
STRAIN SCATTERING BY VACANCIES AND I MPURITIES

shift and strain scattering contributions turn out to be
of comparable importance, then a larger relaxation may
perhaps be permitted, due to the possibility of inter-
ference sects.
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This paper discusses some effects of mobile electrons in some antiferromagnetic lattices. It is shown that
these electrons (or holes) always give rise to a distortion of the ground state spin arrangement, since electron
transfer lowers the energy by a term of Grst order in the distortion angles. In the most typical cases this
results in: (a) a nonzero spontaneous moment in low fmlds; (b) a lack of saturation in high fields; (c) simul-

taneous occurrence of "ferromagnetic" and "antiferromagnetic" lines in neutron di6'raction patterns;
(d) both ferromagnetic and antiferromagnetic branches in the spin wave spectra. Some of these properties
have indeed been observed in compounds of mixed valency such as the manganites with low Mn4+ content.
Similar considerations apply at finite temperatures, at least for the (most widespread) case where only the
bottom of the carrier band is occupied at all temperatures of interest. The free energy is computed by a
variational procedure, using simple carrier wave functions and an extension of the molecular Geld approxi-
mation. It is found that the canted arrangements are stable up to a well-defined temperature T1. Above T1
the system is either antiferromagnetic or ferromagnetic, depending upon the relative amount of mobile
electrons. This behavior is not qualitatively modified when the carriers which are responsible for double
exchange fall into bound states around impurity ions of opposite charge. Such bound states, however, will

give rise to local inhomogeneities in the spin distortion, and to disuse magnetic peaks in the neutron diffrac-
tion pattern. The possibility of observing these peaks and of eliminating the spurious spin-wave scattering
is discussed in an Appendix.

I. INTRODUCTION

K are concerned here with magnetic compounds

~

~

~

~

~

of mixed valency, of which the best known

example is the series (Lat,ca,)(Mnt, '+Mn +)Os. At
both ends of the composition diagram, these manganites
behave like antiferromagnetic insulators. ' ' However,
to take a definite example, if we substitute 10% of
calcium in pure LaMn03 the room temperature con-
ductivity is increased by two orders of magnitude. ' This
shows that the 10% extra holes which have been added
are comparatively free to move from one manganese
ion to another, and are able to carry a current. These
carriers also have a strong e6ect on the magnetic
properties of the material: at low temperatures there is
a nonzero spontaneous magnetization (approximately
0.4 of what is expected for complete lining up of the

spins on the above example), indicating that some sort

of ferromagnetic coupling is present. This was first

explained by Zener' in the following way: (1) intra-

atomic exchange is strong so that the only important

* Supported by the National Science Foundation.
t On leave from the Centre d'Etudes Nucleaires de Saclay,

Gif-sur-Vvette, France.
' G. H. Jonker and J. H. Van Santen, Physics 16, 337 (1950);

19, 120 (1953).' E. 0. Wollan and W. C. Koehler, Phys. Rev. 100, 545 (1955).
' C. Zener, Phys. Rev. 82, 403 (1951).

configurations are those where the spin of each carrier
is parallel to the local ionic spin; (2) the carriers do not
change their spin orientation when moving; accordingly
they can hop from one ion to the next only if the two
ionic spins are not antiparallel; (3) when hopping is
allowed the ground state energy is lowered (because the
carriers are then able to participate in the binding).
This results in a lower energy for ferromagnetic con-
figurations. This "double exchange" is completely
different from the usual (direct or indirect) exchange
couplings, as pointed out by Anderson and Hasegawa. 4

The coupling energy is shared between the carriers,
and cannot be written as a sum of terms relating the
ionic spins by pairs. Also, the dependence of the carrier
energy on the angle between diferent ionic spins is
quite remarkable. This brings in special effects which do
not seem to have been considered up to now. For
instance, if the pure material is antiferromagnetic, it
will turn out that the carrier energy in the mixed
material is lowered if the sublattices become canted.
This gain in energy is of first order with respect to the
angle of canting, while the loss of antiferromagnetic
exchange energy is only of second order; as a result,
the canted arrangement is indeed more stable. It is the

4P. W. Anderson and H. Hasegawa, Phys. Rev. 100, 675
(1955).
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Q j tgy~j (2)

where t,;= (q, ~K~ g;) is a matrix element of the one-
carrier Hamiltonian K, commonly referred to as the
transfer integral between ions i and j.In practice t;; con-
nects only neighboring magnetic sites. When the ionic
spins S, and S; are parallel, t;; is maximum and equal
to some constant b,; When . S; and S; are antiparallel,
t,;=0 More.generally, as shown in reference 4, when S,
makes an angle 8;; with S; the transfer integral for
carriers of spin —,

' is

t,,=b,; cos(8,;/2). (3)

Equations (1), (2), and (3) rely on the following
simplifications: (a) the fivefold degeneracy of the d
band is neglected; (b) the intra-atomic exchange
integral is assumed larger than b,; (so that transfer for
8;;=+ is indeed negligible); (c) the ionic spins S; are
described as classical vectors; (d) the ions are held
rigidly at their equilibrium positions; (e) Coulomb
interactions between carriers are not considered; (f) in-
teractions between the carriers and the compensating
charges of opposite sign (e.g. , Ca++ substituted for
La+++) are averaged out. Removal of (a) would not
qualitatively modify the considerations to be developed
in the following but would only complicate matters by
introducing more unknown parameters; (b) and (c) are
good starting approximations in all cases; (d) neglects
the strong coupling between carriers and lattice vibra-
tions, the importance of which has been stressed by
Zener. ' However, we shall be interested only in the
lowest energy levels of the carriers and only in the part
of this energy which depends on the orientations of the
ionic spins. It is then reasonable to treat the polaron
self-energy as an additive constant, so that (d) is an
acceptable assumption. On the other hand a study of
eGective masses and mobilities would require a more
detailed treatment of the carrier-phonon interaction,
so that we do not expect the b; s to be simply related
to the electrical conductivity. Assumption (e) restricts

' C. Zener, J. Phys. Chem. Solids 8, 26 (1959).

purpose of this paper to discuss these distorted arrange-
ments, especially as regards their stability and their
eGects on magnetic properties.

As a first step, we now outline the very simplified
physical model which will be used in the calculations of
the later sections. We shall describe the carrier wave
functions, in a tight binding approximation, as a linear
combination of some orthogonal functions q; localized
on each magnetic site (t):

/=Quip~ ~

The q's are such that off-diagonal elements of the one-
electron Hamiltonian between them and the anion
orbitals are zero. The eigenvalue equation satisfied by
the amplitudes o.; is then of the form

us to dilute carrier systems. Fortunately this is a mild
requirement because double exchange eGects are often
strong even in this limit. Assumption (f) is a drastic
simplification. It amounts to neglecting all possible
bound states of the carriers around the impurities
which have been used to create a state of mixed valency.
One might argue that as soon as the conductivity of the
mixed specimens is much larger than the conductivity
of the pure material, a band picture is appropriate.
However, this conductivity, although high, often shows
a temperature dependence corresponding to an activa-
tion energy; we believe that for low concentrations only
a small fraction of the Zener electrons is involved in
the conduction process, while all of them (bound or not
bound) participate in double exchange. The essential
observation here is that the over-all sects of bound
carriers on the ionic spins is in fact very similar to the
eGect of the free carriers described by Eq. (2), as will
be shown in Sec. IV. (In both cases the carrier energy
is lowered by a distortion of the ionic spin arrangement. )
The magnetic properties of our assembly are not
strongly affected by assumption (f), and our simple
model is indeed applicable.

