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that the expected pole in the production process always
lies outside the ellipse.

Further it can be shown that in any case in the
production processes the expected pole attains its
minimum distance from the physical range when m'

has the minimum value (tt'+tt")'. '
We have investigated the cases of type (2), P+sr

~P+sr+sr and p+E~ p+E+rr for the threshold
value of m'. In both cases we have found that the ex-

pected pole never lies inside the ellipse, and only for
one value of 8' reaches the ellipse. This value is
W= fN+3.5 tt and W= %+M re+3.6 y, for the two proc-
esses, respectively.

' Of course 8' o/8 tos nstends to zero as ro' goes to (y'+p")'.
this is due to the phase space factor of the final particles of
momenta k' and k". In this case it is more convenient to consider
the quantity

Q20

[ro4y (~'2 p~~2)2 2ro2 (F12+~~~2)]t Sto2Sn2

which in general is different from zero at m'= (a'+y")' and has
the same analyticity properties of 82o/Bz2MP as function of 52.

CONCLUSIONS

We may summarize the results as follows. It has not
been possible to prove an analytic property of the
production amplitude analogous to the one holding for
the elastic amplitudes as function of cos9. However, we
have shown that some special combinations of the
amplitudes Dormulas (8)] are analytic within the
same region of the cose plane found by Lehmann in the
case of elastic scattering with the same incoming
particles.

Finally, we have proved that the conjectures of Chew
and I ow which refer to the analyticity properties of the
cross section (17) as a function of cosg are con6rmed
at least within the Lehmann ellipse.
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The rearrangement energy corrections to the single-particle energies have been evaluated, using the pro-
cedure of Brueckner and Goldman. The shift is shown to be due largely to the second- and third-order
rearrangement energy diagrams, the corrected energy at the Fermi surface now nearly agreeing with the
mean binding energy.

The change of the single-particle energies of virtual excitations due to rearrangement eGects is also deter-
mined and shown to shift the mean binding energy by 1.5 Mev.

I. INTRODUCTION
" 'T has been shown by Brueckner and Goldman' that
- - a redefinition of single-particle energy within the
framework of the E-matrix approximation' for the total
energy of a Fermion many-body system leads to single-
particle energies which satisfy the separation energy
theorem of Hugenholtz and Van Hove. ' It is the purpose
of this paper to give the quantitative results obtained

for the single-particle energies and also the ground-state
energies from an application of the BG procedure.

II. SINGLE-PARTICLE ENERGY

Following BG, we start from the E-matrix expression
for the ground-state energy, considered as a function of
the occupation numbers of the Fermi gas, i.e.,

'K. A. Brueckner and D. T. Goldman, Phys. Rev. 117, 207
(1960); hereafter referred to as BG.

2 K. A. Brueckner, Phys. Rev. 100, 36 (1955).
e N. M. Hugenholtz and L. Van Hove, Physica 24, 363 (1958).

E(e.)=Pn, +-,'P~, n, (E...,—g,...), (2.1)
2M
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TAax, E I. Breakdown of single-particle energy. The density
corresponds to ro = 1.07)& 10 ' cm and an average binding energy
per particle of 15.5 Mev. The variation of corrected single-particle
energy from p=O to p=pz corresponds to an average effective
mass of 0.73M.

Momentum

Potential energy (Mev)
E second third

matrix order order

Single-
particle

energy (Mev)

0.1pg
0.9pg

pg

—112.0

—70.3

+26.8
6.9
44a

+9.4
6.4
6 1a

—75.6

—17.8
Fxo. 1. Second- and third-order corrections to energies

of real hole excitations.
a Extrapolated from computed values at p =O.if' and p =0.9pg.

We have marked the single-particle energies appearing
in Eq. (2.2) with an asterisk to emphasize the point that
these energies are not the complex energies of real holes
or particles but rather the real energies of virtual excita-
tions. We refer to BG and also to Sec. IV for a more
detailed discussion of this point.

