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Irreversible Therraodynamics of a Nonlinear 8-C System
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The formalism of nonlinear irreversi&le thermodynamics, as recently given by us, is applied to a circuit
containing a capacitor and a nonlinear resistor. The solution is compared with those obtained by M. Lax and
other investigators. It is shown that the Quctuation-dissipation theorem is rigorous, and that no correction
factors need be introduced for nonlinear systems. The dynamical behavior of the microscopic fluctuations,
from which the macroscopic motion can be obtained, is also derived. Finally, a speci6c MarkoKan model of
a nonlinear R-C system, in strong interaction with a temperature reservoir, is shown to be consistent with
the general analysis.

INTRODUCTION tion and which agrees with the Auctuation-dissipation
theorem. We also derive the dynamical behavior of the
microscopic Quctuations, from which both the linear and
nonlinear terms in the macroscopic response can be
obtained, and we show how the macroscopic dynamical
parameters can be identified from the microscopic
transition probability. Finally, we consider a specific
model of a MarkofIian system in strong interaction with
a temperature reservoir, to exhibit the explicit relation-
ship between the microscopic and macroscopic dynamics
of a nonlinear R-C system.

The source of the apparent discrepancy between our
results and those of Lax can be easily identified. As
shown in Sec. 2, the macroscopic equation of motion for
a nonlinear R-C system involves various powers of the
average value of the charge q: (q), (q)', (q)s, ~ ~ . On the
other hand, the MarkoKan assumption adopted by
Lax, as well as the earlier investigators, leads to an
equation of motion having a similar form, except that
(q)" is everywhere replaced by the rtth charge moment

(q"). On the assumption that experimental measurement
would be unlikely to distinguish between (q)" and (q"),
the coefFicients in this equation were incorrectly identi-
fied with the capacitance and resistance.

As we shall see subsequently, a deeper origin of the

discrepancy is the following. The macroscopic response

of the system is easily written in terms of the initial

voltage. This response is properly to be considered as the

response to a given initial charge, averaged over the

appropriate canonical distribution of initial charges con-

sistent with the given voltage. Macroscopically the
distinction between the response to a given initial charge

and that to a given initial voltage is academic. But in

considering the decay of a microscopic fIuctuation the
distinction becomes essential. Analysis of the micro-

scopic dynamics is generally phrased in terms of the

decay from a given initial charge deviation, and it is not

proper to associate this directly with the macroscopic

decay function. The difference lies precisely in the dis-

66

A REASONABLY satisfactory theory of irreversi-
ble thermodynamics of linear processes has been

developed in recent years. It is natural that attention
should then have shifted to the irreversible thermo-
dynamics of nonlinear processes. An impetus to this
extension arose from the importance of the excess noise
associated with the current in an electrical system; the
exislence of this additional noise, above the equilibrium
noise, is intimately associated with nonlinearity.

In order to guide the development of a general theory
of nonlinear irreversible thermodynamics, several in-
vestigators undertook the analysis of a specific nonlinear
system. This system, composed simply of a capacitor
and a nonlinear resistor in series, has been studied by
MacDonald, ' van Kampen, ' and Davies. 4

Recently the present authors have given a general
formulation of nonlinear irreversible thermodynamics. '
Lax, ' in a recent comprehensive analysis of Markoff
processes, has also devoted several sections to the non-
linear aspects of such processes. In addition, this
nonlinear theory was applied by Lax to the nonlinear
R-C system. The results of MacDonald, van Kampen,
and Davies can all be obtained from Lax's solution by
introducing additional approximations, and we therefore
adopt his as the basis of comparison. That solution ap-
peared to be incompatible with our general analysis and
to disagree with the Quctuation-dissipation theorem
established in the linear theory. '7

In this note we give a solution for the nonlinear R-C
system, which follows directly from our general formula-

*This work was supported by the Once of Naval Research.
'W. Bernard and H. B. Callen, Revs. Modern Phys. 31, 1017

(1959).' D. K. C. MacDonald, Phys. Rev. 108, 541 (1957).' N. G. van Kampen, Phys. Rev. 110, 319 (1958).' R. O. Davies, Physics 24, 1055 (1958).' M. Lax, Revs. Modern Phys. 32, 25 (1960). We are indebted '

to Dr. Lax for a prepublication copy of this work.
e H. B. Callen and T. A. Welton, Phys. Rev. 83, 34 (1951).
~ H. B.Callen, M. L. Barasch, and J.L. Jackson, Phys. Rev. SS,

1382 (1952).
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tinction between (q"(t)) and (q(t)&", as we shall demon- Rg
strate in the following sections. —&q(1)&=— &q(1)&+ &q(1))'

dt RpC Rp'C'

2. THE THERMODYNAMIC SOLUTION

If a circuit contains a linear capacitor and a nonlinear
resistor, Kirchoff's law gives

~R, RPq

where

V(t)

V(1)=(q(1)&/C

d—&q(1))+ =0,
d1 Rt V(1)7

(2)

The solution of Eq. (5) is

&q(1)&
RoC In- +R&L(q(1)&—(q(0))7

&q(0)&

R(V) =Ro+Rr V+RsV'.

