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Let us consider the s component of the spin representation si, ',

(ag, ag) —(bg, bg)
sa' ——

I

(b-& ~a&)+(a-& P&)

—(a~,b ~*)+(b~,a ~*)

(b s*,b g*)—(a g*,a g*)J
(A21)

1
Using the perturbed functions in Eqs. (A20), we see that s&' is identical with the Pauli spin matrix s'=

2

up to first order in X, ,
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The g factors of electrons in Ge and Si are calculated on the basis of the eRective mass approximation.
The results are consistent with experimental spin resonance data. The eBect is predicted to be anisotropic,
with gal less than gJ. This anisotropy introduces a strong interaction between the electron spin and shear
waves, for the singlet donor ground state. This interaction can account in order of magnitude for the observed
spin-lattice time r, for donor electrons in Si at low temperatures, including both a one-phonon process and
a two-phonon Raman-type process. The temperature and magnetic-6eld dependence for the two processes
are predicted to be vs 'cc TH' and 7. 'oc T'H', respectively. The temperature dependence agrees with ex-
periment; however there are discrepancies in the magnetic-field dependence. v-, is predicted to be anisotropic.

INTRODUCTION

HE g factors of electrons in semiconductors differ
from two because of spin-orbit interaction. The

effect can be calculated using the effective mass
approximation, and can become large when there is a
nearby band connected by momentum matrix elements
and split by spin-orbit interaction. This is often the
case when the effective masses are small. Results for
indium antimonide and the k =0 electrons in germanium
have been reported by Roth, Lax, and Zwerdling. ' The
effect has also been found to be large in bismuth by
Blount and Cohen. ' In the present paper estimates of

g factors for the conduction electrons in germanium and
silicon will be obtained. The result for germanium has
been reported elsewhere. '

An interesting feature of the calculation is that the
effect is anisotropic with g~~ (parallel to the axis of the
electron's ellipsoid) differing from two by considerably
more than g&. Since spin resonance experiments are
usually carried out for electrons on donors, in the singlet
state, 4 the observed g factor is isotropic. However, the

*The work reported in this paper was performed by Lincoln
Laboratory, a center for research operated by Massachusetts
Institute of Technology with the joint support of the U. S. Army,
Navy, and Air Force.

'L. M. Roth, B. Lax, and S. Zwerdling, Phys. Rev. 114, 90
(1959).' E. I. Blount and M. Cohen, Westinghouse Research Labora-
tory scienti6c paper (unpublished).

'L. M. Roth and B. Lax, Phys. Rev. Letters 3, 217 (1959);
L. M. Roth, Lincoln Laboratory Quarterly Progress Report on
Solid-State Research, January, 1959 (unpublished), p. 45.

4%. Kohn, Solid-State Physics, edited by F. Seitz and D.
Turnbull (Academic Press, Inc. , New York, 1957), Vol. 5, p. 257.

anisotropic part of g is responsible for a large inter-
action of donor electron spins with shear waves. This
apparently accounts for the small observed spin-lattice
relaxation times of donor electrons in silicon, and the
calculation is given in the second section of the paper.
Both a direct and a Raman-type process are considered
and compared with the experimental results of Honig
and Stupp' and Feher and Gere. '

THE g-FACTOR

The g factor for a twofold degenerate band edge
(including spin) can be obtained from the effective mass
approximation for degenerate bands with spin-orbit
interaction, as obtained by Luttinger and Kohn. ' The
effective mass Hamiltonian in the presence of a magnetic
field is given by

1 P m, „~„,"P
X;;= 5;,y2P(s), ,"H+—P'

2m m' n ~On
Here

P=y+eA/c, (2)

where p is the momentum operator and A the vector
potential, both acting upon envelope functions for the
two degenerate band edges over which the indices i
and j run. The second term of Eq. (1) is the electron
spin interaction with the magnetic field H, with P the
Bohr magneton, and (s);, the matrix element of the

