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Quantized Meson Field in a Classical Gravitational Field*

TsvroMv IMAMvaat
Department of Physics, University of North Carolina,

Chapel Hill, North Carolina

(Received January 4, 1960)

The behavior of a quantized meson Geld in a classical gravitational Geld is examined. Physical quantities
such as the expectation value for the number of created mesons are represented in terms of a formal Green's
function. They are computed explicitly for the case of a special space-independent gravitational Geld. The
inadequacy of standard iteration procedures is discussed in an Appendix.

1. INTRODUCTION

'HE problem of the creation and scattering of
quantized particles by an externally impressed

gravitational field is a virtually unexplored area of
general relativity. On account of the importance and
difBculty of the theory of gravitation, the author be-
lieves that any aspect of the theory is worth studying if
it has characteristics diGering from theory of other Geld

theories. In the above-mentioned problem, the form of
interaction of the external field is different from that of
usual theories in that the characteristic surfaces of the
quantized field are aGected by the external field.
Furthermore there may occur phenomena for which

such a semiclassical treatment will be suitable. The
author does not assert that the investigation of the
present problem is a necessary step to the more impor-
tant problem of the quantized gravitational field, but it
is hoped that some information may nevertheless be
obtained as to a semiclassical limit of the latter. In this

paper we examine the behavior of a quantized neutral
meson field in a classical gravitational Geld which is

simple enough so that exact solutions may be obtained.
In Sec. 2, physical quantities such as the expectation

value for the number of created mesons are represented
in terms of a formal Green's function. The sole require-
ment imposed is that the gravitational field be such that
well defined state vectors exist in the remote past and
future. In Sec. 3, the expectation values are computed
explicitly for the case of a special space-independent
gravitational Geld. Some attention is given in the
Appendix about the iteration method.

T and L are large constants and n and P are positive real.
Greek indices run from 0 to 3, Latin indices from 1 to 3.
In the following, equalities which are correct to order
O(T +L ~) will be shown by =. The quantities
p+(x, t) satisfy the free meson equation and can be
written as

y+(x, t) = [2(2a)']—* d'k (kp)
—l e'" *

)&[a+(k) exp( —ikpt)+a+1( —k) exp(itppt)] (2.3)

where kp represents (k'+m')l, at means Hermitian
conjuga'te of a, and the a's satisfy:

[a(k),a(k') j= [at (k),at (k') j=0,

[a(k),ut(k')i= 6(k—k').
(2.4)

Furt'hermore we shall assume the following properties
for simplicity

g"(x,t) =0, for all x and t.

The Hamiltonian for the system has the form,

1
H(+t) =- d'x (—g)l

the following type of solution for a neutral meson field

y(x, WT)=y+(x, aT)+0(T +L ~)—,

~4 cia+ (2.2)—(x, &T)= (x, &T)+O(T ~+L ~).
Bx" Bx"

2. PRELIMINARY DISCUSSIONS
( clqh BP

X
~

—g"——+g'-
rft Bt

~4 ~4
+m'y' ~, (2.5)

ax' ax" ) '

In order to have a well-defined state vector in the
remote past and future, we shall restrict the gravita- and satisfies the asymptotic conditions

tional Geld to be one which has the following properties
1

H(+ T) =— d'k kpa+t(k) a+(k)+ (H.c.). (2.6)
2~(2 &)g '(x, WT) y""+O(T +L ), —

where y " is the Minkowski metric, and which admits The vacuum state vector for the remote past is define

~ Work su orted b the Air Force Once of Scientific Research by ~ tt'p ——0, and the inco ming single particle states are

t On leave of absence from Osaka, University, Osaka, Japan. given by Pa= a t(k)tPp.
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(6'a'(k) a '(k) A)
where Pp+ is defined by a+go+=0.