To study e6ects of thermal excitation it is very
important to recognize that in many cases the over-all
band width of the carriers is expected to be large when
compared with the temperatures of interest. (From the
transition temperatures in the manganite series we infer
that the band width is at least 0.1 ev and probably
larger. ) This shows that the anomalies in paramagnetic
behavior predicted by Anderson and Hasegawa, 4 which
are due to a uniform filling of the band, cannot be
observed in general. The opposite situation, where the
carriers fill only the bottom of the band, is much closer
to the actual state of affairs, and we shall deal uniquely
with this limiting case. The behavior of the system at
finite temperatures still remains an extremely compli-
cated problem, and the difhculties are twofold: first,
we have to know the ground state energy of the one-
carrier Hamiltonian for all arrangements of the ionic
spins. This is a question of wave propagation in a three-
dimensional disordered medium, and can be solved only
by means of very rough approximations. Second, there
is the problem of the statistical behavior of the ionic
spins submitted to the double exchange coupling. As we
shall see in Sec. III, even the molecular field approach
involves some labor in this instance, but, apart from
these computational difhculties, we are able to get a
clear picture of the successive transitions that occur.
The major difhculty with which we are left is then due
to the rather large number of interaction constants
which have to be derived from experiment; for instance,
when dealing with a "layer" antiferromagnet, we need
both the intra-layer and inter-layer exchange couplings
of the pure material, and the two corresponding transfer
integrals, that is to say four constants. Possible means
of deriving these constants are discussed in Sec. P.
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cos(Oo/2) =bx/4l J lS'

E=E. +Es=NP z'J'S' xz'b'— —
—zl J l

S'—(s/8)b'x'/l J l Ssj. (10)

II. CANTED SPIN ARRANGEMENTS AT
LOW TEMPERATURES

We now consider a Bravais lattice of magnetic ions,
and further assume that the spin ordering of the
unperturbed system is of the "antiferrornagnetic layer"
type. Each ionic spin of length S is coupled ferro-
magnetically to z' neighboring spins in the same layer,
and antiferromagnetically to z spins in the adjacent
layers. The exchange integrals are called J'(&0) and
J(&0). The Zener carriers are allowed to hop both in
the layer (with transfer integrals b') and also from one
layer to the other (with transfer integrals b). The
number of magnetic ions per unit volume is called X,
and the number of Zener carriers Ex. We shall consider
configurations in which all spins within each layer
remain parallel, but where the angle between magnetiza-
tions of successive layers takes a prescribed value 0.
We determine 0'o by minimizing the sum of exchange
and double exchange energies. The exchange contribu-
tion is

E, = —Ns'J'S'+Ns
I
J

I
S' cosOo (4)

To obtain the double exchange contribution we first
compute the energy E~ of a Zener carrier of wave
vector k. The amplitude of the carrier wave function is
a, =e'"'R' and Eqs. (1) and (3) give us

E&—P t, .eik. (Ri—R„')

b'yk' by—k cos(—Oo/2) (6)

where yk'=g e'k t"~ '&'and yk=P e'k i"~ "o'are
sums extended to the nearest neighbors of site (s)
which are respectively in the same layer or in diferent
ones (note that yo'=s', yo ——s). As explained in the
introduction, we are only interested in the bottom of
the energy band defined by (6) because we restrict
ourselves to a small carrier concentration (x«1). The
minimum of (6) depends on the geometrical configura-
tion of the magnetic lattice, and on the sign of b

and O'. We shall simplify the discussion by assuming
(arbitrarily) that b and b' are positive. Then

E„=—yo'b' —gob cos(Oo/2). (7)

Other signs for 5 and b' would lead to the same physical
results but sometimes require a more complicated
notation (when the band is not symmetrical). For
simple layer configurations like the one shown on
Fig. (2a), Eq. (7) is always valid provided we replace
b and b' by their absolute value. The carriers, being few
in number, occupy only energy levels close to E and
the total double exchange energy is

(8)

Minimizing the sum of (4) and (8) with respect to O~o

we get

I,3,5 ~ ~ ~

(a) (b) (c)

Fxc. 1. Allowed configurations for the magnetizations I1, I2, I3,
~ ~, I„, ~ ~ corresponding to successive layers. The angle between
I„and I„+1 is equal to Oo. (a) disordered; (b) two sublattice
system; (c) helical arrangement. (a), (b), and (c) are degenerate
from the standpoint of nearest neighbor exchange and double
exchange. External 6elds, anisotropy energies, or small ferro-
magnetic couplings between next nearest layers favor conngura-
tion (b). Antiferromagnetic coupling between next nearest layers
favors (c).

For x&4l J l
S'/b Eq. (9) defines an angle 0'o between 0

and x, and the magnetizations in the successive layers
point in diferent directions.

All arrangements which satisfy Eq. (9) are degen-
erate. There is a large number of them, because, when
we go from layer n to layer n+1 the magnetic moment
I~i of layer (n+1) is allowed to take any orientation
on a cone (of some angle t)) around I„. A typical
arrangement is shown on Fig. 1(a). The degeneracy is
removed by energy terms not included in our model,
of which the most important are probably magneto-
crystalline energies. For general values of 0, the simple
two-sublattice ordering of Fig. 1(b) is then stabilized.
For some special values of 0 (e.g. , 8=2s/n, where n is
a small integer) a helical arrangement as shown on
Fig. 1(c) might still be degenerate with the two-
sublattice arrangement. However, this is an exceptional
situation, and even then a small magnetic Geld is
enough to restore the two-sublattice ordering, where a
nonzero spontaneous moment is present. It is probably
worthwhile at this stage to point out the difference
between the ordering of Fig. 3(c) and the helical spin
arrangements considered by Villain, e Yoshimori and
Kaplan~ in materials with pure exchange forces. The
latter arrangements are nondegenerate (apart from
trivial degeneracies due to crystal symmetries) and can
be destroyed only by magnetic fields of the order of
the exchange Geld. In our case, on the other hand, all
the orderings shown in Fig. 1 are degenerate, and only
a few of the, such as 1(b), are not destroyed by applica-
tion of an external Geld. In the following we shall
restrict our attention to two-sublattice systems of
type 1(b). The general case will be considered briefly in
Sec. V. We now derive a few important properties of
our spin assembly at T=O.

(1) The spontaneous magnetization of the two sub-
lattice arrangement is

M =I cos(O'o/2)

o J. Villain, J. Phys. Chem. Solids 11, 303 (1959).
r A. Yoshimori, J. Phys. Soc. (Japan) 14, 807 (1959); T. H.

Kaplan, Phys. Rev. 116, 888 (1959).
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(a) (b3 (c)

Fin. 2. Examples of "layer" antiferromagnet (2a), "chain" anti-
ferromagnet (2b), and "alternating" antiferromagnet (2c) in a
simple cubic lattice. The (2a) structure is observed in LaMn03,
the (2c) structure in CaMnO, .'

