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Specific Heat of Dilute Alloys
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Recently Zimmerman has observed that the addition of Mn to Cu produces a large contribution to the
specific heat which, at low temperatures, is linear in temperature and independent of Mn concentration.
It is shown that: (1) this remarkable result can be explained in terms of the well-known Ruderman-Kittel-
Yosida spin-spin coupling via conduction electrons; (2) the specific heat results of Beck et aL on FeV and
FeCr alloys are probably of essentially the same origin as those of Zimmerman on Cu Mn; (3) that there
are serious objections to the mechanism of antiferromagnetism postulated by Overhauser and used by him to
explain the specific heat results. In contrast to the Overhauser theory, no new concepts are involved and it
is suggested that the large specific heat comes from a small fraction of Mn spins which, because of the
random nature of the alloy, happen to be in small effective fields and therefore not strictly aligned. The
theory depends on two plausible assumptions which have not, at present, been proved rigorously valid.
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H= P f(n —m)S, S,
num

f(R) = (9+G'/2Es) (2ksR) '
&( (2ksR cos2ksR —sin2ksR). (2)

ECENTLV Zimmerman' has observed that the
addition of Mn to Cu produces a large contribution

to the specific heat which, at low temperatures, is linear
in temperature and independent of Mn concentration.
(The experiments were performed over the range of
concentration 0.17 to 4.00%%u~.) At a higher temperature
the specific heat falls rapidly to the pure Cu value.
This fall-o6 temperature is proportional to the Mn con-
centration so that the entropy associated with the extra
specific heat is proportional to concentration as it must
be if it is to be attributed to the disordering of spins
on the Mn atoms. The same effect has been observed
by De Noble and Du Chatenier' for Mn in Ag. To
explain Zimmerman's remarkable results Overhauser'
has postulated a new mechanism for antiferromagnetism
invoking the concept of a spin density wave in the con-
duction electrons. It is our purpose to point out: (1)
that Zimmerman's results can be explained using the
well known and established interaction derived by
Ruderman and Kittel, ' Kasuya, ' Yosida, and Blandin
and Friedel" (2) that the specific heat results of Beck
et al. ' on FeV and FeCr alloys are probably of essen-
tially the.same origin as those of Zimmerman on Cu Mn;
(3) that there are serious objections to the Overhauser

theory.
We assume that in Cu —Mn the Mn spins interact

according to the Ruderman-Kittel-Vosida Hamiltonian:

Here the summation goes over all Mn spins, 6 is the
4s—3d exchange interaction, Eo the Fermi energy and
ko the Fermi wavevector. For simplicity take S to be
-', (magnetic susceptibility measurementss show S is ss or
2 but this produces no qualitative difference) and
assume the interaction may be replaced by an Ising
term. This Ising approximation is reasonably good
provided that the spin arrangement in the ordered
state has a unique orientation axis which we call the Z
axis; it would certainly fail if there were spiral spin
arrangements and of course, it cannot possibly give
spin-wave effects. This Ising interaction produces an
eGective field H in the Z direction acting on each spin.
In the presence of this field a spin makes a contribution
to the thermal energy of

—qH tanhwH/k T.

The total number of spins is Sc, where t," is the concen-
tration, and if p(H, T) is the probability distribution of
B at temperature T then an exact expression for the
total thermal energy is

E(T)=—srNc dH P(H, T)pH tanhpH//kT. (3)

The factor ~» has been introduced into this expression
because otherwise in constructing the thermal energy
from the eGective field we would have included each
pair interaction twice. DiGerentiating to get the specific
heat gives

Csr(T) = ',Nc~ dH p(H-, T) (p, 'EP/kT')

&& sechslJH/k T—'Nc(r)/r)T) k(T)-' J. E. Zimmerman (to be published).' J. De Nobel and F.J. Du Chatenier, Physics 25, 969 (1959). Qo' A. W. Overhauser, Phys. Rev. Letters 3, 414 (1959). + 'Nc dH {ls-~ H
~

pH tanhpH/kT)—4 M. A. Ruderman and C. Kittel, Phys. Rev. 96, 99 (1954).
s T. Kasuya, Progr. Theoret. Phys. (Kyoto) 16, 45 (1956).