In order to calculate these quantities in terms of the
basic vectors Po, Pj, , one must express g(xt) or a+ as
a function of a . By using the meson Green's function,
they are represented as

(Aa" (k)a'(k)A) (2 &)

The scattering amplitude for the momentum transition

The expectation value for the number of created k to k' is
mesons in the remote future in the state for which no
mesons are present in the remote past is

( BG ill
p(x, t)= d'y~ (x, t;y, T)$(y,——T)—G(x, t, y, —T) (y, —T)

~

&8(—T) 8( T)—

((2or)') ' t.
=i(

~

d4kd4k' G(k, ko,k', ko')e'" *-"o'—'"o' (ko')-&
2

and
)&[(ko'+ko')a (k') exp(ikp'T)+(kp' —kp')a t(—k') exp( —iko'T)], (2.9)

8$
a+(k) = (2(2or)') —l d'ope-'" * (ko)ly(x, T)+i(ko)—i (x,T) e"or

BT

=-
~

dkod'k' (koko') lG(k, ko,k', ko')e—' ~"o+'o'

2 J

where
&& [(ko+ko) (ko'+&o') a (k') —(ko+ko) (ko' —ko')a-'( —k') exp(2ikp'T)] (2.10)

G(x,t,x', t') = d'kd'k' G(k, k, ,k', k,')e"*-'"'*'-"'+"o".

(2.11)G(k, ko,k', ko') = —G*(—k, —ko, —k', —ko')

G(k, kp, k,kp ) =G(—k, kp, —k, kp )
from the Hermiticity of p,

from reRection invariants, and
(2.12)

In the case of a space-independent gravitational field, several conditions on G are given from general requirements,
namely,

f
G(k, ko, ko')G(k, po, po') (ko' —pp')e '""o+&" 'r &'o'+»'&d'kdkodkp'dpodpp'=0

g"(t) G(k—,ko, ko')G(k, po, pp')(kpkp' —kopo')e
—"&'o+"o'—"~" 'o+»'~ 'd kdkodp'odpodp'o=(2or)'[ —g(t)]& (2.13)

G(k, ko, ko')G(k, po, po') (koko'po —kopopo')e " oo+"o ' ""+""dokdkpdkp dppdpp —0

from the consistency for a canonical quantization; [p(x,t),g(x', t)]=0 etc. Here G(k, kp, kp') is defined by

G(k, ko, kp') 2 (k—k') =G(k, ko,k', ko').

3. MESON FIELD IN A SPACE-INDEPENDENT GRAVITATIONAL FIELD

Using the form, (2.14) for the Green's function, we may write the Hamiltonian in terms of a as

(2.14)

B'(t) =~o(2or)'[ —g(t)]l
'

d'kdko'dpodpo' e '&op+»"—'&"o'+»'&

XG(k,k„k,')G(k, p„p,') (—4)-'[goo(t) k,p,+gl™k,k.+m ]
X[(ko'+ko)(po'+go)e"""a (k)a (—k)+(ko'+ko)(po' —po)a (k)a '(k)]+(H.c.)

f
d'k[2 pa (k)a (

— k)+—B—oa (k)a t—(k)]+—(H c).. (3.1)
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It is easily seen that Bo is real, from (2.11) and (2.12). The Hamiltonian is seen to be quadratic in a and a t.
Moreover, momentum is conserved. The Hamiltonian (3.1) has exactly the same form as that used by Bogolijubov
in his treatment of the theory of superconductivity and can be diagonalized by the technique which he has intro-
duced. The result is

where

The condition

H(&)='d'k(B s' —jdoj')'*n (k)n(k)+(H. c.),

n(k)=e"s"Noa —
(k) —e—egioo „a t(—k), A&= jg&je"&,

u~= coshxo, vs = sinhxo, tanh2xo = —
j A q j/Bo.

Bo& jAgj

(3.2)

(3.3)

is a necessary one for Bogolijubov's transformation to be permissible. It will be shown later that it is satisfied in our
case as long as the space metric remains positive definite.

