absolute zero.

IV. DISCUSSION

(a) Magnitude of Bulk Modulus

The bulk modulus of palladium at O'K is (crr+2crs)/3
=1.954&(10" dyne cm ', which figure is much higher

TABLE II. Smoothed values of elastic constants of palladium. '

Temper-
ature —', (cll+c12+2c44) c44 g (Cll c12)

0
20
40
60
80

100
120
140
160
180
200
220
240
260
280
300

2.763&0.023
2,763
2.761
2.757
2.751
2.744
2.735
2.727
2.720
2.716
2.712
2.711
2.712
2.716
2.724
2.733

0.7117&0.0030
0.7112
0.7084
0.7050
0.7023
0.7008
0.7005
0.7011
0.7022
0.7038
0.7056
0.7077
0.7100
0.7125
0.7148
0.7173

0.2899~0.0005
0.2891
0.2860
0.2825
0.2792
0.2760
0.2730
0.2701
0.2677
0.2655
0.2635
0.2618
0.2601
0.2585
0.2569
0.2553

a All data expressed in units of 10'2 dyne cm 2.

than that for silver, " viz. , (crr+2crs)/3=1. 08/)&10"
dyne cm ', even though these elements occupy adjacent
positions in the periodic table and have similar lattice
parameters. It is believed that this increase is due to the
bulk modulus of the electrons in the d band of palladium.

DeLaunay' has shown that the bulk modulus of the
electron gas in a metal contributes to c» and c» by an
amount

III. RESULTS

The results of the present experiments are given
graphically in Figs. 1, 2, and 3. Table II gives smoothed
values of the elastic constants, obtained from the graphs,
from 0 to 300'K. As may be seen from the figures, the
interval consistency of the data is considerably better
than one percent. However, the over-all accuracy of the
data, as a result of transit time errors, is somewhat
poorer. In computing the error estimates given in the
table, it has been assumed that there is a 0.01 @sec
transit time error, although it is believed that this may
overestimate the effect.

300
77
4.2

3.8818
3.8727
3.8718

E,= Vd'U/dV' (1)

where V is the volume and U is the internal energy of
the electron gas. At absolute zero, the latter is given by

J. A. Rayne, Phys. Rev. 112, 1125 (1958).' J. A. Rayne, Phys. Rev. 115, 63 (1959).
"W. B. Pearson, A Handbook of Lattice Spacings and Structures

of Metals and Alloys (Pergamon Press, London, 1958)."B.R. Coles, J. Inst. Metals 84, 346 (1956).
u F. C. Nix and D. McNair, Phys. Rev. 61, 74 (1942).

U= Us+ V N(E)EdE, (2)

"J.R. Neighbours and G. A. Alers, Phys. Rev. 111,707 (1958).
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when Uo takes into account all the contributions from
6lled bands, etc. For the case of overlapping s and d
bands, (2) may be written as

U= Uo+V N. (E)EOE+V Ns(E)EOE, (3)
JE, J@q

where E, and E~ are the energies of the origin of the s
and d bands, respectively. Equation (3) may further be
written as

r p f-&s
U= Uo+VI rcE,+rldEc+

~
N, (e)ede

0

0.74

0.72—
EO

~ 0.70—
N0
o 068
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FIG. 2. Variation with temperature of @44 for palladium, The
l dashed curve represents the expected behavior for a temperature

Ng(e)ede ~, (4) independent overlap contribution to the shear constant.

8(t' E,)/BV =—I,/VN, . —
where we have used the fact that

where e, and e~ are the number of electrons per unit
volume in the s and d bands and E, and Sq are the re-
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FIG. 1. Variation with temperature of (c»+c&z)/2+c44 for
palladium. The dashed curve represents the expected behavior for
a temperature independent d-band contribution to the elastic
constants.

Differentiation of (7) then gives

that is,
Vd'U, /d V'= —VN. &(I —E,)/&V,

Vd'U, /d V'= ts,s/N, (8)

A similar expression holds for the contribution from the
d band. In the case of a parabolic band, where

N, =3n,/2(t E,), Eq. —(8) reduces to

Vd'U, /d V'= ss I,(f' E,), —

which is identical with Eq. (11.18) of DeLaunay. Thus,
if we assume that the s band in palladium is parabolic
with a density of 0.6 electrons/atom, ' ' we have I E, —
=4.3 ev, e,=6.5&(10"cm ', so that

Vd'U, /d V'=0.3X10"dyne cm '. (10)
spective densities of states. We thus have, assuming"
that the number of electrons in each band remains
unchanged on deformation,

O'U r O'Uo d'E, d'E~
V = Vi +e,V +ed V

dp~ ( dp~ dl/~ dv2

d'U, O'Ugl
+ +

dV' dV'
where

t;—Es t'—gg

U, = V t N, (e)ede and Up= V ~t Nc(e)ede. (6)
0 ~o

If we neglect the explicit dependence of X, on t/', we
have

For the d band, eq= 6.1&10"cm ', Eg= 1.6&10"cm '
erg ', hence from Eq. (5)

Vd'Ud/dV'=2. 3&(10"dyne cm '.

