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In conclusion it should be emphasized again that the
two basic assumptions of the theory presented here,
namely the form of p(H, T) and the use of the Ising
approximation have not been rigorously proved valid
but are put forward as extremely plausible assumptions
which explain the experimental results.
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The many-valley character of the conduction band edge of germanium and silicon causes an anisotropy
of the g shift and of the deformation potential for the conduction electrons. It is shown that the combination

of these two sects provides a mechanism for spin-lattice relaxations of the donor spins in germanium and

silicon that yields 1/T, proportional to the temperature T and to the fourth power of the static magnetic

6eld II. Using known data about the deformation potential constant, the g shift, the energy of the inter-

valley splitting, and the elastic constants, the magnitude of T, is found to be approximately 2&(10 sec for

phosphorus donors in germanium, and 1)(10 sec for phosphorus donors in silicon. These values refer to
T=1.25'K, II=3000 gauss, with the field applied along the L1117 axis. Our mechanism fails to give a
finite T. for donors in silicon, when the field is applied along the $100$ axis.

1. INTRODUCTION

HE present investigation is concerned with a
mechanism which may be responsible for spin-

lattice relaxations of shallow donor spins in Ge and Si.
We restrict our considerations to direct phonon proc-
esses, i.e., to processes which involve the absorption or
emission of only one phonon.

The interaction of an electron with lattice vibrations
in such a nonpolar crystal has been treated by many
authors from the deformation-potential point of view. '
In particular, a generalized theory of the deformation
potential for many-valley semiconductors has been

developed by Herring and Vogt. '' According to these
authors, the shift of the electronic energy of the jth
valley due to a strain %l, is given by

e&"'= P U p(-e5 p+- E t'~Ept'~),
a, P

where U p is the (n,P) component of the strain tensor
'll, K&tt is the unit vector pointing from the origin to
the bottom of the ith valley in the first Brillouin zone,
and ™dand „are energy constants whose magnitudes
are several ev. If one writes the displacement of the
lattice at a position r due to the lattice vibration as a
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' J. Bardeen and W. Shockley, Phys. Rev. 80, 72 (1950).
' C. Herring, Bell System Tech. J. 34, 237 (1955), Appendix C.
' C. Herring and E. Vogt, Phys. Rev. 101, 944 (1956).

Fourier series:
Q(r)=Z Q(q)p"', (1 2)

then, using Eq. (1.1), the corresponding Fourier
component of the energy shift is given by

e,&'~=.e(iQ, q)+-.(iQ, K&o)(Kt" q). (1.3)

The first and the second terms in the right-hand side of
Eq. (1.3) represent the interaction of the electron with

the lattice wave of a wave vector q through the volume

dilation, and the shearing strain, respectively.
In the present paper, we wish to show the importance

of the second term of the expression (1.3) in the
mechanism of spin-lattice relaxations of shallow donor
states in Ge and Si. The effect of shearing strains on

the ground state of donors has been discussed by
Price4 and by Kohn. ' One interesting feature of these
states, first pointed out by Kohn and Luttinger, 6 is a
splitting of the degenerate ground state through the
intervalley interaction due to the impurity potential.
The recent experiments on acoustoelectric effect (Ge), '
piezoresistance (Ge), ' Hall effect (Si),' and spin reso-
nance (Si,Ge)" "have confirmed this feature, and have
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7 G. Weinreich, T. M. Sanders, Jr., and H. G. White, Phys.

Rev. 114, 33 (1959).
H. Fritzsche, Phys. Rev. 115, 336 (1959).

' D. Long and J. Myers, Phys. Rev. 115, 1119 (1959).
' G. Feher, Phys. Rev. 114, 1219 (1959).
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provided some numerical data on the energy interval
between the ground state and the split-off excited
states. Since any kind of static strain mixes these
excited states with the ground state, we may expect a
similar mixing effect from the electron-lattice inter-
action given by Eq. (1.3).

The mathematical procedure used here is a simple
perturbation treatment which assumes that the inter-
valley splitting is large enough for the interaction with
lattice vibrations to be regarded as a small perturbation.
This treatment may not be legitimate in the case of
very shallow donors such as Li in Si or Sb in Ge, for
which the simple picture of a singlet ground state
might not be appropriate.

The present mechanism interprets the resulting
interaction between electron spins and lattice vibrations
as a modulation of the g shift by lattice vibrations.
Although we are concerned with the particular cases of
donor st.ates in Ge and Si, the present mechanism may
also apply to the spin-lattice relaxations through direct
phonon processes in other cases, e.g., paramagnetic
salts, provided that the electronic state under con-
sideration is orbitally nondegenerate.

Calculations of the spin-lattice relaxation time T, of
donors in Si due to direct phonon processes have been
made by several authors, ""and a large discrepancy
has been found between the experimental values""
and the theoretical predictions. The essential difference
between the previous calculations and the present one
consists in the following two points:

1. The only part of the electron-phonon interaction
previously taken into account was that due to the
isotropic dilation; i.e., the interaction corresponding to
the first term of the expression (1.3).

2. The amplitude of the excited states with reversed
spin which is mixed into the ground state by a static
magnetic field H is given approximately by gled&H/DE

XLkg/g. The quantity hE was taken previously to be
the difference between the energies of the conduction
band and an adjacent band, in order of magnitude 1 ev.
In our treatment, however, hE is the energy of the
intervalley splitting whose order of magnitude is
10 ' 10 'ev.

This second point results in a rather large difference
in the numerical estimate of T„and modifies greatly
the previous results. Section 2 and Sec. 3 together with
Appendix are devoted to explaining this point. The
explicit formula for the spin-lattice relaxation rate 1/T,
is presented in Sec. 4. Discussions concerning its Geld

dependence and order of magnitudes are given in Sec, 5.
One interesting prediction of the theory is that 1/T,
will be anisotropic, i.e., 1/T, will depend on the direc-

~ D. Pines, J. Bardeen, and C. P. Slichter, Phys. Rev. 106, 489
(1957)."E.Abrahams, Phys. Rev. 107, 491 (1957).

"A. Honig and E. Stupp, Phys. Rev. Letters 1, 275 (1958);
see also Phys. Rev. Letters 3, 579(A) (1959)."G. Feher and E. A. Gere, Phys. Rev. 114, 1245 (1959).

tion of the static magnetic Geld with respect to the
crystallographic axes, especially in the case of Si. In
fact, for Si, our mechanism gives 1/T, =O, when the
Geld is applied along (100) directions. This is essentially
due to the geometrical structure of the conduction band
edge in Si. The question of what mechanism is re-
sponsible for relaxation in this special case remains open.