The single-particle energy now is defined by

E =BE/Be . (2.3)

As shown by BG, this definition leads to the Van Hove-
Hugenholtz series of correction terms for the energy
and also leads to a single-particle energy at the Fermi
surface satisfying the separation energy theorem for a
saturated system,

E» =E//X. (2.4)

The change in the single-particle energy from that
given in the E-matrix approximation, which is

E *=(p '/2M) yP, j4(E .. .—E „,), (2.5)

arises from the change in the propagator in the E-
matrix equation. This is due to the shift in the occupa-
tion numbers as they appear explicitly in Eq. (2.2) or
implicitly in the energies E;*.In the approximation of
BG, which is based on the assumption of rapid con-
vergence of the rearrangement energy series, the correc-
tion to the energy due to the shift in the self-consistent
energies E; is included only in first approximation, i.e.,
only through the linear change in e as it aGects the
sum in Eq. (2.5). The change in particle energy then is

due to a second-order term arising from the change in
exclusion effect upon hole creation,

n,ej(1—e„)E
(En —Eo*)sxctusion= P q (2 6)+E,n

and a third-order term from the change in the spectrum

with

(1-~-)(1—~-)
+kl, ij &kl, ij+2 &kl, mn +mnij,

mn EP+E.s:

(2.2

or change in the eGective mass

(E.—E.*) *=-', P ~,Nj(1 N„—)(1 e„—)Z„„
'hymn

1/AE ~ aE/L(AR)'+ Z'], (2.8)

with F taken sufhciently small so that the result became
independent of F. A suitable value of I' was found to be
9 Mev, which is reasonable since typical excitation
energies are of the order of 50 to 100 Mev.

The results for the corrections to the single-particle
energy are summarized in Table I and their e8ect on the

4K. A. Brueckner and J. L. Gammel, Phys. Rev. 109, 1023
{1958).' This result was obtained in the detailed numerical calculation
of the X matrix in the study of nuclear matter.

X (E;*+E,* E* E—*) '. —(2.7)
8'Irk

These correspond to the second- and third-order dia-
grams given in Fig. 1 with the E matrix acting as the
interaction instead of the potential.

The derivative of the total energy required in Eq.
(2.3) to determine the energy has been evaluated
numerically, using the E-matrix procedure previously
applied by Brueckner and Gammel' to the determina-
tion of the properties of nuclear matter. The derivative
was obtained by making a finite change An in the
population of the Fermi gas and verifying that the ratio
of hE/Ajar was independent of the value chosen for An

To simplify the calculation, we have made use of the
very weak dependence' of the E matrix on total
momentum and evaluated the E matrix at the average
total momentum in the Fermi gas. This leads to some
complications in evaluating the change in the propa-
gator in Eq. (2.2). We describe in Appendix A the
procedure used to circumvent this problem.

Another complication arises from the occurrence of
vanishing energy denominators in the E matrices deter-
mining the energies of real excitations. These occur for
holes, for example, from the energy conserving transi-
tions made possible by creation of a hole in the Fermi
gas. To obtain the real part of the single-particle
energy, we have taken the principal part of the singular
integral encountered. In practice this was done by
making the replacement:
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Fzo. 4. Third-order rearrangement energy correction
to ground-state energy.

-100

-&20'
0

I

0.2
I

0.4

p/pF

I

0.6
I

0.8
I

1.0

FIG. 2. Shift in single-particle energy of real excitations
below the Fermi surface.

single-particle energy shown in Fig. 2. The energy
spectrum shows a considerable shift, the corrected value
of —17.8 Mev at the Fermi surface now nearly agreeing
with the mean binding energy. The remaining small
corrections are probably due to higher order effects in
the rearrangement energy.

These quantitative results do not agree with previous
estimates of Hugenholtz and Van Hove' and of
Thouless. ' The discrepancy arises from an overestimate
of the second-order term and an underestimate of the
third-order term, the latter corning from the shift in
energy spectrum or effective mass of the bound particles
in the presence of an excitation.

FIG. 3. Second-order re-
arrangement energy correction
to ground-state energy.

III. EFFECT ON THE GROUND-STATE ENERGY

We now turn to the determination of the effects of
the changed single-particle energies on the total energy
of the system. To do so, as BG have shown, it is essential
to take into account the difkrences between the energies
of virtual excitations as they appear in Eq. (2.2) and
the complex energies of real particles and holes. The

second-order correction to the single-particle energy
appears as an insertion into the ground-state energy as
shown in lowest order in Fig. 3. The excitation energy
of the virtual particles and holes now enters into the
energy denominator of the correction and, as shown by
BG, markedly reduces the size of the shift in energy.
We have approximated to the "oG-energy-shell" eft'ects