If we suppose that the first three terms in (5) do not
alter appreciably in going from palladium to silver, they

0.30

CV

E
0.28

C:

o
O

~ 0.26
CV

1

O

dV ~o
N. (e)ede —(I E,) rc. (I'—E.), (7)— 0.24'0

I I

IOO 200
Temperature ( K)

300

'4Strictly speaking this assumption is not correct, since we
should also take into account electron transfer between bands. For
the present purposes, however, the latter eftect can be neglected.

Fro. 3. Variation with temperature of (c&~—c&2)/2 for palladium.
The dashed curve represents the expected behavior for a tempera-
ture independent overlap contribution to the shear constant.
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may be disregarded and hence for palladium'5

(d'U, d'Usq
K,= V~ +

~

=2.6X10"dyne cm ' (12)
E dV' dV')

Since silver has a filled d band, there will be no term in
E, analogous to (11).Hence again assuming a parabolic
s band with f E,=—5.5 ev, e,=5 9X. 10ss cm ',

E.= Vd'U', /d V'=0.3X10"dyne cm '. (13)
The difference (E',)o,a,d;„~—(E,)„~«r= 2.3X10" dyne
cm ' is considerably larger than the difference between
their bulk moduli, viz. , Bo,s,d;„—B,a«, =0.NX10"
dyne cm '. It seems reasonable to suppose, however,
that our neglect of the first three terms in (5), together
with the neglect of the explicit dependence of E on the
volume, is responsible for this overestimate.

(b) Temperature Dependence of Elastic Constants

Reference to Figs. 2 and 3 shows that both c44 and
(cii—cis)/2 have an anomalous temperature variation.
For most metals, both shear constants increase almost
linearly with decreasing temperature down to about
100'K. For palladium, c44 initially decreases with de-
creasing temperature, while (cii—cis)/2 has a pro-
nounced concavity toward the abscissa. It is believed
that this behavior is due to the change with temperature
of the contribution to the shear constants, resulting from
the holes in the 4d band of palladium. This change is
quite marked owing to the low degeneracy temperature
of the holes. The dashed lines in Figs. 2 and 3 are the
estimated behavior of the shear constants, if the hole
coritribution did not alter with temperature. As may be
seen, the diGerence is much more pronounced in c44 than
in (c„—c„)/2.

A more quantitative understanding of the above
eGects may be obtained if we apply the theory of Leigh, '
which was originally developed to explain the magnitude
of the shear constants of aluminum. Accordingly, let us
consider the 6ve Brillouin zones associated with the d
electrons of palladium. If we denote by N;(E; l ) the-
contribution to the density of states per atom arising
from one particular set of holes at an energy E; relative
to the zone center and e; the corresponding number
density of holes, then it may be shown that the contribu-
tions to the shear constants are given by expressions of
the type

d'U/dx'=Q L
—X n&;—p;N;(E;—1)E'j (14)

where );, p; are numerical coefficients and x is the ap-
propriate strain parameter. In deriving this expression,
it has been assumed that the energy at a point on the
zone is proportional to its distance from the zone center.

Now, assuming that the holes have a parabolic de-
pendence on E, l, it is easily shown that"—

'5 This value has been derived from the electronic heat capacity
of panadium'6 after subtracting o6 the contribution to the
density-of-states arising from the s band.

'~N. F. Mott and H. Jones, The Theory of the Properties of
3Algls ggd Alloys (Clarendon Press, Oxford, 1936), p. 178.

l.e.)
A(d'U;/dx') s'

~ T q
'

24 ET,)p;g;E,2
(16)

To estimate the increase, let us assume the existence
of only one type of hole and take ii= 1, N=1 level/ev/
atom. We then have

p,;E;E,~ 0.9&(10"dyne cm '. (1&)

Since To~1500'K for palladium, Eq. (16) then gives
for 7=300'K

h(d'U;/dxs)~2X10' dyne cm s, (18)

which is at least in order-of-magnitude agreement with
experiment. Actually, Leigh's calculations give p, =0 for
holes at the zone corners and holes over the square faces,
and li =16/9 for holes over the hexagonal faces. Thus, on
the basis of these values, the large temperature change
in c44 would seem to require the existence of the latter
type of hole. Such a situation is, however, not consistent
with the original assumption that the energies at the
zone faces are proportional to the squares of the re-
spective distances from the zone center, since the hex-
agonal faces are much closer to the center than the
square faces or the zone corners. In view of the simpli-

fying assumptions made in the theory, this incon-
sistency should not be taken too seriously and we should
rather take p, ;, ); to be adjustable parameters. On this
view, the values obtained from experiment are not
unreasonable and lend strength to the conviction as to
the essential correctness of the theory.