Ez HI cos(O—/——2), (13)

and the moment is always given by (11), but with an
angle O between sublattices different from O~p. We
derive 0' by taking the minimum of the sum (4), (7),
and (13):

cos(O/2) = (bx/41I1S')+HI/41/
I
XS'yp. (14)

The susceptibility is then

x=Is/4[ JIypS'E.

Apart from possible small corrections in I, it is identical
to the transverse susceptibility of the pure material.
It could be measured by the same experimental tech-
niques which have been applied to triangular spin
arrangements in spinels. In the manganite series such
a lack of saturation in high fields has been qualitatively
observed. '

(3) The magnetic scattering of neutrons shows an
unusual pattern. Let us call p& and p2 respectively the
moments carried by one spin on each sublattice, and
put p=p&= p, 2. The scattering intensity if proportional
to the square of: ls= (1/k)k)& (pi&ps) where k is the
scattering vector, ' and the + or —sign correspond
respectively to "lattice" reflections (L) (where both
sublattices are in phase) and to "superlattice" reflec-
tions (S) (where they are opposite in phase). Both
types of reftectsons are ssrmlltarteousty observed in general.
For instance, if k is perpendicular to the plane (1s&ps)
of the spins the (L,) and (S) inten. sities are respectively
pro portional to cos'(Op/2) and sin'(Op/2) where p is
defined by (9).We see that neutron diffraction measures

' &. S. Jacobs, J. Phys. Chem. Solids 11, 1. (1959).' O. Halpern and M. H. Johnson, Phys. Rev. 55, 898 (1939).

where I/2 is the magnetization of one sublattice. By
making use of Eq. (9) this becomes

(12)

The ferromagnetic moment is accordingly proportional
to z (at low x).

(2) There is a nonzero susceptibility in high fields,
due to a field induced change in angle between sub-
lattices. This susceptibility is isotropic, because in high
fields all magnetocrystalline terms are expected to be
negligible. The spin system rotates to set its moment
parallel to the 6eld. The Zeeman energy is

1.0 I

NEEL POINT l CUR I E POINT

I

C)IN

o 0,5

0
0 0.10 0.20

FIG. 3. Determination of the angle 00 between sublattices in
the mixed manganites La1, Ca Mn03 with low Mn+ content.
The experimental points are deduced from measurements of
"ferromagnetic" and "antiferromagnetic" neutron line intensities
by Wollan and Koehler. ' The straight line corresponds to Eq. (9)
with b/I JIS'=16.

O~p directly. Using the notation of Wollan and Koehlers
we may write

pt =ti cos (Op/2), (16a)

p t' ——ti' sin'(0~p/2). (16b)

We now apply the above considerations to the experi-
mental data on the manganites' for low Mn'+ content.
Pure I,aMn03 is indeed a layer antiferromagnet, as
shown on Fig. 2. For the mixed compounds, we derive
from (16a) and (16b) two sets of values for cos(O'p/2)
as a function of x. These values are plotted on Fig. 3.
It may be seen that they coincide rather well, and that
the linear relation (9), with all effects of higher order
in x neglected, accounts reasonably for the data. From
the slope of this plot we infer that b/I JIS' 16.
(Unfortunately we have no information on the inter-
layer exchange constant

I
I

I
in LaMnOp. ) This figure

shows incidentally that the carrier band width is indeed
large when compared with the exchange energies in the
pure material, as mentioned in the introduction.

We shall now discuss brieQy the e6ect of an applied
magnetic field on the neutron lines. If this field is
applied parallel to the scattering vector k, and if it is
strong enough to overcome all anisotropy forces, the
ferromagnetic reRections are extinguished. On the other
hand, if the anisotropy fields are comparable in strength
to the applied field, a very complicated situation is
obtained, and the (L) lines are not completely extin-
guished. This appears to be the case in the mixed
manganites with low Mn'+ content.

We observe incidentally that if helical arrangements
were stabilized by some auxiliary coupling (such as a
small antiferromagnetic exchange between next nearest
layers) they would give rise to another class of neutron
lines, which cannot in general be indexed in any
multiple of the unit cell.~

(4) Another interesting question is related to possible
nuclear resonance experiments on nonmagnetic ions
belonging to the structure. Assume for instance that
the magnetic atoms within diGerent layers are separated
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by fluorine ions, and that the environment of each
fluorine contains an equal number of spins from sub-
lattices 1 and 2. Then, in the pure material, we expect
that the hyperfine 6elds acting on the F" nucleus due
to both sublattices will cancel exactly. In the mixed
compounds however, they will not, and there will be a
shift in the resonance, proportional to cos(8/2). One
expects two types of nuclear relaxation due to coupling
with (a) the carriers and (b) the spin waves. From the
spin lattice times measured both in antiferromagnetic
insulators" and in ferromagnetic metals, "we infer that
relaxation effects should not prevent observation of the
line. Unfortunately, there are inhomogeneities in the
h'yperfine field due to local spin distortions not included
in the present model (see Sec. IU). This inhomogeneous
broadening is expected to be large, and the experiment
does not seem feasible.

This section has been restricted to calculations on
"layer" antiferromagnets. We would like to mention
that there is another class of antiferromagnetic materials
where carrier motion is allowed in the unperturbed
structure, namely the "chain" structure, an example of
which is shown on Fig. 2(b). Considerations very similar
to the above may be applied there. The number of
allowed canted arrangements which are degenerate with
respect to exchange and double exchange is increased:
the only requirement is again that the angle between
the magnetizations carried by neighboring chains is
equal to some fixed value 00. This can be accomplished
in many ways and con6gurations with more than two
sublattices may have to be considered here even when
magnetocrystalline forces are present.

III. MAGNETIC BEHAVIOR AT FINITE
TEMPERATURES

The statistical properties of our spin assembly at
finite temperatures may be approached by a study of
elementary excitations (spin waves) or by some exten-
sion of the molecular field concept. Both techniques are
much increased in complexity when double exchange
carriers are present. The most interesting property
finally to be displayed is the existence of a Grst transition
point when the canted arrangement collapses, the
system becoming ferro- or antiferromagnetic at higher
temperatures. This property is beyond the scope of
spin-wave analysis, and we accordingly concentrate
here on the more useful molecular field description.
(The low-frequency spin-wave spectrum is considered
in Appendix 1.) A first step is to derive the energy of
carriers at the bottom of the band where the ionic spins
are not completely ordered. We get an approximate
value for this energy by taking as a variational wave
function in Eq. (2) the very simplest one where all
n s are equal. (This is the exact eigenfunction for all

~1
dQt! ™

—1

= 2 (sinhX)/X.

The relative amount of saturation of each sublattice is:

1
m= — dgle ~"

(1/X)+ ctanhX. (20)

Our aim is to insert the assumed distribution function

(18) into a variational principle for the free energy.
We erst derive the entropy term:

—TS=NksT ) w(x) 1nw(x)dx
—1

= iVkii T (hm —ln v). (21)

The calculation of the energy term is somewhat more
complicated. Consider for instance the first term of (17),
which corresponds to double exchange between sub-
lattices. Let us write

L=oo

cos(8/2) = Q AiPi(cos8).
l=o

(22)

The coeScients A~ can be obtained from the generating
function of the P t's (see Appendix 2). They are given by

ordered states with our choice of sign for the transfer
integrals. ) We obtain

E = —g; b;;(cos(8,,/2))

where the ( ) symbol represents a thermal average on
the possible states of the ionic spins. We may rewrite
the preceding equation for our layer antiferromagnet
in the form

E„=—gob(cos(8/2)) —yo'b'(cos(8'/2)) (17)

where 0' and 8 are the angles between any ionic spin
and its neighbors respectively in and out of the layer.
We now make use of the molecular 6eld approximation
in the following way: we neglect all correlations between
diGerent ionic spins, and assume for each of them a
statistical distribution corresponding to a molecular.
field.

w„(S)= (1/v) exp( —2 S/S).