' A. Honig and E. Stupp, Phys. Rev. Letters 1, 275 (1958).
s G. Feher and E. A. Gere, Phys. Rev. 114, 1245 (1959).
7 J. M. Luttinger and W. Kohn, Phys. Rev. 97, 869 (1955').
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electron spin between band edge wave functions. In
the third term ~ is the modified momentum operator,

oo =p+ (As XVU)/2mc', (3)

and the matrix elements are between band edge wave
functions, the prime on the sum indicating that the
bands i, j are to be omitted. This term contributes both
to the effective mass and the g factor. This can be seen
by breaking up the expansion into two parts, one in-
volving the vector components of P in a symmetric
combination, and the other in an antisymmetric con-
tribution. Using the relationship for the antisymmetric
term,

PXP= (eh/ic)H,

we have for the last term in Eq. (1),

1 P {or...or„,} P 1 ch oo; Xor;
+— H P', (5)

m2 n nz2 2ic @on&o

where the curly bracket indicates the symmetric
product.

The 2X2 effective mass Hamiltonian, Eq. (1), can
be expressed in terms of the 2X2 unit matrix and the
three components of the Pauli spin vector e. The most
general form which is Hermitian and is invariant under
the combined operations of time reversal and reversal
of the magnetic held is

H;, =-,'P [m*]—'Pb, ,+(P/2)~„"g H, (6)

where [m*] ' is a real symmetric dyadic given from
Eqs. (1) and (5) by

1 2 {or,„,oo„;}
Lm*]-'=—&+—P

m m'n ho

and g is a real dyadic, not necessarily symmetric, given
by

2 ~~nX~n~
e "g=4(s);+—Q

im n Bo„

In Fq. (8) the first term is equal to 2rr,; for the case of
no spin-orbit interaction. This is not necessarily so
otherwise. The second term vanishes in the absence of
spin-orbit interaction. That the right-hand side is
proportional to 0,; follows from its time reversal
properties: 0. changes sign under the time reversal
operator —ig.„C, where C is the complex conjugation
operator. 8, ~, and i also change sign, while the Hamil-
tonian corresponding to the energy denominator is
invariant under this operation. The argument involving
time reversal actually holds only for a band edge at the
center of the Brillouin zone. Away from the center of the
zone, a band edge of this type can occur if there is also
inversion invariance, in which case the appropriate
operator is —io.„CI, with I the inversion operator. The
eGect of time reversal is discussed in detail by Blount
and Cohen. '

In evaluating Eq. (8) it is often the case that the
band edge is s-like, with a nearby p-like band which
makes the dominant contribution to the effective mass,

Eq. (7). If the p-like band has a large spin-orbit
splitting, the dominant contribution to the g factor is
also from this band edge, and comes from the difference
in energy denominators between the two split com-
ponents. This was found to be the case for the direct
electron in germanium, and for electrons in InSb, as
calculated by Roth, Lax, and Zwerdling' in which the
actual wave functions used were of zero order in the
spin-orbit operator. The g factor in InSb was found to
be very large (—50) because of the small band gap and
large spin-orbit splitting. Even larger g values were
found by Blount and Cohen' for Bi, again due to the
combination of a small band gap and large spin-orbit
splitting. Another interesting case is that of the split-off
valence band in Ge or Si, in which the g factor was
obtained by t,uttinger' and can be related to what is
essentially a g factor for the fourfold degenerate band.

For electrons in Ge or Si it is a good approximation
to treat the spin-orbit interaction,

H,.= (fr/2m'c')s (VUXP) =2s h,

as small, and introduce it to first order. We shall not
restrict ourselves to a single connecting band edge, al-
though we shall And that for both cases the dominant
contribution to g is from one band edge. In Eq. (3) we
shall neglect the second term; i.e., replace m by p, as
this can be shown to contribute a term of order
(p'/2m)/mc' to the g factor, which is small compared
to one. Through the use of perturbation theory, we can
rewrite Eq. (8), factoring out rr=2s from Eq. (9), to
obtain

2
g=21+—P' {ho p„Xp.o

mZ I ~ So~ho.

+h po Xp„o+h„opo„Xp„„}. (10)

The conduction band edges for Ge and Si are away from
the center of the zone but lie on symmetry axes so that
the constant energy surfaces are ellipsoidal. From
symmetry the g tensor has only the components
g„=gt&, g~, =g»=g&, where s is the axis of the ellipsoid.
To find what terms contribute to Eq. (10), we specialize
to the two cases.