In the same way the anomalous temperature depend-
ence of the bulk modulus of palladium, implicit in
Fig. 1, may be explained. Thus considering only the d
band contribution, we have from (8)

Nd'(E,—l'o)
~(E'-l-)

Nd(E, t'o)—(19)

For a parabolic band this becomes

1 h(E,—l')

2 (E'-f'o)

f' T )
24&T, J

' (20)

E'—1 =(E'—fo)t 1—( '/12)(T/T )'j (15)

where kTo E;——t o.—For metals with a low degeneracy
temperature and a steep density-of-states curve, the
second term will thus vary quite appreciably with
temperature. Thus from (14) we have

h(d'U/dx') = —pQ sLN (E—1)—N (E—l o)]
li—&"N''(E' t—o) ~(E' l—)

=(or'/ 2)(T/ o)'pX'N'(E —to) (E—fo)
= (m'/24) (T/To)'p;N;E s
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At T=300'K, Eq. (20) gives

AE, 5)&10"dyne cm '

which is again of the required order of magnitude.

(c) Debye Temperature of Palladium

(21)

H =275—0.067' 'K. (22)

The value Ho=275~8'K is in excellent agreement with
that obtained by Hoare and Yates, ' who found from
their calorimetric data a value 80= 274+3'K. Owing to
the large electronic heat capacity of palladium, it is
dificult to determine the Debye temperature with much
accuracy from calorimetry. Their error estimate is a
measure only of the internal consistency of the data and
hence the above agreement is somewhat misleading,
since a small systematic error could easily cause a fairly
large change in the calorimetric value of H. It is believed
that an error of this sort is responsible for the higher
Debye temperature HO=299'K reported by Rayne. '
Owing to the small specimen mass used in the latter
work, an error in the specific heat of the addenda could
easily be responsible for the discrepancy.

It is of interest that measurements in the liquid

'r J.DeLaunay, in Soflf State Phys-ics, edited by F. Seitz and D.
Turnbull (Academic Press, Inc. , New York, 1956), Vol. 2, p. 285.

Using the method of DeLaunay'~ to compute Ho and
taking pa=12.132 gram cc ', V0=8.7949 cm', we obtain
from the elastic data extrapolated to absolute zero

hydrogen range" "give ()=275'K. This circumstance is
diflicult to understand since, according to Eq. (22), f)

should be considerably lower than the liquid helium
value and should be varying quite rapidly with temper-
ature. One possible explanation is that the electronic
heat capacity is not constant up to these temperatures,
but this hardly seems likely since the degeneracy tem-
perature of the holes in the d band is in excess of 1000'K.
It would thus seem desirable to have more accurate heat
capacity data in the liquid hydrogen region to check the
validity of Eq. (22).

V. CONCLUSION

Elastic data have been obtained on a single crystal of
palladium from 4.2—300'K. The data extrapolated to
absolute zero give a value of Debye temperature in good
agreement with that obtained from calorimetry. The
anomalous behavior of C and C' is satisfactorily corre-
lated with the temperature dependence of the contribu-
tion to the shear constants, arising from the holes in the
d band of palladium.
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The matrix elements for electric dipole transitions with retardation have been numerically evaluated for
transitions between the 1s and higher discrete states of a single Dirac electron in a Coulomb field. The results
are used to calculate the relative intensities of the principal K x-ray lines in elements of high atomic number.
Comparison of the retarded and nonretarded matrix elements confirms the earlier result for lead that the
effect of retardation is significant in heavy elements only when the total angular momentum of the electron
changes. Comparison with the experiments of Beckman indicate that this conclusion is correct, and that in

the Eo.2 to Ea& intensity ratio the effect of retardation is more significant than screening effects.

INTRODUCTION

~HE matrix elements for E x-ray transitions in the
Dirac hydrogenic atom have been numerically

evaluated for atomic numbers ranging from 1 to 100.
These matrix elements are presented in algebraic form
in an earlier paper' and will not be repeated here. The
matrix elements have been used to compute the relative
intensity (intensity in energy/unit time) of E x-ray

* Supported by the Research Corporation.
' W. B. Payne and J. S. Levinger, Phys. Rev. 101, 1020 (1956).

This paper is referred to throughout this article as (PL).

lines in heavy elements. These relative intensities are
compared first with earlier calculations' of these relative
intensities in which retardation eGects were neglected
and with recent experiments. '

The intensity of an x-ray transition from an initial

state a to a final state b is given in ergs/sec by

I s (2e'fs/mes)cc, ssf s, ——

W. B. Payne, dissertation, Louisiana State University, 1955
(unpublished).' O. Beckman, Arkiv Fysik 9, 495 (1955).