After this work was completed, there appeared an
abstract" by L. M. Roth stating almost the same
conclusion as that obtained in the present paper.

2. PERTURBATION FORMULA

Let @„(r) be a complete set of normalized wave
functions for a donor electron in a Ge or Si crystal, and
write the ground state as 4'(r), dropping the subscript
n=0 Th.e function 4 (r) satisfies the Schrodinger
equation

e+n= ~n+n) (2 1)

TABLE I. Classi6cation of "l—s" like donor states in Ge and Si
according to irreducible representation of Tq and Tq.

Ground state Ge, Si
1st excited states Ge, Si
2nd excited states Si

~6XI'1=~6
I'6XF4 =I'7+?'8
~6XFs =~8

a The notations A1, T1, and B in the brackets are used by Kohn and
Luttinger. 6

"L.M. Roth, Bull. Arn. Phys. Soc. 5, 60 (1960).

where the Hamiltonian X, for the donor electron is
given by

X.=p'/2m+ V(r)+X, . (2.2)

The potential V(r) is the sum of the periodic potential
Vp ' d and the impurity potential V; ~, and 3C, ,
represents the spin-orbit interaction given by

X, ,= (5/2m'c') (sXgradV) p. (2.3)

We shall consider the interactions of the electron
with a static magnetic Geld and with lattice vibrations
as small perturbations. The Hamiltonians of these
interactions will be denoted by X„and K, L, respec-
tively. The Zeeman energy 3C„up to Grst order in the
static magnetic field H, can be written as

X,=ynH (/+g, s), (2.4)

where p~ is the Bohr magnetron, g, =2.0023, the free-
electron g-value, and 4 and s are the orbital and spin
angular-momentum vectors, respectively. The three
components of s are the Pauli spin matrices, and 4 is
defined by

4= (1/h)rXsr, ~=p+(i'/2mc')(sXgradV). (2.5)

It follows from Kramers' theorem that every donor
level is at least doubly degenerate in the absence of the
magnetic field, and in what follows the symbol 4„(r)
represents two eigenfunctions 4'„(r) and 4'„(r) with a
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hX = (@,Xs+)+(@rX~L%)

+p' L(+,X.+.) (@.,X L%)" E—Es

+ (O',X L4„)(O'„,X,4')j. (2.6)

As was pointed out by Abrahams, " the first-order
e8ect of the electron-lattice interaction given by the
second term (O',X L4') of the above expression does
not yield any spin-lattice interaction, because the
relations

(e,X, L+) = (C,X i,C),

(%,X,Cs) = (Cr,X,~)=0
(2.T)

are satisfied (Van Vleck cancellation). Thus the spin-
lattice interaction responsible for the relaxation sects
is represented by the third term in Eq. (2.6). ln this
term the summation runs over all excited states, but
we shall consider only those low-lying excited states
which are split oG from the ground state by the inter-
valley interaction due to the impurity potential. A
discussion of this point will be given in Sec. 5.

It has been shown by Kohn and Luttinger' that the
wave functions of the ground state and of these excited
states can be written as

4(r) =P„(')e«(r),

e (r) =P n (')+("(r)
(2 g)

respectively, where the superscript i represents the
location of an energy valley in the conduction band,
and runs from 1 to 4 for Ge and from 1 to 6 for Si. In
the absence of spin these wave functions belong to
irreducible representations of the full tetrahedral group
T~, and the corresponding sets of amplitudes n, (') are
determined by symmetry alone. The classification of
these states according to irreducible representations of
T~ is given in Kohn and I.uttinger's paper. ' In the
presence of spin the wave functions belong to irreducible
representations of the tetrahedral double-group 7.'~.
Table I gives a classification of the states according to
these irreducible representations.

Since the angular momentum vector 4 and the spin s
are axial vectors and transform like F~,'~ the only states

common energy E„. Accordingly, the matrix element
of an operator X between two functions 4'i(r) and
4's(r) is represented by a 2&&2 matrix, which we write
simply as (C),X%'s). Therefore, assuming that the
ground state is orbitally nondegenerate, the shift of
the energy of the ground state to the lowest order in
K, and 3C L can be expressed by a 2)&2 matrix as
follows:

which have nonvanishing matrix elements of 4 and s
with the ground state, whose symmetry is F6)&F&=F6,
are those which appear in the decomposition of F6)&FS.
The latter is equal to Ps+1's. As is seen from Table I,
the representation F8 occurs among the relevant low-
lying excited states of donors in both Ge and Si. In the
following section we shall derive explicit expressions for
the matrix elements of 4 between the ground state and
some of these excited states.

The spin-orbit interaction may both shift levels and
also remove the degeneracy of the states F4. However,
these changes are generally small compared to the
intervalley splitting, and may be neglected. Making
this assumption, we attribute the admixture of spin
functions entirely to the eGect of the spin-orbit inter-
action on the conduction band, and write

dk
4(') (r) = A(') (k)g, (r) (2 9)

p(~) (r) t A (t) (k)&((tr-)r;) r

(2sr)s
(2.11)

We shall use P),(r) to denote the pair of Bloch
functions

fk( ) = '"'»( ), A( ) = "'»( ), (2 )

which forms Kramers' doublet. These functions satisfy
the Schrodinger equation for the perfect crystal:

Xcrystelt)i')r =
P' )ti

+Vperiod+ (SXgl'adVperiod) ' P
2m c2m

= E(k)pi, . (2.13)

They are normalized as follows:

(P)„lt ), )„y„,i = (2sr) s() (k—k'), (P)„))t'),)scil
——Q. (2.14)

where 0 is the volume of the unit cell. Under these
conditions, a donor function

%(r)= ~ A(k)P, (r)
J ist zone (2sr)

is then normalized if A (k) satisfies the equation

where A('& (k) satisfies

A(*') (k) =0,
~

k —k;i &&1/u, (2.10)

a* being the effective Bohr radius of the ground state
of the donor, and a measure of the size of the orbit.
Since 1/a* is generally small compared to the length
of a reciprocal lattice vector, W" (r) is usually approxi-
mated by a product of lt)„(r), the Bloch function at the
bottom of the ith valley, and the envelope function

'7 The notations F of irreducible representations of Tq and fq
are same as those given by H. Bethe, Ann. Physik 3, 133 (1929),
and by R. J. Elliott, Phys. Rev. 96, 280 (1954). See also Q,
Dresselhaus, Phys. Rcy. 100, 580 (1955).