Then Eq. (1) becomes

(4)

(q(1))—(q(1)&+ =0. (5)
dt RoC+Rr&q(1)&+ (Ro/C)(q(1)&

For later reference we note that the series expansion of
this equation is

and where R is a general function of V(t).
The surprising feature of the Lax solution (see Sec. 4)

is that the equilibrium second correlation moment

(qq(t))i & is found to involve the coefficients of the
higher-power terms in the expansion of R in a power
series in V. On the other hand, the Quctuation-dissipa-
tion theorem, and our general formulation of non-
linearity, relate the equilibrium second moment to the
zero-order term in the expansion of R(V), independently
of the higher-order terms.

The relevant theorem of our general approach, on
which we base our analysis of the nonlinear R-C circuit,
is as follows. Consider a system which prior to t=0 is in
generalized canonical equilibrium with respect to a
temperature Tand a constant imposed intensive parame-
ter V. At t=0 the generalized force V is removed, and
the system then relaxes into its new equilibrium con-
figuration. The expectation value &q(1)& at time t of the
extensive variable g conjugate to V can be expanded, in
the classical limit of large T, as'

&q(1)&= (V/kT)(qq(1)&'"+sr (V/kT)'(q'q(1)»" +o (V/kT)'
XE&q'q(t)) "&—3(q')i"(qq(t))i'&7+ . (3)

The bracket ( &&o& denotes an expectation value with re-
spect to the unperturbed equilibrium ensemble. (For
simplicity we have assumed q to be defined such that
(q)io& =0.) Thus, the equilibrium second correlation mo-
ment (qq(t))&o& is uniquely determined by the linear term
in the response (q(t)&, the equilibrium third correlation
moment (q'q(1)&io& by the second-order response, etc.

In order to specialize the result given in Eq. (3) to the

system in which we are interested, it is necessary to
solve the macroscopic equation of motion LEq. (1)7.
For the sake of illustration we shall consider explicitly
the case in which

R2
L&q(1)& -&q(0)&7=-1, (~)

2C

(q')&o& =kTC,

(qo&io) 0

(q')"' =3 (kTC)'.

(12)

(13)

(14)

Equations (12)—(14) imply the Gaussian equilibrium
probability distribution.

Wio& (q) = L1/(2s kTC) 17 exp( —q'/2kTC). (15)

Hence, we differ with I ax, s who asserts that, especially
when odd nonlinearities are present, Eq. (15) cannot be
valid.

s R. F. Greene and H. B. Callen, Phys. Rev. 83, 1231 (1951).

where (q(0)) is the expectation value of q at time zero. If
we expand (q(t)& in a power series in (q(0)), insert this
series into Eq. (7), expand the logarithm, and equate the
coefFicients of the various powers of (q(0)) to zero, we
find

(q(1)&=&q(0)&
— "'+&q(0)& (R,/R, C) L'- "—.— " 7

+(q(0)&s(1/2Ro C )L(RP+RoRo)e '&noc

4Rpe "—"Io+c(3Rp RoRo)e —"~noc7 (g)

Recalling that (q(0)) =CV and comparing with Eq. (3),
we identify the various equilibrium correlation moments.

(qq(t)»"=kTCe "n'c (9)

(q'q(t)&&"=2(kTC)'(Ri/RoC') f e '&noc —e "Inoc7, (10)
(q'q(1) &&"=3 (kTC)'(e "noc+ (kTC/Ro'C')

X$(Rp+RoRs)e 'Inoc 4Rpe "&n—oc-
+ (3RP—RoRo)e s'Inoc7}. (11)

Thus, we find that, even in the presence of the
nonlinearity, the second correlation moment (qq(t)&&'& is
identical to that of a linear R-C system. In order to find
any effect of the nonlinearity on the behavior of the
equilibrium Quctuations it is necessary to consider
higher equilibrium correlation moments.