Germanium

The conduction band edges in Ge are at the points I,
at the center of the hexagonal faces of the Brillouin
zone, and according tf Herman' belong to the repre-

8 J. M. I,uttinger, Phys. Rev. 102, 1030 (1956); Equation (b.9)
is in error; the spin term should be (e/6rlc) (2ICrs 1lrr H. —

9 F. Herman, Phys. Rev. 93, 1214 (1954); Revs. Modern Phys.
30, 102 (1958).
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where Re is "real part of." Here we have labeled the
band edges by the representation to which they belong,
and in addition the superscripts x and y distinguish the
basis functions for the two-dimensional representations.
These expressions can be compared with those for the
effective masses,

L2

m 2 1—=1+—2 I
(L I p*IL "*)I'

mg m IL Bpp

m 2 1—=1+—2 1(Lil p I Ls ) I'.
m~ m~ Bp„

(13)

000

FIG. |.Schematic diagram of the energy bands for Ge along a
$111jaxis of the Brillouin zone. After Herman (see reference 9)
and Phillips (see reference 14).

sentation Lj of the group of the wave vector. ""A
sketch of the energy bands along the I 111$ direction
in germanium is shown in Fig. 1, showing nearby band
edges which may contribute to the sums. To find which
band edges are connected to Lj by the perturbation y,
we use the fact that p, p„ transform as Ls', and p, as
L2', where 2 is along the axis of the ellipsoid, Further-
more h, h„ transform as Ls and h, as Ls. From Eq. (10)
we see that h, appears in gll and h in g =g~. Using
group theory and Eq. (10), we find then that

4 1
(Li

I p*l Ls "*)
mz &. gpp@pv

x(L *lh. lL ")(L,"Ip.IL)
8 1

+Re—2 (Lil h, l
Ls")

mz pv gpp~pv

x(Ls"
I p*lLs "")(Ls ""Ip. ILi) (11)

"L.Souckaert, R. Smoluchowski, and E. Wigner, Phys. Rev.
50, 58 (1936).' G. F. Koster, Solid-State I'hysics, edited by F. Seitz and D.
Turnbull (Academic Press, Inc., New York, 1957), Vol. 5, p. 175.

glI~0.9. (15)

For g„ the first term of Eq. (12) can be estimated in a
similar way, if we assume that all the momentum
matrix elements are the same, and that these and the
matrix elements of h are the same as Eq, (11).This gives

gi —2=—(5/Biz ) (m/mi —1)+dg, . (16)

From m/mI=0. 6, the first term of Eq. (16) is 0.04.

is H. R. Philipp and E. A. Taft, Phys. Rev. 115, 1002 (1959).
'3 J. C. Phillips, J. Chem. Phys. Solids 12, 208 (1960).

In gll the major contribution comes from the first
term in Eq. (11) as in the second term Ls appears,
which is far away. If we assume that the major con-
tribution to the first term and to m/mi comes from one
band edge (Fig. 1), we find

g, i
—2= —(5/his ) (m/m, —1), (14)

where 5=2i(Ls *Ih,
l
Ls.s) is the spin orbit splitting of

the L3 band. We can estimate 6 by using the basis
functions at the center of the zone, giving fi (2/3)h
where 3,=0.3 ev is the splitting of the valence band at
k=0. The value of 8», the energy separation between
the L~ and L3 bands, can be estimated from the
experiments of Phillip and Taft" who found a strong
absorption at 2 ev which is probably the vertical
transition of electrons from the L3 band to the L~
band. s" Using these and the value of m/mi of 12 from
cyclotron resonance, we Gnd
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This result is somewhat unreliable since there is some
cancellation in the expression for m/m~. The second
term of Eq. (12) is small but the last term may con-
tribute since the band edges 1.3 and L,3 appear. This is
given in Eq. (16) as hgr'. If the matrix elements are the
same order of magnitude as in the 6rst term of Eq. (11)
and the F& edge is 5 ev away, '4 this contributes 0.4 to
g~, with the sign uncertain. However, we expect the
matrix element of h to be reduced since the F~ band
edge is s-like. An argument that can be used to estimate
the reduction is to take as a measure of overlap con-
tribution to 6 (in a tight binding approximation) the
difference between 6 and the atomic spin-orbit splitting
of 0.2 ev. Since the only contribution to our matrix
element would be from overlap we would multiply by
—',, giving Idg&'I 0.1. Phillips, " however, argues the
matrix element of h, depends on the amount of p
character in the I.& band obtained by projecting the
plane waves on core functions, and that this is very
small, making Ag&' almost negligible.