A*(k)A(k) =1,
& 1st sone

'
(2sr)

(2.15)
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Finally, we note that the matrix element of an operator
X between two donor states +i(r) and +,(r) can be
expressed in terms of the matrix elements of I between
Bloch states. The relation is

dkdk'
(0'i,X@2)=

~

~ Ai*(k)(gk, XPk)A2(k') . (2.16)
(2s)'

3. MATRIX ELEMENTS OF PERTURBING
INTERACTIONS

A. Zeeman Energy: K, =p&H. (1+g,s)

The matrix elements of K, between the Bloch
functions fk(r) and pk (r) are

gk'Sk= (g, l+Ckk+Llk) Sk, (3 &)

the tensors 4& and 4» are defined by the following
equations:

dependent. The quantity gk is a 3X3 tensor which
connects the components of the magnetic field H with
the components of the spin sk. This tensor gk may be
interpreted as the g tensor of the conduction electron
spin s.

The quantity gk sk can be expressed in terms of the
matrix elements of the operators ~=p+(A/2mc')(s
XgradV~„;, q), and iV'k between Bloch functions of the
conduction band and those of other bands. Writing

(4'k)+A'k')

((0k (~+g.s)A ) (4'k, (~+g.s)4k )i
(3 1)

( (Pk, (i!+g,S)g k ) (Pk, (g+g, s)gk ))

1 1
Lk' Sk= (4'k, ~4'ek) cell

imQ' " E(k)—F„(k)

Xg k, ~Pk). il, (3.8)

Vk
fIk, tl k=real, (3.3)

in which the constants bi, and yi, are even functions of
k, so that

S R= SR. (3 4)

However, when the conduction band under consider-
ation is orbitally nondegenerate, so that the spin-orbit
interaction X, , may be treated as a perturbation in
determining pk(r) and E(k), the spin representation
(3.3) is identical with the Pauli matrices up to first
order in BC, , Deviations from the Pauli matrices are
at least of second order in BC, , Rigorous arguments
concerning this are presented in the Appendix.

It is shown in the Appendix that the matrix (3.1)
can be written in the following simple form:

(pk, 3C.fk ) =p»H Lgkl+gk sk)(2n. )'5(k —k'), (3.5)

provided that the conduction band is orbitally non-
degenerate and the crystal has a center of inversion.
The first term of this expression is pgII fl, times the
2&(2 unit matrix 1, and is spin independent. Here Sl,
is the angular momentum vector in k space defined by

lk= (m/ill'))iqkXV'kE(k)), (3.6)

V'l, being a gradient operator operating on a function
of k in the first Brillouin zone. The second term of the
expression (3.5) is a linear combination of the three
"Pauli-like" matrices sk (sk, a=x, y, s), and is spin

Since the spin-orbit interaction is present in the periodic
potential, the electronic spin s is not a constant of
motion and its pk representation will not in general be
identical with the Pauli spin matrices, but of the form

(lit k, spk ) = sk (27r) 35(k—k'), (3.2)

where each component of the vector si, is a 2X2 matrix

+1k' Sk= (m$/~ fl) (+kmk, ilk)ce»X +kE(k) ~ (3 9)

In the expression (3.8), f„k(r) =e'k'u„k(r) is a set of
Bloch functions belonging to the eth band, and the
summation runs over all bands except the conduction
band under consideration. The right-hand sides of Eqs.
(3.8) and (3.9) are 2X2 matrices, which are discussed
in the Appendix on the basis of Kramers' theorem, and
shown to be of the form given in Eq. (3.3). Since any
matrix of the form (3.3) can be written as a linear
combination of three independent matrices of the same
form, the right-hand sides of Eqs. (3.8) and (3.9) must
be linear combinations of the three matrices si,
(a=x, y, s), as we have indicated by using the notation
A~ si, and A&l, si„respectively. By way of example let
us consider the s component of cLk. Si,. We have

(&'Sk)'= —.2'
mi " E(k) —E„(k)

~Pn &nf ~fn ~nP p
~Pn' 7l'nqP &fn ~n@X,(3.10)

7Ppn 7l nf 7l pn 7l nP ~
7l $n '7l n$ 7P@n 7I n$

where

~~.*=(1/0) (A~V-)-»
~„,~= (1/n) (P„,~q)„», etc.

(3.11)

"L.M. Roth, B. Lax, and S. Zwerdling, Phys. Rev. 114, 91
(1951), Appendix A.

The diagonal element of this matrix multiplied by p&
is just equal to Roth, Lax, and Zwerdling's expression"
for the effective Bohr magneton Lwhen Eq. (3.10) is
applied to k=0). The o8-diagonal elements of the
matrix will vanish at k=0, but will not vanish at
general points in the erst Brillouin zone.

The tensors Ai, and A~i, are generally slowly varying
functions of k, and are replaced by their values at each
point of the conduction band minima, where
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vanishes because cktk is proportional to V'kE(k). Thus,
near the point k= k;, the ith minimum of the conduction
band, the Zeeman energy is represented by

(pk, x,,pk )k k k,.=t(&)H gk(2s)'l)(k —k')

+y&)H ~ (g,1+4(')) ~ sk;(2s-)sb(k —k'), (3.12)

where
(3.13)

following form:

gt
g(&) =g I++(()++ (() = (3.20)

where the principal axes of this tensor coincide with
those of the effective mass tensor for the valley. For
convenience we rewrite this equation in the form

and, up to first order in the spin-orbit interaction X, „
si; may be replaced by the Pauli matrices s. The 6rst
correction to the expression (3.12) is

g(') =g I+g'3U(')

g'= s(gi —gi) 0

(3.21)

(3.22)

(4'k, &A'k )k, k k;=(')

=t(&)H Lt") (k —k,) s(2+)'8(k —k'), (3.14)

where

cLi")(k—k~) s
= —(mi/O'0) (V'ktt V ku) «(i(k —k,) X&k&(k). (3.15)

Since A~ and 411, are even functions, the tensors for a
particular valley (i) and its inverse (—i) are related by

4( "(—k+k, ) = 4(')(k —k,). (3.16)

(q ~ q)=trsH. Q;n('&'(g, l+g'3U(')) s

=gtreH s, g= s(2g&+gi),

(+,K,%,) =tr&)H. Q(;) n")(r„(') (g&1+g'3U(") s
=g (((eH. D„S,

(3.23)

(3.24)

The expectation value of 3C, in the ground state and
the off-diagonal element of X,, between the ground
state and a low-lying excited state defined by Eq. (2.8)
are given by

These relations simplify the calculation in Si.
We now write the matrix element of 3C, between two

donor functions.

respectively. The tensor D, is defined by

D 3 P, (r(en (i)U(o (3.25)

(Q,BC,Q ) =psH ) A,*(k)P +g s,]
dkdk'

XA, (I ')S(k—k')
(2s )'

'

m$=trsH. A, *(k) —7'k X (7kB(k)
~ 1st zone . A2

dk
+(g,1+~k+&ik) sk As(k) . (3.17)

(2s-)'

For the ith valley donor function ql(')(r) with the
property indicated by Eq. (2.10), we may use the
approximate expressions (3.12) and (3.14), and write

(0'('),X,f(')) =t(sH (g,1+cd(')+ At(')) .s, (3.18)

where

~

A("(k) ~'4, (') (k —k„) . (3.19)
(2m.)'