by introducing into the second-order correction to the
single-particle energy a mean excitation energy equal
to the excitation energy of the Fermi gas. The third-
order correction to the single-particle energy appears as
an insertion into the ground-state energy as shown in
Fig. 4(a). This term is the only correction included by
Hugenholtz in his definition of reducible contributions
to the single-particle energy. There are, however, the
completely equivalent diagrams, irreducible according
to the de6nition of Hugenholtz, shown in Figs. 4(b), (c),
and (d). These combine very simply, as shown by BG,
to give a change in ground-state energy equivalent to
one-half that resulting from the "on-energy-shell" in-
sertion of the third-order correction to the single-
particle energy.

The change in the ground-state energy then is
equivalent to that resulting from the change in single-
particle energy due to the "oG-energy-shell" second-
order term and one-half of the "on-energy-shell" third-
order term. These shift the single-particle energy
upward by about 5 Mev at the Fermi surface and 7 Mev
at zero momentum. The resulting change in the ground-
state energy has been computed and found to be
1.5 Mev. This correction is of the same magnitude as
other uncertainties in the E-matrix method' as well as
that arising from "off-energy-shell" propagation, as
discussed by Brueckner and Gamrnel. '

APPENDIX

In determining the contribution to the rearrangement
energy from the second-order term, an expression of the

6 D. J. Thouless, Phys. Rev. 112, 906 (1958).
VThese are discussed in detail particularly by H. A. Bethe,

Phys. Rev. 103, 1353 (1956).



SI NGLE —PARTI CLE ENERGIES IN NUCLEAR MATTER THEORY 1441

form
1 tn

f(-:Ik.—k. I) (A 1)
8~ E,+E; P—. P.—.

must be evaluated. This is a function of the relative
momenta

~~ ~

and the total momentum

P= k;+k;.

(A.2)

(A3)

ICL

We wish to define an appropriate mean value of the
total momentum and suppress in Eq. (A.1) the explicit
dependence on total momentum. To do this, we 6rst
ignore the dependence of the energy denominator on
total momentum. This dependence is zero, for example,
in the effective mass approximation. We then write
Eq. (A.1) in relative and total momentum coordina es as

I

0.5
. l

1.0
I

1.5
I

2.0

Pts / KF

FIG. 5. Average value of total momentum as a function of
relative momentum, as de6ned by Eq. (A.13). The dotted lines
indicate the average approached by large values of I' .

I= "dk' f(k'),
k' —k" I=krk 'P(k, P)Lf(k') j, , (A.9)

with

implicit appearance in f(k). In this approximation,
Eq. (A.S) becomes

A.4

[1,
f

= fkq-;P
f
&k„

fk;[= fk ——,'P [&kgb,

[1.f = [1'+-,'P[~k, .
(A.S)

The relation of k' to k also imposes the condition

k.=k' ——,'P. (A.6)

with the integration taken so that the limits imposed by
the exclusion principle are satisfied, i.e.,

(k +P)' kp'—
II(k„,P) = fl.—P

f
&k,

4k P

We next evaluate the average of I over P, since it is
this average we wish to approximate by introduction of
an average of P into Eq. (A.S). The result is, after
evaluation of the angular integrals,

The result for the rearrangement energy does not
depend on the direction of k, so we replace Eq. (A.6)
by the equivalent condition

[k f
= [k'—-', P f. (A.7)

La(k. ,P)$,.
with

t P'dPG(P)II(k, P) P'dPG(P), (A.11)

We then can evaluate the angular integral in Eq. (A.4),
with the result

G(P) =1, 0&P &2(k,—k)

4zk

~1 (I ~(kg~+% ~) —~P2$&, )k ——,'PI )

k'dk'f(k'), (A.S) =0 2(k p' —k') &&P (A.12)

2(k&—k) &P&2(k,'—k&)t

where I.( }we near the lesser of the two terms. We now

define the mean value of I' so that it gives correctly the
average of Eq. (A.8) if the variation of f(k') is ignored.
This approximation derives its approximate validity
from the strong dependence on P as it appears explicitly
in Eq. (A.S), and the weak dependence on P through its

Our 6nal value of P, then is delned by

[II(k.,P)j, =8'(k.,P. ) (A.13)

The evaluation of Eq. (A.11) is straightforward but
tedious; we do not give details here. The result is given
in Fig. 5.