)& (ci/BT) (H T) (4)' K. Yosida, Phys. Rev. 106, 893 (1957).' A. Blandin and J. Friedel, J. phys. radium 20, 160 (1959).' C. T. Wei, C. H. Cheng, and P. A. Beck, Phys. Rev. Letters 2, ' J. Owen, M. Brown, W. D, Knight, and C, Kittel, Phys. Rev.
95 (1959). 102, 1501 (1956).

i519



1520 W. MARSHALL

yb
I'I I i

, P(HT)

parameter (2) on distance. The effective field acting
on any given spin will again be the sum of contributions
coming from all other spins. The sum will be dominated
by the few spins which happen to be the closest; hence
the mean magnitude at low T is

k=X[ f(B) i/4li,

Fio. 1. p(H, T) at low T for various cases (schematic): (a)
Regular lattice, Weiss molecular Geld; (b) Regular lattice, Bethe-
Peierls method; (c) Dilute alloy.

where k(T) is the mean magnitude of H

h(T) =) dH
(
H

( p(H, T). (5)

In order to estimate p(H', T) for this problem it is
necessary to consider first the simpler problem of a
regular cubic array of spins with antiferromagnetic
Ising interaction of strength J between nearest neigh-
bors only. The simplest order-disorder approximation
for this latter problem is given by the Weiss molecular
field method which determines self-consistently an
eGective field which acts on all the spins and no allow-
ance whatever is made for fluctuations in this field;
hence the molecular field approximation gives

where h(T) is defined by (5) and determined by the
well known self-consistency equation. Above the critical
temperature h(T) is zero and (4) gives zero specific
heat. This is a direct result of having no Quctuations
in II.

A better order disorder approximation, which does
allow for fluctuations in II, is given by the Bethe-
Peierls method which considers a central spin and the
surrounding r nearest neighbors. The effective field
acting on the central spin is

H= (1Vp—cV )J/2', (7)

and cVp and X are the number of P and n spins in the
shell of r nearest neighbors. The difference Ep —S can
take all integer values from —r to r and the probability
for each value is easily calculated using standard Bethe-
Peierls theory. Hence p(H, T) is obtained as a sum of
5 functions at the discrete field values given by (7).
Schematically we can replace this by the continuous
curve Ii of Fig. 1.Notice that p(H, T) has sharp maxima
and in particular p(H, T) is exponentially small

exp( —T,/T) j for small H and for temperatures
below the critical temperature T,, As a result (4) gives
an exponentially small specific heat at low T.

Now consider the form of p(H, T) for the more difi-
cult dilute alloy problem where we must extend this
discussion to take account of the random distribution
of Mn atoms and of the dependence of the interaction

where X is a number of order unity representing the
effective coordination number and 8 is the mean dis-
tance from any Mn atom to the nearest Mn atom. This
expression for h is very important and we shall discuss
it fully later.

Notice that in the previous example there was a
strong tendency for the r nearest neighbors to be all
alike (all u or all P) and hence their contributions to H
tended to add up "in phase" to give large values of h
and a sharp peak to p(H). But in the dilute alloy the
tendency for the "nearest neighbors" to be alike is
greatly reduced because they have mutual interactions
which are equally likely to be of either sign; also they
will not all be at the same distance and therefore have
the sign interaction with the "central" ion. As a result
k will be smaller and the width of the p(H) peaks larger.
It is therefore reasonable to postulate that this width
becomes comparable to k and hence we get the p(H)
curve as shown schematically in Fig. 1 (curve c). The
precise shape of this curve is not important for our
immediate purposes; the only essential points to note
are that P(H, T) is now a continuous function (whereas
previously it was a sum of 8 functions) and that p(0) is
not exponentially small but of order 1/k.

Consider the value of (4) at low temperatures T«/kk
where most of the spins are rigidly aligned because
they are in effective fields much larger than kT/p. The
second term of (4) may be neglected because only the
rigidly aligned spins make an appreciable contribution
to h and hence h is temperature insensitive. In both the
first and third terms the integral is dominated by
contributions from the range of H values from roughly

kT/li to kT/p, —so in both p(H) can be replaced by
p(0). Furthermore for any reasonable variation of p(0)
with T the third term is negligible compared to the
first. Hence (4) reduces to

Csr (T)=,'EcP (0,0)

We may easily understand this result as follows. The
majority of the spins are rigidly aligned in strong
())kT/li) fields and therefore make a negligible con-
tribution to the speci6c heat themselves but serve
merely to produce a temperature insensitive effective
field to which the partially aligned spins are subjected.
In this approximation the specific heat arises solely
from those spins which are only partially ahgned. because,
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they happen to lie in a small field =kT/IJ, and each
gives a Shottky-like contribution to C~.