The index e specifies the sublattice to which S belongs
(m=1 or 2); 2 is proportional to the molecular field

acting on sublattice (n). The two molecular fields are
equal in length (Xi=A~=X) and the angle between
them is O~. The normalization constant i is:

"R. G. S'hulman and V. Jaccarino, Phys. Rev. 108, 1219
(195'7).

"A. C. Gossard and A. M. Portis, Phys. Rev. Letters 3, 164
(19591.

( )l+1
(2l-1)(2l+3)

(23)
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= (2/v)i'ji( —iX) (26)

where j& is the usual spherical Bessel function, taken
here for an imaginary argument. Collecting the results
of Eq. (22) to Eq. (26) we obtain

(cos(8/2)) =— 2 jP(—iX)Pi(cosO)
(27)

jp'( iX) i~— (2/ —1)(2/+3)

In a similar way, if we deal with the angle 8' of two
neighboring spins belonging to the same sublattice, we
obtain

2 - jP(—iX)
(cos(8'/2)) =— P . (28)

jp'( —iX) i~ (2/ —1)(2/+3)

We insert (27) and (28) in (17), and multiply by the
number Ex of carriers to obtain the total double
exchange energy

21Vxz jP ( iX)—
jpP(

—iX) i=P (2/ —1)(2/+3)

X['rpbPi(cosO)+pp /i 7. (29)

Since X is related to the sublattice magnetization m by
Eq. (20), we may consider (29) as expressing the double
exchange energy in terms of the macroscopic parameters
m and 0. We will have to add the usual exchange
energy

E,„=—Em'(z'J'+zJ cosO).

The free energy Ii is the sum

F= TS+ED+E. . —

(30)

(31)

We then express Pi(cosO) in terms of the polar angles
of the two spins S», S2 which serve to define the angle 8.
The average orientations of S» and S2 are not parallel;
since they belong to diferent sublattices, the angle
between them is 0~. It is convenient to refer the polar
angles (Oippi) of Si to a polar axis parallel to Xi and
(Op@ p) to an axis parallel to Xp. With the usual notation
for spherical harmonics Fi (Oq) and Wigner rotation
coeKcients D', we get:

Pi(cos8)=Xi P I'i (Oiyi)I"i *(Oppp)D '(0,0,0).
mme

(24)

The E~ are normalization factors. Let us take the
thermal average of (24) with independent statistical
distributions ivi, wp as defined in (18). The only non-
zero term corresponds to m=m'=0. Dpp'(0, 0~,0) is
simp1y a Legendre polynomial, and the final result is

(Pi(cosO)) = (Pi(cosOi))(Pi(cosOp))Pi(cosO'). (25)

Furthermore
~1

(Pi(cosOi)) =-
~~ e-""Pi(e)de

V —»

dPi(v) )
=-;/(/+1)

dv )„—i

~dPi(v) y = (—)'+'-,'/(/+1).
dv

(33)

The resulting equations for the critical X's may be
written in the form

/(/+1)1
Z jip( —iX)

jiP(—iX) i-i (2/ —1)(2/+3)

(canted to ferro) (34a)

/(/+1)j 00

Z(—)' jp( —ix)j iP( iX) i=—i (2/ —1)(2/+3)

(canted to antiferro). (34b)

For finite ) the convergence of these series is good.
X and m are related by Eq. (20), and the best graphical
representation of Eq. (34) is in fact obtained by plotting
m' as a function of P (Fig. 4). We see immediately from
this plot that for small m the arrangement is never
canted (except for the special value )=2.5.) The upper
transition point always corresponds to a colinear con-
figuration for the magnetizations of both sublattices.
By lowering the temperature, however, we increase m
and anally intersect the critical curve at a well-defined
temperature T» which we refer to as the second critical
point. It may be shown that pm and O~ are both con-
tinuous functions of temperature at T= T». A complete
study of the thermal behavior is complicated by the
large number of independent parameters which come
into play (J,J', /i, b'). This is why Eq. (34), which
involves only one parameter ($), is of particular interest.

We now consider the dependence of the free energy
(31) on m in the "colinear" range (above Ti), and more
specifically the limit of small m, which corresponds to
the upper Curie point. Equation (31) may be expanded

This has to be a minimum with respect to X (or pip) and
with respect to 0. Let us first carry out the variation
with respect to cosO'. We obtain

ji'(—ili) dPi(v)
m'+ -=0 (32)

jp'( —iX) i (2/ —1)(2/+3) dv

where g= bx/ I J~ 5' and v= cosO. For each X (31) is an
implicit equation for v. For large X (low temperatures)
the solution e is such that —1&v &1: the spin
arrangement is canted. For small X (higher tempera-
tures) v is outside the interval (—1, 1):the equilibrium
configuration is ferromagnetic (v )1) or antiferro-
magnetic (v (—1). The critical value of X (or m) is
obtained by setting v= &1 in Eq. (32), and observing
that
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in the following form:

F=Fo+Fnm'+F4+'+
where

(35)

We now write that (35) is a minimum and obtain

m'= —(F2/2F4). (38)

The upper transition point corresponds to F2=0. It is
given by the greater of the two quantities quoted in
the following:

To= (2/3k') [(sJ+z'J')S'+ (2x/5) (s'b'+sb) j
(Curie point) (39a)

T~ (2/3k') L——(—sJ+s'J')S'+ (2x/5) (s'b' —zb)j
(Neel point). (39b)

(Remember that for the cases in which we are interested
J is negative and J' positive. ) We emphasize the fact
that only two transition points are observed in all cases
(T& and Tc or Tj and T~). Another interesting quantity
is the paramagnetic Curie point TI defined through
the asymptotic form of the paramagnetic susceptibility
x=C/(T Tz). When—the carrier band width is small
compared to k~T there is no contribution to TI from
the double exchange e8ect, as emphasized by Anderson
and Hasegawa. 4 On the other hand, when k~T remains
small compared with the band width, as it probably

I.O

(1/X)F2 ', k——~T—S'—(s'J'+z Jz)
—(2*/5) (z'b'+zzb). (36)

We know from the preceding argument that only the
parallel (v=1) and antiparallel (z= —1) cases have to
be considered, in which case F4 takes the simple form

(1/Ã)F4 ——(6x/7)(25) (z'b'+sb)+ (9/20)kzT. (37)

FIG. 5. Typical
"magnetic phase dia-
gram" for a layer an-
tiferromagnet. Theo-
retical values of Ti,
T„and T~ are given
in the text.