The expectation value of the number of created mesons with momentum k, is given by

(X+(k))=— "dkodko'dpodpo' G(kkpko')G(ppppo')e '~["o+"p'+»+»'&
4 J

XLkoko' ko(ko ko') kos)j PoPo' ko(Po —Pp') —Ioosj(ko) s(Ag (—lr)a t(—k)fo) (3 4)

The vacuum state in the remote future is defined by

Z

0=++(&)4'o+=— dkodko' G(lrkoko')& ' '+" (koko')'j(ko+ko)(ko'+ko)a (lr) —(ko+ko)(kp' —ko)u t( —k)e"~o~7&p+
2&

and the scattering amplitude for the process, in which the initial and the final momenta of meson are diGerent is
equal to zero on account of definitions of fp and fp+

In order to get more explicit expressions for these physical quantities, we shall consider the following gravita-
tional field:

gPV —pyPV for oo&t&r+L ', —r L'&t& ——oo,

gs"=p7P" (const) for p.& t& —r. (3.14)

FIG. 1. Diagram of the
regions considered.

In the regions I, III, and V of the Fig. 1, the solution of the field equation is easily found to be

P'(x, i') = L2(2pr)'g
—*

t d'k(k )leo'~ *j u (k) exp( —ikon)+a t(—k) exp(ikpt) j,

0'"[xi) [2(2 )'] 'f d'k(k, )=le'"*[b(k)s '" '+b~( —k)e" '], (3.15)

@v(xi)=$2(2~)'j 'jr d'k(k )**ep'" *ta+(lr) exp( —ikot)+a+t( —k) exp(ikpt)j,

where k„= (i7' kik +m'/ —igloo)'*. In the regions II and IV, 6eld equation is

(3.16)

i N. N. Bogolijubov, J. Phys. U.S.S.R. 11, 23 (1947).
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In the limit L —& op, discontinuities occur in the derivative of p. If we suppose g, BP/Bx" and O'P/Bx'Bx to be of
order i, then

(8'p 8$) 8—I+—L(—g)'*g"j/( —g)'g"+O(1) =0.
(Bto Bt) Bt

By integration from Wv WL—~ to ~r one gets

This gives the following relations

8$
ln—+ln( —(—g) ~g")

Bt
=o(L ').

8$ 8$—(., +r~L-~) = F—(», ~r)+O(L-~),
Bt Bt

y(x, a ra I.—') =y(x, a r)+O(L ')

(3.17)

(3.18)

where F'= (—(—g) hap). This solution is compatible with the above assumption that p, 8&/Bx" and 8'g/Bx'Bxp are
of order 1, when it is connected with well-behaved solutions in the regions I, III, and V.

Using (3.15), (3.17), and (3.18), we can express a+ and b in terms of a:
- pk„~i tkpy l -

(k„q
'*tkoy-'

b(k)=-', e—'"'
]
—

[ +( —
)

F—' 8—
(k) exp(ikpr)+ )

—
~

—
~

—
(

F' ' a "(—k) exp( iko—r)
(k, i Ek„P &k,)

(3.19)

i ~k,F kp q i (k„F kp
~a+(k) = cos2k„r ——(sin2k„r)

~
+ ( u (k) exp(2pkpr) ——(sin2k„r)

~

— ~o t(—k) exp( —2ikpr).
2 0 kp kpFj. 2 ( ko kpF)

(3.20)

The other way to get the expressions of physical quantities is to use Green s functions in regions I, V, and III,
that is,

(2m) P d'k e'"'&' r (ko) ' sinko(xo —yo),

(2pr)
—' d'k e'" &*-»(k )-' sink„(x, —y,),

and relations (3.17) and (3.18) with the formula

G(x, t,x', t') = ~d'x"[G(x,t,x",t")(8/Bt")G(x",t",x', t') —(8/Bt")G(x, t,x",t")G(x",t",x', t') 1[—g(t"))&g P(t"). (3.21)

The results are, for instance,

r

(2pr)' G(k, kp, kp')e ~~" '~o = (ko) ' cosk„(t+r) sinkp( —r+T)+(k,F) ' sink, (t+r) cosko( —r+T) (3.22)

for r&t& —v and

(2pr)' G(k, kp)kp')e '"" '"o' =[(k F) 'sin2k, r coskp( —r+t)+(kp) 'cos2k„r sinkp(t —r)]coskp(T r)
~J

+[cos2k„r cosko(t —r) —k„P (ko) ' sin2k„r sinko(t —r) j(ko) sinkp(T —r) (3.23)