Setting p(0,0) equal to 1/4X'k where li' is a number
of order unity, and using (8) gives

f
C~(T)~PNck'T/2U, 'f(R)) dx x' sech'x. (10)

Now for dilute alloys the dominant term in the inter-
action constant (2) is that of order =R ', hence

i f(R) i
—(9prG'/2Ep) (2kpR) '

~(94rG'/2Ep) (2dkp) 'c, (11)

where d is the nearest neighbor distance and c the
concentration. Substituting into (10) and remembering
(2dkp)' is 24424r' for Cu, gives

Cpr(T)~(Nk'TEp/G ) (Ssv2/37iX') dx x' sech'x, (12)

which is linear in T and independent of c in agreement
with experiment. The integral in (12) is a number of
order unity. This expression for C~ is remarkably
similar to that given by Overhauser: both are inversely
proportional to G' and proportional to T and Eo
(Overhauser's constant C is of the order of Ep). But the
derivation given here has not introduced any new
concepts as Overhauser's theory does.

At higher temperatures (T= T.) the approximation
leading from (4) to (9) is no longer valid and Cs4.

deviates from (12). It is not possible at present to
estimate in detail the dependence of C~ on T in this
higher temperature region but it is obvious that the
specific heat will begin to deviate from the linear law
at a temperature proportional to pk/k. This temperature
is linear in the concentration. At very high temperatures
(T)T,), C~ falls like T '.

We therefore conclude that, subject to certain simple
assumptions, the specific heat results of Zimmerman
can be qualitatively explained in terms of the Ruder-
man-Kittel- Yosida spin-spin interaction. The other
properties of Cu —Mn alloys are not sensitive to the
precise origin of the antiferromagnetism and it does
not seem necessary to invoke any new mechanisms to
explain them. The most serious weakness of the theory
described here is probably the use of the Ising model.
We must expect an additional specidc heat coming
from the spin waves and we have assumed this addi-
tional term is small at low temperatures without giving
any proof.

Equation (8) deserves further discussion because it is
essential for the theory that h be proportional to c as
(8) indicates. Kittel has brought to the author's atten-
tion the close analogy between this problem and that of
computing the line shape for nuclear magnetic resonance
on a dilute sample of nuclear spins distributed randomly

in a crystal and coupled only by their magnetic dipole
interactions. The latter problem has been discussed by
Anderson" and by Kittel and Abrahams" and it was
concluded that for very dilute samples the line shape
is a cut-oG Lorentzian with width proportional to con-
centration (whereas if the line shape were Gaussian a
width proportional to the square root of the concentra-
tion would be expected). A similar treatment to that of
Kittel and Abrahams demonstrates immediately that
p(H, T) also has a width proportional to the concentra-
tion for dilute alloys. This justifies (8) which is the only
assumption it is essential to make about p(H, T). I am
grateful to Dr. Kittel for suggesting this argument.

The foregoing argument is sufhcient to 6x the width
of the p(II, T) curve but not sufiicient to determine its
precise shape. But it is worthwhile to consider why the
cut-off Lorentzian of the nuclear problem is distorted
into the shape of curve c in Fig. 1 for this electron spin
problem. Using the Ising approximation to the Hamil-
tonian (1) we can write the effective field acting on
spin S„as

H, = (1/ y2,) P f(n —m)S '

and hence we can write the moments of the distribution
p(II, T) as

(H'&= (1/414')Q f(n —I)f(n —m) (Si'S '), (14)

where the sums go over the lattice points occupied by
Mn. These may be written in terms of sums over all
lattice points as

4p'(H'&= (c/4) P f'(l)+c'2 P f(L)f(m)(S 'S *)
l Z&m (16)

16p4(H4&= (c/16) 2 f'(7)+ (3c'/g) & f' (I)f'(~)
Z&m

+(9c'/2) 2 f'(~)f(~)f( )(S *S *)
Z &tn&n

+c424 P f(l)f(m) f(4s)f(p)
l&m&n&y

X (Si*S„'S„'S„'). (17)

The first term of (16) is proportional to c and inde-
pendent of temperature; the second term of (16) is

temperature dependent and vanishes at high tempera-
tures. At low enough concentrations the 6rst term will

dominate (16).The first two terms of (17) are tempera-
ture independent and at low enough concentration the

'0 P. W. Anderson, Phys. Rev. 82, 342 (1951).!'C. Kittel and E Abrahams, P. hys. Rev. 96, 238 (1953).