We note that the expectation value of the angular
momentum EI, must vanish, since the envelope function
F("(r) can be taken to be real.

The anisotropy of the g tensor at the conduction
band edge of Ge has been discussed by Roth and Lax."
The crystal symmetry requires that the tensor has the

@ L. M. Roth and B.Lax, Phys. Rev. Letters 3, 217 (1959).

B. Electron-Lattice Interaction:

K, r, ———Q (r) grad V„,.;.~
For the displacement Q(r) decomposed int;o modes of

the lattice vibrations, we shall only consider the contri-
bution of acoustic modes of vibration to the displace-
rnent Q(r), so that

Q(r) =P[e,(q)aside"'&'+ei*(q)a~i*e '&'] (3.26)
q, t

where

e&(q) =e&*(—q), t=1, 2, 3 (3.27)

is a polarization vector, and the amplitudes a«and
aq, * satisfy

[a,i,a,i*]=&&t/2%Me), (. (3.28)

Here M is the mass of the unit cell, and E is the number
of unit cells in the crystal. Neglecting umklapp proc-
esses, we find that the matrix element of the inter-
action K L for a process involving the phonon (q, t) is

((t'k)~e —Lkk') st; k, k' ~k;

=as&[ie&(q) ( ql+ „U"&) q(2s.)st)(k —k' —q)]
+as,*[same term as above except q

being replaced by —q]. (3.29)

We note that in Eq. (3.24) the unit tensor 1 does not
contribute to the summation because of the orthogo-
nality condition P(,&

n(f)(r, ("=0. The tensor D„depends
only on the geometrical structure of the conduction
band edge.
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In the above expression, I is the unit tensor, U&" is the
tensor defined in Eq. (3.22), and "z and „are Herring's
deformation-potential constants with the dimension of
energy, which measure the strength of the interaction
with isotropic dilations and uniaxial strains, respec-
tively. If we make use of the Sommerfeld-Bethe
approximation, "then

(.pl+ .U(')).p

(gradN&, ,*) (gradqii„)()dr. (3.30)~ ~cell

It will be noted that this type of coupling is spin
independent, and that there must be another term
depending on spin, whose magnitude will be approxi-
mately Dg times smaller than the term given in Eq.
(3.30).However, the corresponding term of the effective
spin-lattice interaction turns out to be at least of
second order in X, „so that it may be neglected here.

For the ith valley donor function ql(')(r) given in

Eq. (2.10), we have

(q('),x. Lq())„
dkdk'

=
) ) A*('&(k) g)„X.—Lp), )A('(k')

(2s)'

=a«t ie((q) (-&I+- „U(").q$f&"(q)+ c.c., (3.31)

where

dkdk'
f('&(q)= i A*&"(k)A(')(k')b(k —k' —q)

(2qr)'

~A *&'&(k+ q) A &'& (k)
(2qr)'

t P(() (r)qg(q ~ rdr f(()8(q) —f(o( q) (3 32)

We see that in the limit of long-wave phonons, i.e.,

q
—& 0, f&"&(q) ~ 1. (3.33)

The function f&"') (q) may be set equal to 1 when a "I7«1.
In that case the expression (3.31) reduces to Eq. (1.3)
of the Introduction. A rough approximation to f&"(q)
can be obtained as follows. If we assume an envelope
function of the form F&'& (r) = (7ra'b) & exp —{L(x'+y')/
a']+a'/b'}&, then, f&'&(q) = real =1/{1+-,'L((t,'+q„')a'
+g,'b2j}'. We now make further approximation of
replacing the constants a and b by a single effective
Bohr radius a* in a proper way, ' so that

elements (%,K L4'), and (+,X Lq,):
(+,Ke L%')qg

= (='+3=-)f(V)V(aqi+aqi*) (3.35)

C. Perturbation Energy

For discussing the Zeeman energy, Eq. (3.24), it is
convenient to specify the tensor D„ in a Cartesian
coordinate system with axes parallel and perpendicular
to the static magnetic field H. If H (sin8 cosP, sin8 sin(t,
cos8) are the polar coordinates of H referred to the
(100) axes in the crystal, 8 being the angle between H
and one of these axes, then a suitable set of orthogonal
axes are de6ned by the vectors

I&'& (sin8 cos()&, sin8 sin(&(, cos8),

N(2) (cos8 cosP, cos8 sing, —sin8),

zc( ) (—sing) cosf, 0).
(3.38)

In this representation the expression (3.24) becomes

(4',K,@,)= g't), H (D„(")s, )
=g'pi)H(D &'&s +D (')s2+D, (')sq), (3.39)

TABLE II. Expressions for tensors D„in the Cartesian coordinate
system with orthogonal axes (100) for donor states r4 in Ge and
for donor states re in Si. The constants n, (') entering D, defined
by Eq. (3.25} are those given by Kohn and Luttinger, ' which
are modified so that they are orthogonal to each other.

0 1 0 1
Ge D1=1/v2 1, D2=1/v2 1, D3= 1110 —1 1 0 0

for longitudinal phonons, t= 1,
=0 for transverse phonons, t= 2, 3, (3.3O)

(q,x, Lq,),g

=( „/3)f(q){t ie, (q) D, qja„+c.c.}, (3.37)

where the tensor D„ is that defined by Eqs. (3.23) and
(3.20).