In any case we see that there should be considerable
anisotropy in the g factor. The effective g factor for

SILICON

zo

conduction electrons on a particular elbpsoid is given
by

g'=g~P cos'8+gP sin'8, (1&)

where 8 is the angle of the magnetic 6eM with the axis
of the ellipsoid. However, the spin resonance experi-
ments are generally carried out on donors, and in this
case the ellipsoids are mixed, For the donor singlet
state4 (see part 2) the effective g factor is given by

g sg»+ sg&

This is estimated to be g 1./ in good agreement with
the result of 1.57 obtained by Feher, Wilson, and Gere."
One can also calculate the g values for the triplet donor
state, using the Hamiltonian of Eq. (21) below. '

Silicon

Similar expressions can be obtained for Si, for which
the conduction band minima are along the 100 axes in
the Brillouin zone, as sketched in Fig. 2. Here we have:

1 1
g„-Z=R.e—p (A,

l p. l~, *)
mi'~ Bp„8p,
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8 1
yR-. P (A, lh.
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(&r I p. I
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I

"zs

—x,

X (hs""I ts*l &i")(ht"
I p. I 4r)

4 1
+Re—g (a, lf.la; )

mi ~ ~p, ~p,

x(~,-l p„l~, )(~, I p. l~,)
0- ip

LLI

000 l oo

x,

4
+Re—g (a&l p„l as»)

mi ~ Bp„8p,

x(f), -IP.I~," )(~,"lf.l~,). (20)

For g~~, if we estimate the first term in Eq. (19) in a
similar way as for Ge, and use 6=0.04 ev, m/m&=5,
8~5=4 ev, ' we obtain —0.03 for this term. Assuming
that this is the only term of importance the donor spin
resonance would have g—2= —0.01, as compared with
the experimental value of —0.003. However, Elliot, "
who has made a similar calculation, has pointed out
that the spin-orbit splitting of the 65 band vanishes at

Fro. 2. Schematic diagram of the energy bands for Si along a
$100j axis of the Brillouin zone. After Herman (see reference 9)
and Phillips (see reference 14).

'4 J. C. Phillips, Phys. Rev. 112, 685 (1958)."J.C. Phillips (private communication).

'6 G. Feher, D. K. Wilson, and K. A. acre, Phys. Rev. Letters
3, 25 (1959). Recent spin resonance experiments with strained
samples h Wilson and Feher (Bull. Am. Phys. Soc. Ser. II, 5,
60 (1960) give gal=0.87&0.05, gy= 1.92~0.05.

» R. J. Elliot (private communication).
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the zone edge (the point X, Fig. 2) and is therefore
probably smaller than (-', )6 at the band edge, which is

85% of the way from I' to X. A reduction by a factor
of three would be reasonable and give agreement with
experiment.

Another term which may be important is the third
term in Eq. (20) for g, . Here the matrix element of
p, vanishes at X, and is of the order of h(ko —kx)
=0.15k(2~/a) where ko and kx are the wave vectors for
the band minimum and the point X, and a is the lattice
spacing. The matrix element of p„ is the same as in the
first term of Eq. (19), as are the energy denominators.
If the matrix element of h is the same as that of h, in
Eq. (19), one finds that this term would be about 6 of
Eq. (19) with the sign uncertain. The spin orbit matrix
element is again reduced below an atomic spin orbit
splitting, in this case because the wave function at 5 is
mainly s-like. According to Phillips, " the amount of
p-character is about 20%, giving a reduction by a factor
of 5. Alternatively, a tight binding argument such as
was employed in estimating g& for Ge would give a
reduction of a factor of three. Thus, we can estimate
that gL

—2 is something like 6 of g« —2. This indicates
that there is anisotropy in the g-tensor in Si as well

as in Ge.