(H'&=(1/16 ') r. f( —1)f( — )f( —1)/( —q)
1myt1

X (Si'S *Sp*S,'&, (15)
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first term will dominate because it is linear in c. We now
recognize that if we retained only the temperature inde-
pendent terms of (16) and (17) then we sould have the
exact analogy of the nuclear line width problem and we
could therefore, by analogy, assume p(H, T) to be a
cut-ofF Lorentzian, i.e.,

p(H, T)= —— f- IHI&
m H2+6'

=0 for
I HI )o (18)

where b, and 0. are determined by

h= (~/~) inI 1+(~/~)2j, (20)

which, ignoring the weak dependence of the logarithm
on c, is proportional to concentration.

The temperature dependent "correlation terms" in

(16) and (17) approach zero at high temperatures and
therefore we may assume that at high temperatures
p(H, T) is a cut-off Lorentzian. We now have to consider
how p(H, T) is modified at low temperatures. We notice
from (16) that H' is increased by an amount c' above
the value it has at high temperatures and one way of
doing this is to decrease p(H, T) near H =0 and increase
it the corresponding amount near IHI=h, i.e., by
distorting (18) into the shape of curve c in Fig. 1. We
also recognize this is reasonable on physical grounds
because the effect of correlation must be to reduce the
energy and this can only be done by arranging for spins
to sit in fields of larger magnitude. We therefore con-
clude that this approach using the moments of p(H,T)'
is quite consistent with the postulate that p(H, T) is as
shown in Fig. 1(c) at low temperatures and as given

by (18) at high temperatures. However it should be
emphasized again that for our immediate purposes the
precise shape of p(H, T) is of no importance.

It is possible to define an "efFective magnetic field"
without making the Ising approximation and the sub-
sequent analysis is exactly as we have given in this
paper. But the concept of an efFective magnetic field
as used here is strictly valid only in the Ising approxi-
mation and so at low temperatures it is doubtful if this
alternative approach would be of value (but at high
temperatures it is certainly better than the theory
based on the Ising approximation).

It seems very likely that the explanation given here
for the Cu —Mn alloys may also be used in connection
with the unusual specific heat results of Beck et al. ' for
V—Fe and Cr —Fe alloys. Beck observed that the term

(19)

and we have assumed a«h. From (16), (17), »d (19)
we deduce that 6 is proportional to c and o, is inde-
pendent of c at low concentrations. From (18) we Gnd

in the specific heat linear in T was extremely sensitive
to alloy concentration and had very sharp maxima at
certain concentrations. It is very hard to believe that
these could be explained by any conventional electron
band theory and it seems more natural to explain the
results by the same kind of qualitative argument we
have given here for Cu —Mn. That is, we suggest that
in these alloys some spins sit in very small efFective
fields and therefore give a large contribution to the
specific heat. Indeed it has been pointed out to the
author by R. J. Weiss that the maxima in Beck's results
occur very close to the concentrations at which the
ferromagnetism of Fe is destroyed and this is strong
evidence that the usual results are connected with a
spin disordering.

Let us now comment on the Overhauser theory of
Cu —Mn. The most serious objection to the Overhauser
theory is that it is incomplete in the same way as the
Zener theory of ferromagnetism is incomplete. Both
theories give a coupling between the Mn spins which is
of infinite range and this must be incorrect for funda-
mental reasons as Yosida' and Friedel" have pointed
out. The origin of this infinite range coupling is the
same in both theories; the interaction between the
localized spins and the conduction electrons is treated
only in first order perturbation theory whereas the total
energy change appears finally as a second order quantity
in the interaction. As Yosida has carefully emphasized
it is essential to work consistently to second order in
the interaction.

Of course it may be true that exchange effects cause
the Ruderman-Kittel-Yosida interaction to be modified
and we may visualize this as follows. Consider the spin
density of the conduction electrons in the vicinity of
a Mn atom; in the presence of the Mn spin each single
particle eigenstate becomes a superposition of a plane
wave with an outgoing scattered wave. Because of the
spin dependence of the scattering mechanism these
eigenstates are different for n and P spins and hence a
nonzero spin density is produced in the neighborhood
of the Mn atom. Yosida has shown that this spin
density oscillates in sign and falls off with distance in a
well defined way. But strictly speaking this result is not
self-consistent; because of the exchange interaction
between the condition electrons they are scattered both
by the Mn spin and by the spin density variations.
Hence to determine the precise form of the spin density
variations it is necessary to solve this scattering problem
self-consistently. We recognize that this problem is
analogous to that of determining the charge density
variations around an impurity atom and the latter has
been discussed in detail by Friedel. The author believes
that it is only to this extent that exchange between
conduction electrons can affect the spin density and
spin-spin coupling in metals.