&=-
~

"d'k k„~t(k)~(k)+ (H.c.).
2J

(3.24)

for t)r.
From (3.1), (3.2) and (3.23), one can get the Hamil-

tonian in region III as

It is not hard to show that n(k). , which is calculated
from (3.2) is equal to e'P~'b (k), which is given in (3.19).
Expression (3.24), rewritten in terms of b and bt can also
be obtained by using the usual Hamiltonian formalism.
In this example, comparing (3.2) and (3.24) we can see
that the above-mentioned condition (3.3) is just that

be positive definite. This is physically agreeable.
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The expectation value of the number of created
mesons is obtained by using (3.4) and (3.23) or (3.20).
We find

(e+(k))~-'Lk F'/kp —lop/k I']' sin'(2k„r). (3.25)

It is noteworthy that the expectation value of the total
number of created mesons, J'(e+(k))d'k, is infinite.
Another curious fact is that (e+(k)) tends to a finite
value in the limit of the breaking of the condition (3.3).

The only nonvanishing component of the Riemann
tensor is (in the limit I, -+ oo)

Ro(p (t) = ,'(re -y( )—Pb'(t r) —B'(t+—r)]
+-.t (~-+")("o-~oo)(~.-~.)
+(v"+n") (n~- v~-)—(v ~ v~)]-
&&(8(t—r) 5 (t r)+ B(t+—r) 8 (t+ r)]. (3.26)

In spite of the singular expression of the second term of
the right-hand side of (3.26) the following relation may
be admitted on account of the symmetric character in
the neighborhood of singular points:

( B2 B2

X( „oo
BP Bx'Boo"

6(xt,x t')

( B' B B
&&I g" +(—g) '—C( —g)'*g"]-

g]2 Bt, 83

where

+g™ —m' ~Pp(x't'), (A.2)
Bx'Bx" i

pp(xt) =
~

d'k e'"'* coskp(t+T)P(k, T)—
Bp

+ (kp) ' sinkp(t+T) —(k —T)
Bf

Iterating this equation, we get, for the erst approxi-
mation,

r'
y(xt) =go(xt)+ a(xt,x't')

Expression (3.25) can be rewritten as

(e+(k))=-,'['(detg(p)'*(g'"k)k +m')'(7op)-'
—kp(detrtp, ) -*(g'"k(k +m')l]'

)&sin (g™k~k+m')L2r/( —rt")l], (3.28)

Under normal initial conditions, go, B&o/Bx& and
B'gp/Boo"Boo" are of order 1.Therefore the second integral
on the right-hand side of (A.2) becomes

and we can therefore express this quantity in terms of
the Riemann tensor using relation (3.27). The quantity
q" which appears in the last term can be considered as a
simple correction of the time unit.

t9
"d'x' A(xt, x' —7)—y(x', r)—

Bt

~ L(—~)-:~o +1]L—g(—.—OI; )]-& (A.3)
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APPENDIX

One might try to treat the problem considered here
by means of the Yang-Feldman integral equation2

y(xt) =go(xt)+ 6"'(xt,x't')

8 t9 8
&& tg" +(—g) '—L(—g)'g"]-

BP Bt Bt

+g'" —q» y(x't'). (A.1)
Bx Bx 8$ 8$

o C. N. Yang and D. Feldman, Phys. Rev. 79, 972 (1950).

where 0 is a constant, 1+8&0. On the other hand, the
corresponding first order term of the expansion of the
exact solution is

J
d'x' A(xt, x' —r)—yp(x', —t)j(—g)lg' +1]. (A.4)

83

The other 6rst order terms are just what we get from the
first integral of the right-hand side of (A.2). Obviously
these two expressions, (A.3) and (A.4), are different from
each other except in special cases. The diGerence between
them arises from the fact that in the iteration method,
O'P/BP, which is really of order 1., is replaced by the
quantity O'Pp/BP, which is of order 1. This situation
represents an important character of the present prob-
lem, arising from the fact that the characteristic surfaces
themselves are perturbed, and shows that attempts to
use standard perturbation methods in problems of this

type are likely to lead only to difhculties.