SPIN-LATTICE INTERACTION

The interaction of electron spins on donor im-
purities' ' with lattice waves has been found to be much
larger than expected on the basis of calculations up to
this time. ""The following calculation, which is similar
to the work of Van Vleck,"apparently accounts for the
magnetic-field dependent part of the spin-lattice time r,
observed by Honig and Stupp in phosphorus-doped
silicon. ' In addition a Raman-type process is considered.
The result for the direct process is also applicable to
acoustic spin resonance.

Of primary importance in the calculation is the fact
that the ground donor leve14 is split into a singlet,
doublet, and triplet for Si, and a singlet and triplet for
Ge, due to the mixing of the various ellipsoids on the
donor, with the singlet usually lowest. We shall call
the states other than the singlet arising in this manner
excited states. In the presence of a magnetic field we

have found that an electron ori a given ellipsoid has
an anisotropic g tensor, with g&1 less than g&. For a
general direction of the magnetic field, the o"g H
interaction is diGerent for diferent ellipsoids, and can
therefore mix singlet and excited states, and, in par-
ticular, diGerent spin states. There is therefore an
interaction with lattice waves involving a spin Rip.
The usual "Van Vleck caricellation'"' does not apply
here —the latter is due to time reversal invariance which
does not apply in an interaction involving a magnetic

'8 D. Pines, J. Bardeen, and C. P. Slichter, Phys. Rev. 106, 489
it957).

'9 E. Abrahams, Phys. Rev. 107, 491 (1957)."J.H. Van Vleck, Phys. Rev. 57, 426 (1940).

field. The spin-lattice interaction obtained is large
because the energy denominator involved is a singlet-
excited state splitting rather than an energy gap.

Direct Spin-Lattice Interaction

We consider a donor electron in the singlet state in
Ge or Si. We can write the interaction of the electron
spin with a magnetic held in the following form,

H, = (P/2)e g. H (21)
where

=g1+(g~~ gi) 2'I')(il {&A' 31) (22)

In Eq. (22), g is given by Eq. (18) and is the observed
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factor in the singlet donor state. In the second term
i) (il is a projection operator which selects out the ith

ellipsoid, and n; is a unit vector in the direction of the
axis of the ellipsoid.

The second term in Eq. (22) mixes the singlet and
excited states. If we denote the singlet state by IO)
and the rest of the states by In), the perturbed singlet
state IO') is given in Dirac notation by

(ni (P/2)~ g.„HIO)
io') = io) —P.in)- (23)

The electron-phonon interaction is given by

Hd e: E.~,
—— (24)

where a is the strain tensor and where K,„ is a de-
formation potential operator again involving projection
operators:

E.„=E,1+E2 Q, li)(il f8,t1;——,'1). (25)

E~ and E2 are the usual deformation potential parame-
ters for electrons. "We now have, to first order in II„
(0'IH„lo') = (0IE,~ Io)

-(»e Z.&(01'. E..l )(- (p/2)- g..HI0)
+ (0I (p/2)~. g.„H n)(nl. : E.„lo&, (26)

where 6 is the dilitation, and 8 is the singlet-triplet
splitting for Ge, or the singlet-doublet splitting for Si.
We are making use of the fact that there are no matrix
elements connecting the singlet. to the trip/et in Si, as
the latter involves antisymmetric combinations of pairs
of opposite ellipsoids, while the singlet state as well as
the perturbations involved are symmetric in opposite
ellipsoids. From the completeness relation we can write,

nl =P, lz)(zl- IO)(ol, (27

where le) represents the lowest donor level on an
ellipsoid (as distinguished from

I i) which just gives the
ellipsoid. Using Eq. (27) and the orthogonality of
states on different ellipsoids, we find for the second term
in Eq. (26), denoted by H',

H'= —L(g —g.)pH/5j 2;I (oI ~) I'

X(;In, '~,-(~/3)ii)( ~,a, B——; H). (28)