0
2,SINAI s~

b

X ~
~lsIs~

b

so that TI and Tg coincide within the molecular
approximation, as in the more familiar case of pure
exchange. It is not possible to derive simple expressions
for the lower transition point Ti, except in the limiting
case where g is not very different from 2.5. lt is then
easy to see from Fig. 4 that the transition (T&) occurs
for small values of m, so that the expansion (35) for the
free energy may be used on the whole temperature
interval between the two transition points. In this
range of $ values Kqs. (34a) and (34b) for [mlri take
the simple form

175 1 2
m Jpy=2l

18$ 5

does in practice, our approximation scheme remains
valid. If we retain the same simple form of variational
wave function to obtain the carrier ground-state energy,
we 'can show by the Van Vleck trace method that

zS Zi Joi+ (4&/15)Z~ b» (40)

0.5

By eliminating m' between (41) and (38) we get

2 1 2 2x 35
T,= To —— —(—sb+s'b')+ —kgjTO

3k' g 5 3

1 2
X ———«1 (42)

5

0
0

Fzo. 4. Square of the relative saturation mz'1=M pi/3f 0 of each
sublattice at the lower transition point Ti, as a function of
g=bx/i JiP

where To is the upper transition point as de6ned by
(39).Figure 5 shows qualitatively the stability domains
of the diferent spin configurations when both the
temperature T and the parameter $ (proportional to x)
are raised. The angle 00 between sublattices in the
ground state is given by (9). When 00 is larger than
103' ()&2.5) the canted arrangement becomes anti-
ferromagnetic by raising the temperature above T~.
When 00 is smaller than 103' (4)$)2.5) it becomes
ferromagnetic.

We close this section by a brief discussion of the
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Tl T~ TN

FIG. 6. Typical plot of inverse susceptibility and spontaneous
magnetization when P &2.5 (magnetocrystalline energies are
neglected).

physical anomalies which are expected of the lower
transition point T~. t':,~~ )

(1) The behavior of the susceptibility x is remarkable
when the upper transition point is antiferromagnetic.
By decreasing T we first observe the usual discontinuity
in slope at T~. Then x increases and becomes infinite
at Tr. The qualitative behavior of 1/x is shown on
Fig. 6. Experimental results very similar in their
general appearance to the graph of Fig. 6 have been
obtained in antiferromagnetic CrSb doped with a small
amount of MnSb. "The pure compound CrSb is known
to be of the antiferromagnetic layer type. "It may be
that electron transfer is allowed between chromium
and manganese atoms, in which case our model could
be applied.

(2) Below Tt both ferromagnetic and antiferromag-
netic neutron lines occur simultaneously. Above T& only
one type is observed. A phenomenon of this type has
been indeed quoted by Wollan and Koehler for some
mixed manganite samples. '

(3) The specific heat shows a (small) discontinuity
at T—Ti

(4) The electrical conductivity is favored by inter-
layer transfer. We accordingly expect a slight discon-
tinuity in slope at T= T&. The sign of this discontinuity
will depend on the type of order above TI. However,
our oversimplified model is not applicable to this

problem, and we are not able to make more detailed
predictions as regards this point.

(E U)rr i——0 cos(—0is/2)u9

(E U)rr2 ——b cos(0—is/2)cri
(43)

where U is the binding energy. (Note that the value of fi

may be modified by the attractive potential. ) The
ground state corresponds to

ED= U bcos(0—is/2). (44)

This is the analog, for a localized state, of Eq. (7) which

applied to an extended state. In both cases, a small
departure of Oj2 from m decreases the double exchange
energy in first order and increases the exchange energies
only in second order, so that a canted arrangement will

be stable. Here, however, the final configuration corre-
sponds to a local distortion of the spin system, and is
accordingly more dificult to compute. We shall first
derive the amount of canting by a simple "rigid field
approximation" (RFA) where all ionic spins other than
Si and Ss are assumed to retain their original orienta-

effective charge —e and is able to accept one carrier
(a hole) in a localized orbit. We intend to show that
the over-all effects of an assembly of such centers on
the ionic spin system are similar to those of the free
carriers considered in the preceding Section. We con-
sider in particular the extreme case where the wave
functions relative to diGerent impurity centers do not
overlap (very small x). In analogy with the known
properties of color centers in alkali halides, we expect
the wave functions to be of rather small extension;
in the above example, the hole will be shared by the
eight manganese atoms surrounding the impurity, as
shown on Fig. 7.

We first consider a single impurity center in an
unperturbed antiferromagnetic matrix, and restrict
ourselves to the following simple example: the pure
material is an "alternating" ferromagnet of one simple
cubic [see Fig. 2(c)] or bcc structure, with exchange
integral J coupling each spin to its s neighbors. The
Zener electron (or hole) is strongly bound and can only
occupy two neighboring sites (1) and (2). The transfer
integral is (is bco——s(0ts/2) as before, and the propaga-
tion equations which replace (2) are

IV. LOCAL SPIN DISTORTIONS

1. Bound States

The simple model of Secs. II and III did not take
into account any possible bound states of the carriers.
Such bound states may in fact occur, especially when

the amount of impurities is very small. For instance,
each Ca'+ substituted for I.a'+ in I.aMn03 acts as an

"T.Hirone, S.Maeda, and I.Tsubokawa, J.Phys. Soc. (Japan)
11, 1083 (1956); E. W. Gorter and F. K. Lotgering, J. Phys.
Chem. Solids 3, 238 (1957).

"A. I. Snow, Revs. Modern Phys. 25, 127 (1953).

0 ~l1~1 I I I
FIG. 7. Local spin distortion in LaMn03. The bound hole i&

localized on eight manganese atoms (black circles) around the im-
purity center Ca'+ (open circle). All ionic spins remain in one
plane )here taken to be l001lj.DeQections are maximum close to
the impurity center, but they decxease only slowly with distance.



EFFECTS OF DOUBLE EXCHANGE I N MAGNETIC CRYSTALS 149

C= (b/s i
J

i
S'((1)

4i I [S'(s+1)

~ 4iviS2(s —1)
(b/s (

S
~
S'))1).

2 b

(4&)

A bound Zener electron aheuys gives rise to a local
distortion of the spin system. This is to be contrasted
with the eGects which are obtained with pure exchange,
when some adequate substitution simply changes the
sign of one exchange integral, between (1) and (2).
In the latter case there is also a strongly inhomo-
geneous constraint applied to the spin system. However,
this results in a local spin distortion only if the new
(ferromagnetic) exchange integral exceeds a well-de-
fined threshold value (J„,„)-,'(s—1)

~
J~ in RFA, and

J„.)—', (s—2)
~

J
~ by an exact calculation).

We have proved that in the vicinity of each impurity
center there is an unbalanced magnetic moment due to
the special eftects of double exchange. There is however
one feature which is deliberately neglected in the RFA:
a local deflection of spins (1) and (2) is always accom-
panied by smaller distortions on the neighboring sites,
the amplitude of which decreases only slowly with
distance. These "wings" may be studied with good
accuracy by making use of Green's function techniques,
an example of which is given in Appendix 3. If we now
consider not only one impurity but a dilute assembly
of these, the "wings" result in a coupling of the un-
balanced moments carried by the diferent impurity
centers. At low temperatures it is energetically favorable
for these moments to line up, thus reducing the spin
distortions in the matrix. As a result we expect to
observe a nonzero spontaneous moment, increasing
linearly with x, and the over-all magnetic behavior is
very similar to what we found in Sec. II by discussing
free carriers. We also expect the "interlocking" between
diR'erent centers to preserve this ordered state up to
some critical temperature Tj, above which the un-
balanced moments exhibit a paramagnetic behavior.
Here again, the conclusions of the "free carrier model"
and of the "color center model" are not very diferent.