It is of interest to note that at t=0 the equilibrium
Quctuation moments reduce to those obtained from the
linear static characteristic (q)=CV, using conventional
thermostatic Quctuation theory. '
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3. REGRESSION OF EQUILIBRIUM FLUCTUATIONS

In general, the macroscopic motion of a system is
built up in some complicated way from the microscopic
regression of equilibrium Quctuations. At least in the
simple example considered, however, it is possible to
determine a microscopic behavior which in fact gives
rise to the equilibrium Quctuation moments obtained
above from the macroscopic motion.

We assume that the equilibrium Quctuations regress
in a nonlinear way according to

(q(t))p "'=Lo(t)+q'Li(t)+q"L2(t)+q"Lp(t)+ (16)

where (q(t)), &pi denotes the equilibrium expectation
value of q at time t conditional on the value q' at time
zero. The various equilibrium Quctuation moments
given in Eqs. (9) through (11) can be obtained from
Eq. (16) by multiplying through by the appropriate
power of q' and averaging over the equilibrium proba-
bility distribution W"'(q'). Thus,

(q(t)&'"'= dq qP"'(q'I q,t). (22)

DiGerentiating with respect to t and letting t ~ 0, this
becomes

going theory. The question then arises as to whether a
given microscopic model corresponds macroscopically to
a nonlinear R-C system or to some other type of system.
The relevant criterion with respect to the microscopic
motion is that it exhibit the form of Eq. (21). The
macroscopic dynamical parameters can then be identi-
fied from the specific solution obtained for (q(t)&, &Pl by
comparing its power series expansion in q with Eq. (21).
However, Rp, R~, and E.2 can also be obtained directly
from the first moment of the microscopic transition
probability (see also Sec. 4) as follows. (q(t)), "' can be
written in terms of the equilibrium conditional proba-
bility distribution P&'i(q'

~ q, t) as

(qq(t)&'" =(q2&'P'Li(t)+(q'&"'Lp(t),

&A(t))"'=(q')"'L (t)+(q')"'L (t),

(17)

(18) where

(q&'"'= dqqP"'(q'I q), (23)

«q«))'"=(q & L.()+«&& iL.«). (19)

The equilibrium first moment (q)&" (=0) is obtained by
averaging Eq. (16) directly.

(q&"'=0=Lo(t)+(q'&"'L (t). (20)

Using Eqs. (9) and (11) for (qq(t)&&'i and (qpq(t))& i,
respectively, and noting that (qP&"&=15(kTC)2, Eqs.
(17) and (19) can be solved for Li(t) and Lp(t). Simi-
larly, Eqs. (18) and (20) can be solved for Lp(t) and
L2(t). Substituting the results into Eq. (16), we obtain

(q(t)&, &P) — (t2+R /R )(e—t/RPc e
—2t/RPc)

+q'(e "R'c (3kT/2-Rp'C)—

)(L(R 2+R/ )e—t/RPc 4R 2e—2RRPc

+(3R1 —RpR2)e 2'/R' $}
+q~2 (Ri/RpC) (e P/Rp c e 2 P/Rp c)

+q"(1/2Rp'C')$(R12+RpR2)e '/RpC

4R 2g—2t/Bpc

+ (3R12—RpR2) e-'"R' )+ . (21)

Equation (21) for (q(t)), "& is qualitatively similar to
the results obtained by previous workers' ' in that the
linear term in q', as well as the higher-order terms, de-
pends on the nonlinearity of the system. However, our
result di8ers in the important respect that the regression
of equilibrium Quctuations is just such as to give rise to
the second moment (qq(t)&&Pi of Eq. (9), which is com-
pletely independent of the nonlinearity.

In considering a specific physical problem, it is
customary to proceed from the microscopic equations of
motion, constructing an appropriate macroscopic be-
havior from their solution. This, of course, is just the
reverse of the approach we have adopted in the fore-

dq qP&" (q'I q)

Rp

3kT—q' — 1+ — -(RpR2 —R12)
RpC - Rp'C

Rg
+q 2 +q 2 (ROR2 R12)+. . . (24)

RpC 2Rp'C

4. MOTION OF A MARKOFFIAN SYSTEM

In order to eGect a comparison between our results
and those of other authors, we brieQy discuss Lax's
recent work. ' The MarkoKan assumption regarding
the equilibrium conditional probability distribution
P&Pi (q ~

q', t) implies the Chapman-Kolmogoro6 relation

l

W(q, t+ht) = dq' W(q', t)P&P/(q'~q, dt), (25)

where W(q, t) is the path distribution function for q
during the relaxation process. Expanding in ht and
taking the limit ht ~ 0, this leads to the transport type
of equation

8 r—W(q, t) dq' W(q', t)P&'i(q'
~ q),

at
(26)

8
P"'(q'

I q) = lirn —P&'1 (q'~ q, t)' p8t

is just the probability per unit time of making a transi-
tion from q' to q. The series expansion of the left-hand
side of Eq. (23) can be obtained from Eq. (21). Thus,
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where P(')(q'! q) is the previously defined microscopic
transition probability.