2' C. Herring and E. Vogt, Phys. Rev. 101, 944 (1956).
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The only spatial dependence of e. is in the plane wave
e'~', for a phonon of wave vector q. If we assume that
qrp«1, where rp is the radius of the donor state, we can
replace the exponential by 1; i.e., we take a to be
constant. This is valid for phonons up to 15' in Si and
5' in Ge. Further, since the singlet involves a symmetric
combination of wave functions from all the ellipsoids,
the summation in Eq. (28) is just the average of the
angular factors. Carrying out the averages, we find for
the two cases,

S~: H'=P(g« g.) (E2/—o) X 3$&&x&xz+oyHy&yy

+o,H, e„+HE,/3—), (29)
Ge: H'=P(g„gg) (E—2/o)

X (2/9) P(o.~„+a„H.)e,„+c.p.), (30)

where c.p. stands for "cyclic permutations. "

Calculation of ~,

The relaxation time r, is given by

~ '=(2~/&) &., ~{l(&«,+lH'(q, t) I&«+1, —)I'
+tP', , —IH'(q, t) I&, —1, +)l'}

8(A(u, —gPH), (31)

where the sum is over the phonon wave vector q and
the polarization t. S refers to the occupation number
for the phonons, and + and —refer to up and down
spins. H'(q, t) is given by Eq. (29) or (30) with the
strain given by

for Si. Using hg/g=1. 5X10 ', E~ 1——1 ev, cP~5X10'
cgs, we find for 1.2'K, 9000 Mc and an average di-
rection for II, v, 1000 sec. The result obtained by
Honig and Stupp' was 420 minutes, so that our result
represents an embarrassment of riches, but is certainly
in better agreement than the 10' sec obtained by
Abrahams. " For Ge, with cP 3X10'~ cgs, d,g/g 0.3,
E2=15 ev, and 5 4)&10 'ev, we find similarly r, 10 '
sec.

It is interesting that 7-, ' is predicted to depend on
the direction of the magnetic field, and in particular to
vanish for HllL100) in Si. Such an anisotropy has not
been observed thus far; however in Ge, there is ani-
sotropy in the inhomogeneous broadening' which is
evidently due to residual strains. It is evident from
Eq. (30) that the change in g due to shear

l
~ (+

l
H'l+)) vanishes in the

l 100) direction, which
is consistent with the narrowing observed by Feher,
Wilson, and Gere" in this direction.

Raman-Type Process

We consider a two-step process in which a phonon
of wave vector q is absorbed and a phonon of wave
vector q is emitted, the spin Ripping in either step. In
the intermediate state the electron is raised from the
singlet to an excited state. The expression for the
relaxation rate is

r, '= (2m/k) 2. .., , , {I (+ l
H'(q, q', t, t') I

—) I

+ I (—IH'(q', q, t', t) I+) I'&~(&~ —&~ —&~) (35)

e(Q)t) = (&/2p~e~) *(~e~+~e~+)~{q)Ua~) (32) where

where a and u+ are annihilation and creation operators,
g is the polarization vector, and p is the density. Since
we expect transverse and longitudinal waves to give
somewhat different results, we average Eq. (31) over
the two types of modes, using an isotropic model for
the elastic waves. This gives

1 (E2 (g, &

—gq) ) co kT
si: g,

—&=—
l

3g ) p

H'(q, q', t,t') = (O', X,
l
Hd (q, t)

l

m', .V &
1)—

1
(e', 1V, ,

l
Hp(q', t')

l
0, X, , +1)

Bp' —h„'+5(o,

+ (0', X,., lH. (q', t')
l
~', ~,, , +1)

Bp' —8„'—fsco,

X (&', N, g l Hg(q, t)
l
0', E,g

—1), (36)

f 2 4 ) H,'H„'+c.p.
xl +

&5.,' 15., & H

1 (E2 (gii —gi)) cu kT

3g ) p

( 2 4 ) 4 1 H,'H„'+c.p.
XI +

E5cP 15cP3 9 2 H4

(33)