VVe now mention brieRy some phenomena for which
both models do not lead to the same predictions for
very dilute impurity systems. These are: (1) optical
absorptions; (2) electrical conductivities; (3) nuclear
resonance at anion sites; (4) neutron diffraction. The

tion. Si and S2 have opposite deflections e and —e and
8»=m —2e. The increase in exchange energy is

E. = 2
i
J

i
S'(2 (s—1)(1—cosa)+ 1—cos2ef. (45)

The minimum of the sum of (44) and (45) corre-
sponds to

bco—se+2( J~S'$2(s—1)+4 cosej sin~=0. (46)

This always gives a solution e, with the limiting forms

nuclear resonance lines are widely broadened, because
the long-range part of the spin distortion due to each
individual impurity center is responsible for inhomo-
geneous hyperfine fields. Consequently this type of
experiment seems difIicult to carry out. Neutron diGrac-
tion studies, on the other hand, could give some very
interesting information on local spin distortions. This
is discussed in Appendix 3, the main conclusions of
which may be summarized. as follows. (a) The distor-
tions lead to diffuse peaks around the superlattice line.
Superlattice lines for which the scattering vector is
parallel to the spin direction in the pure material are ex-
tinguished and consequently most favorable. (b) There
is always a parasitic spin wave scattering even at low
temperatures (because of the strong zero point motion
effects in antiferromagnets). (c) However, spin wave
emission is an inelastic process while scattering by
static distortions is strictly elastic. As a result, by a
suitable geometrical arrangement one can make the
spin wave scattering very diffuse so that it will be
automatically subtracted with the background. The
final requirement is that the neutron spectrometer
should be able to analyze an angular distribution corre-
sponding to a disuse peak whose integrated intensity is
roughly x times smaller than the intensity of a typical
magnetic line of the unperturbed structure. A typical
value of x (small enough to reduce overlap between
separate distortions) is 0.1, so that this figure is not
prohibitive.

2. Self-Trapped Carriers

Sections II and III applied the "free carrier" model
to layer and chain antiferromagnets, where the carriers
are always allowed to move within each chain or layer.
The "alternating" antiferromagnetic structures (where
all neighbors of a + spin are —spins) are somewhat
different; in the unperturbed structure the carriers are
not allowed to move; it is then more favorable for each
individual carrier to build up a lovel distortion of the
spin lattice in which it becomes "self-trapped. " The
resulting centers are able to move only slowly, and
their physical properties are modi6ed. In practice, we
are not very much concerned in sects such as a change
in effective mass, because the slow carriers will always
fall into bound states. We are mainly interested in the
shape of the local distortions and in interactions
between them.

We 6rst show that self-trapping will indeed occur.
The argument will be written down for a simpIe cubic-
or body-centered cubic "alternating" antiferromag-
net, each ionic spin having s equivalent neighbors,
with exchange couplings 2JS' cos8;;, transfer integrals
bcos(8;;/2), and carrier concentration x defined as
before. I.et us erst compute the gain in energy for a
uniform canting of both sublattices in the free carrier
model, as in Sec. II. We obtain

Ei, —-'Esb'x'/
i
J i
S'——
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Eop= zb cos(8/2)o!i

Eoii bcos(8/2)——o,s

and the ground-state carrier energy is

(51)

Eo= —bgz cos(8/2). (52)

By taking the minimum of E, +E& we obtain an over-
estimate of the energy per trapped carrier E&

Ei/%AT~ —(z/24)rP if ——g & 12/gz (53a)

~&12/g». (53b)

Actually this estimate is not accurate for large couplings
(q))1) where the "radius" of the trapped carrier exceeds
one interatomic distance. Equation (53) is sufhcient for
our purposes, however, and shows that E~ is negative.
The total energy of the trapped carriers XxEj is pro-
portional to x, while the energy (49) corresponding to
uniform canting goes like x'. At low x the self-trapped
configuration is always more stable. The following
remarks should be made.

(1) Equation (49) represents the average effect of an
attractive interaction between carriers via the ionic
spins; each carrier tends to cant the antiferromagnetic
lattice and decreases the energy of all other carriers at
the bottom of the band. This explains the x2 dependence
of (48).

(2) In layer antiferromagnets, the energy of the
free carrier model contains a negative term, due to
intralayer motion, and proportional to the number of
carriers x; self-trapped states are much less favored in
such structures. (Of course, in practice, we shall find
bound states as explained earlier. ) Another viewpoint,
leading to the same result, is the following: in a layer
or chain antiferromagnet spin distortions contribute

It is convenient to introduce the paramagnetic Neel
point T~=L(2~ JjS'z)/3k~( of the pure material, and
the dimensionless ratio g=b/kiiT~, so that Eq. (48)
becomes:

Efgee/QQTN —(Q/ 12)zs9szs (49)

We now consider another possible configuration, with
noninteracting localized states, and compute the corre-
sponding energy by making use of a variational prin-
ciple. We assume that the carrier to be considered is
trapped on some magnetic site (which we call 0 for
instance) with an amplitude ns, but we also allow it to
have a nonzero amplitude o,~ on the z neighboring spins.
As far as the ionic spins are concerned, we assume that
they all retain the same orientation which they had in
the pure material, except for Ss, which is allowed to
make an arbitrary angle 0 with the common direction
of the z neighboring spins. The exchange energy,
counted from the initial configuration (8=z) is

E, =2(JiS'z(1+cos8). (50)

The wave equation for the trapped carrier takes the
restricted form

only to a part of the band energy, and the coupling
between carriers and ionic spins is moderately strong
when compared with the unperturbed energy of the
carriers. On the other hand, the coupling is very strong
in an alternating antiferromagnet, since al/ the carrier
energy is due to distortions of the spin arrangement.

The over-all eGect of self-trapped carriers on mag-
netostatic properties is complex, and probably unob-
servable because of the existence of bound states. We
shall restrict ourselves here to a few qualitative remarks,
related to the behavior of the mixed manganites with
hzgh Mn'+ content. Pure CaMn03 is an alternating
antiferromagnet (simple cubic). The mixtures of neigh-
boring compositions are not conducting and do not
show any ferromagnetic behavior. This has been
interpreted by Goodenough" by means of a quali-
tative model which is somewhat related to self-trapping.
He assumes that the extra electron reverses the spin S,
of the central site (8 going from m. to 0) but leaves all
other spins unaltered. This then results in a simple
reduction of the sublattice magnetization, and does not
bring in any noncompensated moment, since there is
an equal number of trapped carriers on both sub-
lattices. We are not quite satisfied with this explanation,
for the following reason: from Eqs. (50) and (52) we

may show that the actual configuration of Sp is canted
(0&8&z.) when g&12s &. For larger g's, our simple
variational wave function yields a ground state which
agrees with the Goodenough picture, but it is not a good
approximation any more. In fact it is easy to see that
for such values of q the whole configuration built up
by Ss and its six nearest neighbors becomes canted with
respect to the more distant spins. In all cases there is a
noncompensated magnetic moment directed perpen-
dicularly to the spin direction of the unperturbed
structure. Furthermore, this moment is always accom-
panied by a long-range distortion of the spin lattice.
Exactly like in the case of bound states, we expect
these long-range distortions to couple ferromagnetically
the moments due to diferent carriers, in contradiction
with experiment. We do not believe that the discrepancy
can be explained within our simple model.