Thus the oG-diagonal elements of the interactions K,
and BC L can both be expressed in terms of a common
tensor D„, The tensors D, for different substances and
for diGerent states are tabulated in Table II. We label
there the states by representations of the single group
T~, since the small splitting between the levels corre-
sponding to the extra representations Fy and F8 of the
double group Tz is consistently neglected in this
calculation. For Ge, r(= 1, 2, 3) denotes the three states
belonging to I'q, and for Si, r(=1, 2) denotes the two
states belonging to F3. The states belonging to F4 in
Si are discarded, since in that case U& "=U('&, o.,( '&

= —o.„('&, and consequently D„=O.

f'*'(q) =1/11+ la*'V'2= f(V) (3 34)

We now have approximate expressions for the m'atrix

"A. Sommerfeld and H. Bethe, Handbuch der Phy'sik (Verlag
Julius Springer, Berlin, 1933), Vol. 24, Part 2, p. 509.

Si Dg = 1/K2 1 —2

a See reference 6,

1
Dm= —VS/v2 —1
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TABLE III. Expressions for the components of D, in the Cartesian coordinate system with orthogonal axes
u&'& s&&'&, I«'&, dei&ned in Eq. (3.38).

Ge

Si

(1/K2) sin28(cos4+sinP)

(—1/v2) sin28 (cosp —sinq&)

sin 8 sin2@

(1/K2) sin'8 —2 cos'8)

(-', )1 sin'8 cos2q&

(1/v2) cos28 (cosq&+sing)

(—1/v2) cos28(cos4 —sinq&)

sin8 cos8 sin2@

(1/v2)3 sin8 cos8

—(-,')1 sin8 cos8 cos24

(1/K2) cos8 (cosp —sin4 )

(1/V2) cos8 (co++sin4 )

sin8 cos2&

(3)l sin8 sin2q»

where s», s2, and sa are the components of the spin
parallel and perpendicular to H, respectively. The
coefficients D„&" as functions of &&& and &t& are also given
in Table III.

Similarly, for discussing the electron-lattice inter-
action, Eq. (3.37), it is convenient to introduce another
Cartesian coordinate system with axes parallel and
perpendicular to the wave vector q. Three polarization
vectors ie&(&1), (t=1, 2, 3), form a suitable set of the
axes if the spectrum of the lattice vibration is character-
ized by pure longitudinal and transverse modes. In
this case we have

&&=E(r'4) —E(I'i) for Ge,

hE= E(i's) —E(1'r) for Si.
(3.42)

4. CALCULATION OF SPIN-LATTICE
RELAXATION RATE

The transition probabilities 5' + and 5'+ per
unit time that the donor spin be Qipped from down to
up and from up to down due to the eGective interaction
in Eq. (3.41) are given by

2qr (g paB~ea'l
w

&&s E 368 ) 21VM

( Ir3'-~L+r) q
= (ZM/3) f(&7) &t (D„&'&&&q&+cc.). (3.40)

If the polar coordinates of q with respect to the (100)
axes in the crystal are (t&,P), then the coefficients D„&'&

in Eq. (3.40) may be obtained by replacing (e,&t) by
(t'1,f) in the corresponding term in Table III.

Finally, inserting the expressions (3.39) and (3.40)
into the third term of Eq. (2.6), we obtain an effective
coupling between a donor spin and the lattice wave of
wave vector q:

2g IJ1,gBw~~
~3Ls—Lq f(&1)&l(&iq& Zr Dr Dr—36K

+c.c.)s, , (3.41)
where

2qr (g pgHZ„'& ' k
w, „=—

AK 36K ) 2$M

respectively, where e«= 1/Lexp(ho&q&/kT) —1j repre-
sents the number of (q, t) phonons in thermal equi-
librium. The corresponding spin-lattice relaxation time
is obtained from the relation

1/T. =W ++W+ (4.3)

Because of energy conservation, the frequency of the
relevant phonons absorbed and emitted in these proc-
esses is gpgH/h which is quite low compared to the
Debye frequency. It is even lower than the frequency
corresponding to the energy kT in typical relaxation
experiments (for T=2 K, V=3000,::gauss: Ao&/kT

=0.1), so that we may approximate 'the number of
phonons by

and take
1$q& iraq&+ 1 kT/Ao&q&r

f(V) =1

(4.4)

(4.5)

The theory of elastic waves in lattices provides a
relation between co«and q in terms of the elastic
constants. For Ge or Si, the three frequencies ~«,
(t=1, 2, 3), are obtained by solving a secular equation
of the Shockley type, "and are of the form

o&qi e&(o 4') g~ (4.6)

where t&, (r)&,l&'r) contains four constants, namely p=M/0,
the density, and three elastic constants c», c», and c44.

The velocity generally depends on the direction of the
wave vector q, but not on its magnitude. If, however,
the relation

c*—=c~~—c~2—2c44= 0 (4.7)

is satisfied, the frequency spectrum of the lattice
vibration is completely isotropic, and is characterized
exactly by one longitudinal and two transverse modes.

"W. Shockley, Phys. Rev. 78, 173 (1950). See also Helen M.
+(Zr Dr Dr ~) jqsq&8(gran+ ko&qi)r (4 1) Smith, Phil. Trans. Roy. Soc. (London) A241, 105 (1948).
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TABLE IV. Mean values (Z, D, & "D,&'&)g)8y as functions of the orientation of the magnetic Geld H.

Ge

Si

Longitudinal mode t = 1
((g„a„(I)D„(f'))2)

(4/15) (sin428+ sin48 sing2tft)
(1/15) (4 cos'28+sing28 sin'2tft)
(4/15) (cos'8+sin'8 cos'2tft)

(1/5) L (3 cos'8 —1)'+3 sin'8 cos'24tg
(3/5) sin'8 cosg8(3+cos'2tttt)
(3/5) sin20 sin'2p

Transverse modes t=2, 3
((x.D,"»."')')+{(»,"~D.")')

(2/5) (sing28+sin48 sing2tt )
(1/10) (4 cos'28+sin'28 sin'2ttt)
{2/5) (cos'8+ sin'8 cos'2tft)

{3/10)p (3 cost8 —1)g+3 sint8 cosg2tft]
(9/10) sin 8 cos'8 (3+cos'2@)
(9/10) sin 8 sin'2p

The corresponding eigenvectors of the secular equation, The mean value
i.e., the polarization vectors, are identical with those
defined in Eqs. (3.36), with (8,ttt) replaced by (t)t,P).
Up to the 6rst order in c*, the frequency or, & of the
longitudinal mode is calculated based on the erst-order
perturbation treatment, obtaining

r
sintMtMP(g, D &t&D &'&)' (4.14)