(34)
I

with H& given by Eq. (24), in which e is given by Eq.
(32). Here the primed electron states include H„Eq.
(21) and we have assumed for simplicity that e' is
diagonal in this interaction. We now evaluate this to
first order in H„considering only the contribution due
to E2, Eq. (25), since we shall include only transverse
waves. If we assume that kT&(8, we can neglect the
energy of the phonon in the denominators. The result
is then

The factor 1/c' is an order of magnitude smaller for
longitudinal than for transverse waves, so the latter
dominate. We shall assume g~=2, so that (g~~

—g~)/3
=g—2=kg, with g given by Eq. (18). This quantity
can then be obtained from experiment. The only
unknown is then 8, which we shall take as 10 ' ev

H'(q, q', t, t') = (6/~') (g« —g~)'E2' &' l
(o I ~) I'

X ((r 8;t1,".H —3o.H) (Ã, &l A,"e(q, t).8;
—-', 6 (q, t) l

X„—1) (1V, ,
l
t1; e (q t') t1,

——',a(q', t')
l Ã, , +1). (37)

We now substitute this in Eq. (35). Averaging over
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transverse waves only, and neglecting Ace compared to
kT, we 6nally obtain for Si,

9'' (E2) ' (Ag) ' (kT)' (H.'H„'+c.p. q
I. (»)

175&53 (g) fi'p'c E H

For the same parameters used with Eq. (33), and
for 4.2'K, this gives 60 sec, as compared with Feher
and Gere's' result of 25 sec for P-Si under the same
conditions. The T' dependence agrees with their ex-
perimental results; however, Eq. (38) predicts a quad-
ratic magnetic field dependence, whereas Feher and
Gere' observed no 6eld dependence between 3000 and
8000 gauss.

Discussion of ~,

It is evident that the effects considered here can
account in order of magnitude for the observed spin-
lattice relaxation rate in e-Si as observed by Honig and
Stupp and by Feher and Gere. This represents an
improvement by a factor of 10' over previous calcu-
lations for the direct process, the factor being due to
the appearance of the singlet-doublet or singlet-triplet
splitting in an energy denominator, rather than an
energy gap. In the details of the results, however, there
are still some discrepancies. For the direct process,
v, '~B4T, and while the quartic field dependence was
observed by Honig and Stupp for sufFiciently high
magnetic fields, at lower fields (below 9000 gauss),
there was an additional contribution independent of
the magnetic fieM. In the calculation, one factor of B'
arose from the B, perturbation, and the other from the
number of phonons "on speaking terms" with the spins. '
It is dificult to see how either factor could be elimi-
nated; thus our method fails to explain the magnetic-
field dependence of w, '. The same applies to the Raman
process.

A test of the validity of this mechanism would be the

observation of the predicted anisotropy. In looking for
this it would be best to select the high magnetic-6eld
range in which the field dependence is predicted
correctly.
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Note added ie proof Asi.—milar calculation of r, for
the direct process has been made by Dr. Hiroshi
Hasegawa LBull. Am. Phys. Soc. Ser. II, 5, 159 (1960)
and Phys. Rev. 118, 1523 (1960)] with essentially the
same result. The author wishes to thank Dr. Hasegawa
for interesting discussions and for the correction of a
numerical error.

Recent experimental work of G. Feher, E. A. Gere,
and D. K. Wilson /Bull. Am. Phys. Soc. Ser. II, 5, 264
(1960)] and of A. Honig (private communication) has
shown that the anisotropy in v, for Si is smaller than
predicted here and in Dr. Hasegawa's work. Therefore,
another mechanism for relaxation must be present. This
is evidently a one-valley process, essentially independent
of the fact that the electron is bound to a donor, and a
calculation of the eGect will be presented in a future
publication. The work of Feher et al. , also indicates that
the aiiisotropy in the g-shift for Si electrons is smaller
than estimated here, a fact which probably accounts for
our overestimate of v-, '.

According to A. Honig (private communication) the
magnetic field independent contribution to the direct
process is concentration dependent, so that the H'
dependence now agrees with experiment. For the
Raman-type process there is still a discrepancy. The
existence of a 6eld independent Raman-type process
was pointed out to the author by Dr. Hasegawa and.
this is being currently investigated.