V. CONCLUSIONS

The special form of the double exchange coupling is
such that all antiferromagnetic (and also all ferrimag-
netic) spin arrangements are distorted as soon as some
Zener carriers are present. This is due to the fact that
electron transfer lowers the energy by a term of 6rst
order in the distortion, while the initial exchange energy
is increased only in second order. If the Zener carriers
are free to move in the structure, the distortion will

usually correspond to a uniform canting of the sub-
lattices. If they are bound or nearly bound, the distor-
tion is nonhomogeneous, but the average sects are
similar to the above. In practice the second alternative

i4 J. P. Goodeuough, Phys. Rev. 100, 564 (1955).
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is closer to the actual state of affairs. However the
"free carrier model, " corresponding to the first alter-
native, is expected to provide a good starting point in
all cases, when one is only interested in the macroscopic
magnetic properties of the system.

We now write down a short list of the physical
quantities which may be used to determine the relevant
exchange and transfer integrals in a given "layer" anti-
ferromagnet. These are: (1) the paramagnetic Curie
point, the Neel point, and the low-temperature sus-

ceptibility of the pure material (from which one can
extract J and J'). (2) The spontaneous moment at
T=O of the mixed materials (from which we get the
ratio b/~ J~ as shown by Eq. (11).This moment may
be obtained both by neutron diGraction or by magneto-
static measurements (the latter being clear cut only if
the moment is obtained by an extrapolation to low
fields of the high field 8-H curve, as has been done by
Jacobs' for triangular spin arrangements in spinels).
(3) The paramagnetic Curie point and the two transi-
tion points of the mixed compounds, as given by (39)
and (40). Location of the transition points is achieved
with the best accuracy by using specific heats and
electrical conductivities. The numbers derived from
low-temperature data are of course the most reliable,
because they do not make use of the very naive approxi-
mations of Sec. III as regards the carrier energy levels
and the statistical behavior. The assumption that the
carrier bandwidth is large when compared to k~T should
also be checked, and could eventually be improved.

In Sec. II we emphasized the fact that many de-
generate canted configurations are always allowed in
the presence of double exchange as illustrated by
Fig. 1. Only the simplest (two sublattice) types were
considered and the question may be raised whether
this is a serious restriction or not. We now present some
remarks related with the more general situation. (a) In
spite of the degeneracy one and only one arrangement is
stable at each temperature. This may be seen in the
following way: if we go to a partially disordered state
as shown in Fig. 1(a) we lower the free energy by an

entropy term proportional to the number of layers

( E&) or of chains ( X&). On the other hand, the
small magnetocrystalline or next nearest neighbor ex-

change terms are modified by an amount proportional
to S; their contribution always dominates, and the only
observable arrangements are those for which it is a
minimum. (b) Of course, even these small energy terms
do not remove the degeneracy between arrangements
which can be deduced from one another by a symmetry
operation of the lattice group. The crystal may accord-
ingly break up into domains, and the domain wall

energy may be extremely small in some cases. As an
example think of two helical arrangements correspond-
ing to Fig. 1(c), one right-handed, the other left-
handed, with a sharp boundary parallel to the plane of

the layers; the wall energy has no contribution from
nearest neighbor exchange or double exchange. (c) What-
ever the arrangement is, the angle O~ between neighbor-
ing units and the relative saturation nz of each of them
is still given by the formulas of Secs. II and III and
the lower transition point Tj is always observable.

Finally, we would like to mention the possible exten-
sion of all the above considerations to more complicated
systems of mixed valency such as those derived from
MnSe (rocksalt structure) or CrSb (NiAs structure).
The case of Cr& ~n, Sb has already been mentioned
in Sec. III. The compound Mno. 9Lio, ~Se" is known to
show two transition points Tj and Tg. It is ferro-
magnetic between T~ and T~, and antiferromagnetic
(with a strong parasitic ferromagnetism) at lower
temperatures. Conductivity data have not appeared,
and from the few experimental results presently avail-
able it is not yet possible to decide whether the low T
arrangement is canted or not. We stress the fact that
for the simpler case considered here a material which is
ferromagnetic at high temperatures always displays a
strong moment even below T~, the angle between
sublattice magnetizations being smaller than l03', as
explained in Sec. III.
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APPENDIX 1. LOW-FREQUENCY SPIN WAVES

We consider the antiferromagnet layer structure of
Sec. II, and study small amplitude motions of the ionic
spin systems around the two sublattice equilibrium
arrangement. The s axis is taken parallel to the spin
direction in the pure material. The y axis is parallel to
the spontaneous moment. The components of a spin S;
located on the first sublattice will be written as

5;*=Sa;,

S,s=S/cos (Os/2)+ a@]

( aim +assS.*=Ssin(Os/2)( 1—
2 sin'(Os/2)

a@ cos(Os/2) 1 a;„' cos'(Os/2) )
(54a)

sin'(0's/2) 8 sin'(O~s/2) ]
where terms up to second order in u„a„have been
retained. For a spin S; located on the second sublattice
we shall put

"S.J. Pickart, R. Nathans, and G. Shirane, Bull. Am. Phys.
Soc. 4, 52 (1959);R. R. Heikes, T. R. McGuire, and R. J.Happel,
Jr., Bull. Am. Phys. Soc. 4, 52 (1959).
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S;*=Sb,,
S,'=S[cos(Op/2)+b, „]

S.*=—S sin(Oo/2) ~~1—
».'+»p'

2 sin'(O~p/2)

The secular equation derived from (59) is

(h(v)4 —2(hs))o[2J (rp —pp )
+2(J( sin'(Op/2)yp]2J (pp —yo )
+ (2J")'(7p' —vo')'[2J" (yo' —V~')

+2~ J~ sin'(Op/2)(yp —yo)]
&(2) J~ sin'(0'p/2)(2yp) =0. (60)

b;„cos(O'p/2) 1 b,„'cos'(Op/2) )
(54b)

sin'(0'p/2) 8 sin'(0'p/2) )

From these formulas we compute the exchange energy—P J;;S' as 0;; up to second order in a and b. To get
the double exchange energy, we make use of three
approximations: (a) low-frequency approximation; the
Zener carriers are at every instant in the ground state
corresponding to the distortion (54). (b) Long wave-
length approximation; the distortion in (54) is nearly
homogeneous. At every lattice point we may think of
the carriers as occupying the bottom of a band whose
width corresponds to the local value of the spin dis-
tortion. (c) Electrical neutrality approximation; we
assume that the density of carriers is not modulated by
the spin wave. (a), (b), and (c) may be shown to be
entirely correct for the low-frequency part of the spin
wave spectrum. YVe may then write the total energy
as a sum of two terms, related with intralayer and inter-
layer couplings respectively:

For small h (which is the only case where our approxi-
mations are meaningful) the solutions are

(ha&i)'= gyp
~

J
~

J"sin'(Op/2) (yp' —yI, ')

(&~o)'= 2J"(vo' —Vk') [2J"(vp' —vk')

+2
I
J

I
»n'(o'o/2) (vp —v.)] (61)

In the first branch co is proportional to h (as it is in
antiferromagnets), and in the second it is proportional
to h' (as it is in ferromagnets). It is of interest to observe
that both branches collapse when the intralayer cou-
pling J"vanishes.