4~ ~8

pvi'(~, 4)
=cii+t, *$—1+sin%(cos4$+sinQ)+cos'8], (4.8)

together with Eq. (4.6).
Inserting Eq. (4.6) into Eqs. (4.1), (4.2), and (4.3),

we have

( g H AT—=2s-l
l

P[ot'Gt(ot)]
T8 k 3g+E) t ~ = (&/s) gttttiI Q

L(Z. D.'"D."')'+(Z. D.'"&."')'] (4 9)
ps~2

In this expression Gt(ot) denotes the density of states
in the spectrum of the tth vibrational mode,

is calculated by Inaking use of the explicit form of D„('&

given in Tables II and III. The results are shown in
Table IV as functions of the polar coordinates (8,$),
the direction of the static magnetic field H referred to
the crystallographic axis $100].For Ge, we have

1 4 (g ) f 1 2 ) fgfggtH~g
+

T, 5~&3gEi &Puss 3Paisi i A )
X1sTfoe(8,$), (4 15)

fo.(8,&ft) = -', Leos'28+ cos'8

+sin'8(cos'8 sin'2P+cos'2ttt)]; (4.16)

and for Si,

0
&

sin6dtMlt
Gt(ot) =

(2 )'"s v'(+4)

1 6 (g'" y'( 1 2 y ]glgitHq '
+

5~(3g~Z) (pvss 3pgts) I, g

and the (F)t88 denotes the mean value of a function
F(8,$) of the angles (t'f,P), i.e.,

t. sing'ddt'fdfq &. sint'ddt'id'

P')trav= I
1 I„F(»4) (411)

Vts (&4) & & 8 V tg (+f)

where
XkTfs;(8,&t), (4.17)

fs (8 P) = s sin'8(4 cos'8+sin'8 sin'2&t). (4.18)

S. DISCUSSION

where

p~g = Cyy
—5C, 3= 1

=cg4+sc*t t=2, 3. (4.13)

where the range of the integration is the surface of the
unit sphere. We do not, however, attempt to carry out
the integration exactly. For the purpose of an order-
of-magnitude estimate it is sufficient to replace v, (8,P)
by its mean value, obtaining

1 1 (gt u )'(gfgBH t 1

T, s. t 3g/& E) E itg ) pvts

X(E(Z.D.&"D.&")'+(E.D.&"D.&")'])sv, (412)

The predicted dependence of 1/T, on the temperature
T and on the field strength H is seen readily in the
expressions (4.9) or (4.12). The linear dependence on
T and the fourth-power dependence on B are due to
the facts that, (1) the square of the matrix element of
63C, i, is proportional to H', (2) the main term in the
density of states G(ot) for acoustical phonons is propor-
tional to ot', and (3) the mean value of the square of
the dynamical strain is proportional to AT, and is
independent of H.

To evaluate 1/T, numerically, it is necessary to know
the magnitudes of the constants entering the formulas.
For P and As donors in Ge and Si, most of these
constants are now known from experiments on donor-
spin resonance, acoustoelectric effect, piezoelectric
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TABLE V. Experimental values of the g shift, the anisotropy of
the g shift, the deformation-potential constants, and the inter-
valley splitting for P and As donors in Ge and Si.

Ge Donor Si Donor

g =k(2g~+g&)

g' =4(g& -gO

bE ev

-«/b, E

1.5631 &0.0003» P

1.5701 +0.0003a As

—0.37o

—0.360

16d ~, 19'

(4.10&0.15) )&10~ As

(6.1 +0.9) )(103o P

(4.5 &0.9) )(108 & As

1,99850&0 0001b P

1.99837 &0.0001b As

78

—7 X102

(g'=./3gb, E)~
2.3 X10&

1.2 X10& As
(2 X10-~)

See reference 11.
b See reference 10, 11.
& See reference 24.
d See reference 7.

See reference 3.
& See reference 8.
g See reference 9.

n H. J. McSkimin, J. Appl. Phys. 24, 988 (1953)."D. K. Wilson and G. Feher, BulL Am. Phys. Soc. 5, 60 (1960).
"The author would like to thank D. K. Wilson and Dr. G.

Feher for making their experimental data available to him before
publication.

eGect, Hall eGect, and the velocity of sound. " These
constants are summarized in Tables V and VI. Some
of the values are not quite certain, since discrepancies
are found between the data from different types of
experiment.

For P and As donors in Ge, the spin-resonance
experiments made by Feher, Wilson, and Gere" have
revealed a large g shift, and also a marked anisotropy
of the linewidth with respect to the direction of H.
These authors have proposed a mechanism for this
anisotropic linewidth assuming a modulation of the g
shift due to local strains. The mechanism proposed in
the present paper is essentially the same as theirs,
except that here the origin of the strain is a dynamical
one due to the electron-lattice interaction. A further
experiment has been carried out" by the same authors
to investigate the change in the g shift due to an
external strain, and they have succeeded in measuring
directly g' and the ratio R„/hE. The numerical values
they obtained are included in Table V, and used in the
estimation of 1/T, . 4s

For donors in Si, no data from direct measurement of
g' or /hZ is available at present. However, the recent
experiment on the Hall eGect in P-doped Si made by
Long and Myers' has provided a value of DE=9 12
)&10 ' ev. Also an estimate made by Herring and Vogt'
gives the value "„=—7 ev. The mean anisotropy g' is
still unknown. Here, we assume tentatively that

~ gi —g, ~

is equal to )hg) = jg—g, (, the difference between the
g-value defined in Eq. (3.23) and the free electron g-
value, the latter being equal to 2.0023. Using these
values

TABLE VI. Experimental values of the density and the elastic
constants from McSkimin. ' For de6nitions of c*, 81, and 8g, see
Eqs. (4.7) and (4.13).

Ge Si

p g cm
C1110» d Cm 2

C12

c44
c*
81 cm sec '
Sg

5.35
1.316
0.495
0.684—0.547
5 37X10'
3.28X10'

2.33
1.675
0.650
0.800—0.575
9 33X10'
5.42X10~

a See reference 22.

1/T =1.3X10II4Tfo,(8,$) sec '

for P in Ge, (5.1)

=7.211'Tfo, (8,&) sec ' for As in Ge, and (5.2)

=9.3X10 'H4Tfs;(8, &) sec '

for P in Si, (5.3)

where B is in kilogauss and T in degrees K.
We now consider the angular factors fo, (8,$) and

fs;(8,&). When the field H is applied in (110) plane,
these factors reduce to

fo, (8) = cos'8+sr sin'8,

fs;(8) = ss sin'8(1+3 cos'8).
(5.4)

1/ T,
= .44X1 '0sec ' for P in Ge
=2.4&10' sec ' for As in Ge, and
=9&10 ' sec ' for P in Si. (5.5)

In the case of Ge, these are the minimum values of
1/T, with respect to field direction. The maximum
value of 1/T, in Ge occurs when the field is in the L100]
directions, and then 1/T, =1.3X10' sec ' (P), and 7.3
X10' sec ' (As). In the case of Si, on the other hand,
the above value corresponds to the maximum of 1/T, .
Our mechanism gives 1/T, =O in Si when the field is
in the L100j direction. These anisotropic properties are
essentially due to the geometrical structures of the
conduction band edges.