' J. Friedel, Advances in Physics, edited by N. F. Mott (Taylor
and Francis, Ltd. , London, j.954), Vol. 3, p. 446.
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In conclusion it should be emphasized again that the
two basic assumptions of the theory presented here,
namely the form of p(H, T) and the use of the Ising
approximation have not been rigorously proved valid
but are put forward as extremely plausible assumptions
which explain the experimental results.
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The many-valley character of the conduction band edge of germanium and silicon causes an anisotropy
of the g shift and of the deformation potential for the conduction electrons. It is shown that the combination

of these two sects provides a mechanism for spin-lattice relaxations of the donor spins in germanium and

silicon that yields 1/T, proportional to the temperature T and to the fourth power of the static magnetic

6eld II. Using known data about the deformation potential constant, the g shift, the energy of the inter-

valley splitting, and the elastic constants, the magnitude of T, is found to be approximately 2&(10 sec for

phosphorus donors in germanium, and 1)(10 sec for phosphorus donors in silicon. These values refer to
T=1.25'K, II=3000 gauss, with the field applied along the L1117 axis. Our mechanism fails to give a
finite T. for donors in silicon, when the field is applied along the $100$ axis.

1. INTRODUCTION

HE present investigation is concerned with a
mechanism which may be responsible for spin-

lattice relaxations of shallow donor spins in Ge and Si.
We restrict our considerations to direct phonon proc-
esses, i.e., to processes which involve the absorption or
emission of only one phonon.

The interaction of an electron with lattice vibrations
in such a nonpolar crystal has been treated by many
authors from the deformation-potential point of view. '
In particular, a generalized theory of the deformation
potential for many-valley semiconductors has been

developed by Herring and Vogt. '' According to these
authors, the shift of the electronic energy of the jth
valley due to a strain %l, is given by

e&"'= P U p(-e5 p+- E t'~Ept'~),
a, P

where U p is the (n,P) component of the strain tensor
'll, K&tt is the unit vector pointing from the origin to
the bottom of the ith valley in the first Brillouin zone,
and ™dand „are energy constants whose magnitudes
are several ev. If one writes the displacement of the
lattice at a position r due to the lattice vibration as a

*This work was supported by the 0%ce of Naval Research.
t On leave of absence from the Department of Physics, the

University of Tokyo, Tokyo, Japan.
' J. Bardeen and W. Shockley, Phys. Rev. 80, 72 (1950).
' C. Herring, Bell System Tech. J. 34, 237 (1955), Appendix C.
' C. Herring and E. Vogt, Phys. Rev. 101, 944 (1956).

Fourier series:
Q(r)=Z Q(q)p"', (1 2)

then, using Eq. (1.1), the corresponding Fourier
component of the energy shift is given by

e,&'~=.e(iQ, q)+-.(iQ, K&o)(Kt" q). (1.3)

The first and the second terms in the right-hand side of
Eq. (1.3) represent the interaction of the electron with

the lattice wave of a wave vector q through the volume

dilation, and the shearing strain, respectively.
In the present paper, we wish to show the importance

of the second term of the expression (1.3) in the
mechanism of spin-lattice relaxations of shallow donor
states in Ge and Si. The effect of shearing strains on

the ground state of donors has been discussed by
Price4 and by Kohn. ' One interesting feature of these
states, first pointed out by Kohn and Luttinger, 6 is a
splitting of the degenerate ground state through the
intervalley interaction due to the impurity potential.
The recent experiments on acoustoelectric effect (Ge), '
piezoresistance (Ge), ' Hall effect (Si),' and spin reso-
nance (Si,Ge)" "have confirmed this feature, and have

s P. J. Price, Phys. Rev. 104, 1223 (1956).
W. Kohn, in Solid-State Physics, edited by F. Seitz and D.

Turnhull (Academic Press, Inc. , New York, 1957), Vol. 5, p. 257.
6 W. Kohn and J. M. Luttinger, Phys. Rev. 98, 915 (1955).
7 G. Weinreich, T. M. Sanders, Jr., and H. G. White, Phys.

Rev. 114, 33 (1959).
H. Fritzsche, Phys. Rev. 115, 336 (1959).

' D. Long and J. Myers, Phys. Rev. 115, 1119 (1959).
' G. Feher, Phys. Rev. 114, 1219 (1959).
» G. Feher, D. K. Wilson, and K. A. Gere, Phys. Rev. Letters

3, 25 (1959).