Equation (26) can be used to compute the time
derivatives of the various moments (q"(t)) of q in the
nonequilibrium system characterized by W(q, t) Th. us,
after some manipulation,

—&q(t))= ~~q W(q, t)

—(q'(t)) = ' ~q W(q, t) ' dq' (q' —q)'P"'(qlq')

(27)

FxG. 1. A nonlinear R-C system connected with a large number
of identical systems.

the nonlinearity reduce to eA, are obtained by a per-
turbation technique to any desired order. Thus, the
response (n(t)) can be expanded according to

&n(t))=(n)(')+ g a„e ""'.
n=1

+2 dq qW(q, t)

&& ~~q' (q' —q)P"'(qI q') (2g)

dq' (q' —q)P"'(ql q') = —~~—&~'—1'~'+ ", (29)

~q'(q'-q)-P()(ql q') =D.+~. +P,+, (30)
std

which yields Eqs. (27), (28), ~ in the form, '

—( (t))= —~& (t))—&& '(t))—1'( '(t))+
dt

(31)

d—(~'(t)) =2D2+2~2(~(t)) —2(~—R2) &~'(t))

—2&(~'(t))+ " (32)

We note that the variable nWq —(q)(0) except in the
lowest-order approximation; however, all Lax's results
can be easily rewritten in terms of the more conventional
variable q

—(q)('&. The equation of motion (31) differs
from the conventional equation of motion (6) in that the
quantities (q(t))" are replaced by (q"(t)), but Lax identi-
fies A with 1/ROC, 8 with —Ri/Ro'C', and F with

(—R2/Ro'C') + (R'i/ROSC').
The coupled equations of motion (31), (32), ~ are

satisfied by solutions of the form h(n"(t))=(n"(t))
—&n")("= e ""', (n")(') being the equilibrium component
of (a (t)). The eigenvalues X„, which in the absence of

'Because Lax's equations of motion depend solely upon the
Markofban assumption, they are equally valid for motion about a
nonequilibrium steady-state operating point. Since it is not yet
possible to make meaningful thermodynamic statements regarding
this situation, however, we restrict ourselves here to the case of
equilibrium operating points.

Lax chooses to expand the moments of P(')(q!q')
in terms of a new variable e =q

—
qp, such that

I dq' (q' —qo)P"'(qo
I
q') =o.

The coeKcients a„are determined in principle by the
initial conditions of the problem, although the determi-
nation of more than two is complicated in practice by
the non-Hermitian nature of the eigenvalue matrix. The
equilibrium second correlation moment (na(t))(' is ob-
tained by assuming the initial probability distribution
W(n, 0) =()(o.—n'), multiplying Eq. (32) by n', and
averaging over the equilibrium distribution W(0) (().').

If the initial 8-function distribution is used to de-
termine the erst two expansion coefficients a1 and a2,
Eq. (33) for (q(t)), ('& assumes the form

(q(t)), (o)

+ (f+bq +cq~2 j(Iq~a) (e
—4 t e kgt) (—3'4)

where we have expressed Lax's results in terms of our
variable q. The quantities b, c, d, and f, and also the X's,
are functions of A, 8, I', and the expansion coeKcients
of the higher moments of P"&(q!q') given in Eq. (30).
The equilibrium second moment (qq(t))('& obtained from
Eq. (34) is

( (t))"'=(q')"' ""+(b(q')'"+'(q')"'
+(t(q4)(0)) (e

—xl t e
—x2 t) (35)

One finds that (b(q')('&+c(q')(')+d(q') "&) does not vanish
identically, even if we admit the probability distribution
W('& (q) of Eq. (15).We conclude that such a Markoffian
system will in general not be equivalent to a nonlinear
R-C system.

5. A SPECIFIC MODEL

In order to illustrate the relationship between the
microscopic and macroscopic behavior in concrete form
we now consider a specific model. In particular we focus
on one nonlinear R-C system connected in parallel with
a large number of identical replicas, as shown in I'ig. 1.
In addition the ensemble is assumed to be in strong
interaction with a temperature reservoir.