The angular dependence expressed by the factors fo,
and fs; in Eqs. (4.16) and (4.17) must be regarded as
only qualitatively correct, since we have used a simple
model of the frequency spectrum of lattice vibrations,
and neglected elastic anisotropy in the integration in
Eq. (4.11). However, the conclusion that 1/T, =O for
H in the I 100j direction in Si would not be modified
by any refinement of that integration. Since this is a
crucial feature of the present theory, we will note here
the approximations which have been made in deriving
this result.

The values of fo, and fsi in three important cases,
corresponding to 8 in L100j, L111],and I 110) direc-
tions, are shown in Table VII. Using these values our
estimates of 1/T, for 8 in the $111jdirections under
the conditions B=3 kilogauss and T= 1.25'K are
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TanLz VII. Values of the angular factors fo„and fs;.

X"(~,~)
fs;(e,y)

[100]
1
0

[110]

similar in form to the lowest few states Lsee Eq. (2.11)].
We can write the matrix elements of 3C L with these
states in the form given in Eq. (3.31), obtaining

(qr(')p(& +„('))

=a«tie&(q) ( ~1+ „U(')) qf (')(q)j+c.c., (5.6)

where

f."'(q) = A*")(k+q)A &') (k)
(2s)s

ps(i) (r)p (&) (r)e&srJr (5 &)

Kohn and Luttinger show that every A„&"(k) satisfies,
to the first approximation, a common effective mass
equation, so that A(') (k) and A &') (k) are orthogonal to
each other. Therefore, the factor f„&')(q), in contrast to
the factor f&')(q) in Eq. (3.32), tends to zero at the
limit of long wave phonons, and in fact

f„&')(q) =0(a*q), q
—) 0. (5.8)

Accordingly, the contribution to the transition proba-
bilities 5' +, and@8'+ from these states must
involve a higher power of q than the contribution
already treated, so that the corresponding rate 1/T,
will be proportional to a power of H higher than the
fourth.

This argument leads us to the conclusion that of all
the excited states of shallow donors only the low-lying

2. We have made use of Kohn and Luttinger's
effective-mass functions %„(r)=p (r„('&ql(') (r). In Si
when the field is in the L100] direction the matrix
element of H 1 between two such approximate functions
with different spins vanishes, leading to 1/T, =O.
),2. We have neglected the spin-orbit interactions due
to the impurity potential which, if included, might
yield an additional splitting and admixture of different
spins, although the effect would be small.

3. We have neglected the contribution from excited
states other than the low-lying intervalley excited
states.

We wish to discuss briefiy the contribution from
higher excited states mentioned in the item 3. Using
Kohn and Luttinger's approach, every donor wave
function q„(r) may be written as a single (or linear
combination of) ith valley donor function (s),

dk
q'„(') (r) = A „(')(k)yk(r)

(2s.)'

intervalley excited states can be responsible for the
dependence of 1/T, on the fourth power of the field
strength H.

CONCLUSION

We have calculated the spin-lattice relaxation rate of
certain donors in Ge and Si due to the modulation of
the g shift by lattice vibrations. The characteristic
features of the rate obtained are that (1) it is propor-
tional to kT, and to H, and that (2) it is anisotropic
with respect to the Geld direction. These properties
make it feasible to check the theory against experi-
mental results.

The spin-lattice relaxation time of P donors in Si
has been measured by several authors. Although the
results obtained are quite complicated, depending on
both the donor concentration and the temperature, the
first feature has been confirmed at very low tempera-
tures in the case of very low donor concentrations. The
experimental study of the relaxation properties of
donors in Ge is also promising. In the circumstances it
would be desirable to carry out experiments on the
anisotropy of 1/T, .
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APPENDIX. DERIVATION OF EQS. (3.3)—(3.9)

We use the symbol ri to denote an operator acting on
the two spin functions (r, and P, which satisfies the
relations

g(r=P, gP= —(r. (Ai)
Starting with a Bloch function ltk(r) =e'k'uk(r) with
wave vector k, we may define another Bloch function
p k(r) =e 'k't) k(r) with wave vector —k by. the
relations

4'k cilt'-k y 0k cia—k (A2)

Kramers' theorem for these Bloch functions can be
stated as follows's: If fk(r) satisfies the Schrodinger
equation for the crystal with energy E(k), then p k(r)
satisfies the same equation with energy E(—k), and

E(—k) =E(k). (A3)

When the crystal has a center of inversion, it is possible
to choose the phase of pk(r) so that

@,(r) =y „(-r). (A4)

In this case the two Bloch functions fk(r) and @k(r)
are taken to be orthogonal to each other, and belong

"H. A. Kramers, Proc. Acad. Sci. Amsterdam 55, 959 (1950).
See also E. O. Kane, J. Phys. Chem. Solids I, 82 (1956).
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to a common energy band E(k), so that

E(k) =E(—k) =E(k).
We now consider the matrix of the spin s,

t'(A, sfk) (4k, Qk) )
sk= (A, sgk) =

~

&(yk, sP ) (y, ,sy ))

Inserting Eqs. (A13), (A14), and (A15) into Eq. (A12),

(A5)
we obtain

(yk, gk )=
I (m/A')ivkX vkE(k)

+4k sk+cLik. sk](2s-)'8(k —k'), (A16)

(A6) where

Symmetry relations between the four elements of this
matrix can be stated as follows:

+k' Sk k)~ nk cell
imn' " E(k)—E„(k)

I (4'k silk) (4'k s4'k) =«a»
(s., ~.) =(~., a.)*,

because the operator s is Hermitian.

II (A, s4 k) = —(4-k,sf-k), (A9)

g'k, scbk) = (y—k sp—k) *. (A10)

These equations can be proved by using Eqs. (A2),
and the relation

(A7) X (Pekq~it k)ceiir

Aik sk ———(mi/i'i'0) (Vkuk, uk) ceii XVkE(k).
t'A8~

(A17)

The right-hand sides of these equations are represented
by 2&(2 matrices, and it can be proved that they satisfy
the same symmetry relations as the matrix of the spin,
sk, except that the diagonal components of Aik sk do
not necessarily satisfy the relation III. The matrix
6&k sk satisfy the relations I, and II, so that it is of the
form

gs*ri '= —s. (A11)

III Combining Eqs. (AS) and (A10), we see that the
oG-diagonal elements gk, spk) and (pk, sltk) are even
functions of k. Furthermore, if the crystal has a center
of inversion, the diagonal elements (pk, spk) and

(gk, spk) must also be even, since Eq. (A4) is satisfied,
and consequently s k= sk.

Next we consider the matrix elements of the angular
momentum

t'~k Vk
Aik sk=I I, bk, b k=real,-b k)

and y k=7k. (A18)

8= (1/h)rX~, ~= p+ (A/2mc') (sXgradV period)

(pk, gk ) = e 'k'uk*(r)/e'k"uk. (r)dr

z=—VkX e '"'uk*(r)face'""uk (r)dr

,

' e '"'Vkuk*(r) Xme'""uk (r)dr. (A12)
A~

P (kr) =e"'Lak(r)nlrb, (r)Pj,

4 k(r) =s'"'L—b-.*(r)~+a-k*(r)Pj (A19)The first and the second terms represent the non-
periodic and the periodic parts of the angular momen-
tum, respectively. For further reduction we shall use
the explicit form of the matrix elements of the operator
e, and a sum rule. In the case of crystals with a center
of inversion, we have

k) k' k)~ k'

= (m/A) v'kE(k) (2s)'8(k —k'), (A13)

(&~~4 k ) = (4'»&fk )=0 (A14)

The sum rule is

for a particular band e=0.

(rsn[x, .fn)
ak(r) =uk'(r)+P' u„„'(r),

E(k) —E„(k)

(up(ae, .(a)
bk(r) =P' u„„'(r),

E(k)—E„(k)

(eu(se, .(p)—b k~(r) =P' u„k'(r),
E(k)—E„(k)(~ Vkukp~g'k) cell

k)~ nk cell nk)~ k cell
ma - E(k)—E„(k)

+(m/@)(Vkuk uk) 11VkE." (A15)
26 J. M. Luttinger and W. Kohn, Phys. Rev. 97, 869 (1955).It is

stated there that the term (V't,ut„uz) vanishes, when the crystal

, (~pl~. .Ip)—
a k*(r) =uk'(r)+P' u„k'(r). (A20)

E(k) —E„(k)

has a center of inversion. This is not necessarily the case when
spin-orbit interactions are present. This fact was pointed out by
Y. Yafet (private communication).

However, the change of the phase of pk(r) and pk(r)
will generally cause an additional term of the form

2 (bk —8 k)1, which cannot be determined by symmetry
alone. It is noted that this term is spin independent,
and antisymmetric with respect to k. The expectation
value of this quantity in a donor wave function must
vanish, and therefore would not modify the results.

Finally, we present a perturbation treatment of the
spin-orbit interaction BC, , for the Bloch functions. Let
(e'k'u„k'(r)) be a complete set of the Bloch functions
unperturbed by 3C, „and construct the Sloch func-
tions, up to erst order in BC, „
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Let us consider the s component of the spin representation si, ',

(ag, ag) —(bg, bg)
sa' ——

I

(b-& ~a&)+(a-& P&)

—(a~,b ~*)+(b~,a ~*)

(b s*,b g*)—(a g*,a g*)J
(A21)

1
Using the perturbed functions in Eqs. (A20), we see that s&' is identical with the Pauli spin matrix s'=

2

up to first order in X, ,
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The g factors of electrons in Ge and Si are calculated on the basis of the eRective mass approximation.
The results are consistent with experimental spin resonance data. The eBect is predicted to be anisotropic,
with gal less than gJ. This anisotropy introduces a strong interaction between the electron spin and shear
waves, for the singlet donor ground state. This interaction can account in order of magnitude for the observed
spin-lattice time r, for donor electrons in Si at low temperatures, including both a one-phonon process and
a two-phonon Raman-type process. The temperature and magnetic-6eld dependence for the two processes
are predicted to be vs 'cc TH' and 7. 'oc T'H', respectively. The temperature dependence agrees with ex-
periment; however there are discrepancies in the magnetic-field dependence. v-, is predicted to be anisotropic.

INTRODUCTION

HE g factors of electrons in semiconductors differ
from two because of spin-orbit interaction. The

effect can be calculated using the effective mass
approximation, and can become large when there is a
nearby band connected by momentum matrix elements
and split by spin-orbit interaction. This is often the
case when the effective masses are small. Results for
indium antimonide and the k =0 electrons in germanium
have been reported by Roth, Lax, and Zwerdling. ' The
effect has also been found to be large in bismuth by
Blount and Cohen. ' In the present paper estimates of

g factors for the conduction electrons in germanium and
silicon will be obtained. The result for germanium has
been reported elsewhere. '

An interesting feature of the calculation is that the
effect is anisotropic with g~~ (parallel to the axis of the
electron's ellipsoid) differing from two by considerably
more than g&. Since spin resonance experiments are
usually carried out for electrons on donors, in the singlet
state, 4 the observed g factor is isotropic. However, the

*The work reported in this paper was performed by Lincoln
Laboratory, a center for research operated by Massachusetts
Institute of Technology with the joint support of the U. S. Army,
Navy, and Air Force.
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anisotropic part of g is responsible for a large inter-
action of donor electron spins with shear waves. This
apparently accounts for the small observed spin-lattice
relaxation times of donor electrons in silicon, and the
calculation is given in the second section of the paper.
Both a direct and a Raman-type process are considered
and compared with the experimental results of Honig
and Stupp' and Feher and Gere. '

THE g-FACTOR

The g factor for a twofold degenerate band edge
(including spin) can be obtained from the effective mass
approximation for degenerate bands with spin-orbit
interaction, as obtained by Luttinger and Kohn. ' The
effective mass Hamiltonian in the presence of a magnetic
field is given by

1 P m, „~„,"P
X;;= 5;,y2P(s), ,"H+—P'

2m m' n ~On
Here

P=y+eA/c, (2)

where p is the momentum operator and A the vector
potential, both acting upon envelope functions for the
two degenerate band edges over which the indices i
and j run. The second term of Eq. (1) is the electron
spin interaction with the magnetic field H, with P the
Bohr magneton, and (s);, the matrix element of the

' A. Honig and E. Stupp, Phys. Rev. Letters 1, 275 (1958).
s G. Feher and E. A. Gere, Phys. Rev. 114, 1245 (1959).
7 J. M. Luttinger and W. Kohn, Phys. Rev. 97, 869 (1955').