If all the capacitors in the ensemble are charged, and
the entire ensemble is permitted to relax to equilibrium,
each system hnds itself in continual quasi-static equi-
librium with both a thermal reservoir and a "voltage
reservoir. "The voltage of this reservoir varies with time
according to the macroscopic Eqs. (1) and (2). The



1470 W. BERNARD AND H. B. CALLEN

microscopic distribution function of the system is, then,
the standard generalized canonical distribution'

PT(q t) —gT(0) (q)eV(t) ql kT/&ev(t) ql kT&(0)

PT(0) (q)e( q(t)1 0/ kTC/& e(q(e) q/kTc&l0) (36)

The equation of motion satisfied by W(q, t) is obtained
by di&erentiating with respect to t.

~(q, t) = (1/»C) JI'(q, t)L&q(t))q —(q(t))(q(t)&] (37)

Multiplying through by q and averaging over Wist(q),
we obtain an expression for d&q(t)&/dt which yields the
relation

&q'(t)) =&q(t))'+&q')'" (38)

Invoking Eq. (38), a similar calculation of d&q'(t))/dt
yields the relation

&q'(t)&=(q(t)&'+3(q'&"'&q(t»

The results expressed by Eqs. (38) and (39) clearly
suffice to reduce the Markoffian equation of motion (31)

to the desired form, Eq. (6). Rewritten in terms of the
variable q rather than Lax's variable n, Eq. (31)
becomes

—(q(t)) =A-A'&q(t)&-~'&q'(t)&-P'& '(t))+" . (4o)
dt

Substituting Eqs. (38) and (39), we obtain

—(q(t)& = LA —~'&q'&"']—LA'+3P'&q'&"']&q(t)&
ct —8'&q(t))' —I"(q(t))'+, (4l)

which is of the form of Eq. (6) with LA —8'&q')'0l]
=0, LA'+3P'&q'&&'&]= 1/RoC, 8'= R,/R,—0Cs, P'
= —L(R0/Ro'Cs) —( Rt/ R'0C')]. This identification of
the coefficients is to be contrasted with that which would
result from a direct comparison of Eqs. (6) and (40),
ignoring the distinction between (q"(t)) and &q(t))" Lsee
also the discussion following Eq. (32)].
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Internal Field Emission at Narrow p-n Junctions in Indium Antimonide

A. G. CHYNowETH AND R. A. LoGAN
Bell Telephone Laboratories, Murray Bill, New Jersey

(Received January 25, 1960)

An experimental study has been made of the Geld and temperature dependence of internal Geld emission
in narrow p-n junctions in indium antimonide. Relatively good agreement, both qualitative and quantitative,
is obtained between the experimental results and the usual expression for the barrier transparency. From
studies of Esaki characteristics at low temperatures and from the observed temperature dependence of the
tunnelling current, it is confirmed that the tunnelling transitions do not involve phonons. Also, it is shown
that the temperature dependence of the barrier transparency is determined by that of the energy gap at
0=0.

INTRODUCTION

HE theoretical expression for the field dependence
of the probability of internal field emission (tun-

nelling) is dominated by the factor'

exp ( net/E), —

where, for direct transitions,

n= qr (m*) i/2eh, ,

and for indirect transitions,

n =4 (2qtt*) 1/3eIt,

e is the energy gap (direct or indirect, as appropriate),
E is the electric Geld, as* is an eQ'ective mass, e is the
electron charge, and It is h/2qr, where 1'0 is Planck's con-

' F. V. Keldysh, J. Exptl. Theoret. Phys. (U.S.SR.) 33, 994
(1957), and 34, 962 (1958) Ltranslations: Soviet Phys. JETP 6&

763 (1958), and 7, 665 (1958), respectivelyg.

stant. Chynoweth et al.' have recently made an experi-
mental study of tunnelling in narrow silicon and ger-
manium junctions and in particular, they have verified
that Eq. (1) satisfactorily describes, both qualitatively
and quantitatively, the field dependence of the tunnel
current at a given temperature. They also investigated
the temperature dependence of the tunnel current. The
form of the temperature dependence depends on
whether the tunnelling transitions are direct or indi-
rect, the latter requiring the absorption or emission of
phonons. In semiconductors where the minimum energy
gap lies at 0=0, tunnelling of carriers between the two
bands occurs by direct transitions. In this case the
temperature dependence of the tunnel current is de-
termined primarily by that of the energy gap. In those
materials where the minimum energy gap does not
occur at k=0, tunnelling may occur by indirect transi-

~ A. G. Chynoweth, W. L. Feldmann, C. A. Lee, R. A. Logan,
G. L. Pearson and P. Aigrain (in press).