APPENDIX 2. EXPANSION OF cos8/2 IN TERMS OF
LEGENDRE POLYNOMIALS P~(cos8)

We are interested in the coeKcients A~ of Eq. (22).
They are given by

2l+1
A~ ——

~~ Pq(cos0)(cos0/2) sin0d0
2 ~p

g=g, „~, +jv, ~,
and get:

P;„„,= i J i
S' P (a;„+b,„)'

& ~-=J"Z ((&.—&~.*)'

2l+1
Pi(u) (1+u) **du. (62)

(56)
These integrals may be derived from the generating
function

where
+[1/sin'(Op/2)](a;o —a )'} (57)

J"=J'+ pub'

Equations (56) and (57) show that the energy is of
second order in u and b, as expected. The fact that E;„t,„
depends only on the y components of the distortion is
simply a consequence of the degeneracy illustrated on
Fig. 1.The dependence of E;„~„onb has been eliminated

by making use of Eq. (9) for O~p. From the energy
formulas we can derive an effective field I, acting on
each spin S; (our special choice of independent variables
does not change the vector product H;)&S,). Putting
a; =A e'&~' '+"'~ etc., we get Anally:

=P h' P((u)
(1—2uh+ h') &

by writing:
1 Ai

j du y=2v2 P h'
—1 2l+ 1

(64)

By expanding the left-hand side and identifying coeK-
cients of h' on both sides we get Eq. (23).

where y'= [(1+u)/(1—2uh+h')]. Equation (64) can
be integrated by parts and yields

tan-'(hl) — A,—h —1+(1+h)' = 2 Q h'. (65)
2h hi ~ 2l+1

iharA, = [2J'/sin(Oo/2)] (yo' —ya') A „
+2J sin(O'p/2) (poA&+yI Bp)

iA~A „=—2J' sin(Op/2) (yp' —yo')A .
i7iopB.= —[2J'/sin(Op/2) ](yp' —yI, ')B„

—2J sin(8p/2) (ypBo+ygA„)

ihopBp= 2J sill(Op/2) (yp yo )B

APPENDIX 3. LONG-RANGE PART OF A
LOCAL SPIN DISTORTION

Ke choose to deal here with the simple example
(59) already used in the first part of Sec. IV (simple cubic

alternating antiferromagnet with only one bond per-
turbed, between atoms 1 and 2). It was shown there
that the spins S& and 82 rotated by angles e and —e
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from their initial (antiparallel) orientations. We now
consider the smaller deflections e; (assumed all in the
same plane) which are found on the other magnetic
sites (i&1, 2). All these sites are submitted only to
exchange forces, and for small ~; then equilibrium con-
ditions take the simple form

1+0Ci=Z j 6j (66)

where the sum P is extended to all 6 nearest neighbors
of site i, and

p.r eijr Rrr (67)

[Note that ys, defined here by (67), for an alternating
antiferromagnet, is diGerent from the yl, defined in
Sec. II, for a layer antiferromagnet. j The solution of
Eq. (66) which exhibits the required values on the
perturbed sites is easy to express in terms of the
Green's function

+0r =A~hn gi& ~ (Rt—Rm)

& (Vp —Vs)
(68)

where the sum Ps is extended over the first Brillouin
zone and where A is a normalization factor chosen to
give I')) ——1.

+0A-'= P
~ 70—VI

(69)

The numerical value of A is 0.65947.' The quantity
I't considered as a function of t (or tip) satisfies Eq. (66)
except when t= m. It describes the deflection of spin S
when one spin Si has been submitted to a prescribed
deAection. I'& is a slowly decreasing function of

i Ri—R i. It has the following asymptotic form

I'i ——(3A/2 )a/i Rt—R„i (70)

where u is the length of the cube edge. Let us first
consider the case where all deQections are small, even
on the perturbed sites (1) and (2). Then the complete
solution of Eq. (66) satisfying the boundary condition is

(I'„—r, ,)/(1 —I'„).
This may still be simplified by observing that
1—~»2 ——A.

We now discuss a few important features of this
result. (1) The angles e; for (i) different from (1) and
(2) are substantially smaller than e. Consider for
instance the sites (i') which are nearest neighbors of (1),
(2) being excluded. The average deflection of these
sites is et; i= s P; e,'. By manipulating the I' functions,
one easily shows from (71) that

(72)

This explains a posteriori why the rigid field approxi-
mation used in Sec. IV is a good starting point. (2) The
deflection e, is proportional to F»,—I'~;. At long dis-
tances from the impurity center, I'», is similar to the

's M. Tickson, J.Research Natl. Bur. Standards 50, l77 (l953).

potential of a point charge, as shown by Eq. (70) and
I'», —F~, behaves like the potential of a dipole. This
gives rise to a very specific neutron diGraction pattern,
which we now compute.

For small ~; the scattering amplitude for a scattering
vector q is, apart from polarization factors and normal-
ization constants:

a(q) =Q; e,e,e'& R', (73)

where a;=+1 depending on the sublattice to which
(i) belongs. Equation (73) takes into account only the
scattering due to the spin distortion. (The amplitude
due to the ordered structure vanishes except on Bragg
peaks, which we discard. ) Equation (73) may be
transformed by making use of the solution (71) and of
the defining equation (68) for the 1'i . Finally we com-
pute ia(q) i

', take an average over the three possible
orientations of the pair (12) and multiply by the number
Xx of modified bonds in the crystal. The result is

2' C'Vo
(i~(q) I')=

vp —v(q —~.)
(74)

Are, =a (As/2M) [(q+kp)' —Apse (76)

where 3f is the neutron mass and ~~ the spin wave
frequency, which is given by

cd, =ci q —~,
i

(77)

when q is close to ~, The constant c. = [(12 i Ji Sa)/v3A$
is the velocity of the spin wave. If the velocity of the
ingoing neutron Akp/M is smaller than c, Eqs. (76) and
(77) have no solution in the vicinity of q=~, . The
inelastic scattering is then distributed on a very wide
surface in q space, and shows no anomaly near the
magnetic peaks; it does not prevent the observation of
the scattering due to static spin distortions [the latter

'r R. J. Elliott and R. D. Lowde, Proc. Roy. Soc. (London)
A230, 46 (1955).

where ~, is the scattering vector corresponding to a
superlattice line [they are all equivalent here; for
instance we may take ~,= (~/a, ~/a, ir/a) j.We see that
the distortion gives rise to a diGuse scattering around
the magnetic peaks of the unperturbed matrix. When

q —~, is small (74) takes the limiting form

i a(q) i
'=12Xxe'/(i q —~, i

'8'). (75)

We now discuss the parasitic scattering, due to
thermal distortions (spin waves) which may prevent
observation of this e6'ect. It often happens that this
scattering is also concentrated around the magnetic
peaks. "However, the spin-wave eGects may be made
diGuse by a suitable geometrical arrangement, as we
shall now show. The parasitic scattering is due to
neutrons, of initial wave vector kp, emitting or absorbing
a spin wave (q). Energy and "momentum" conserva-
tion require that
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being indeed singular, as shown by Eq. (75)$. On the
other hand ko must not be too small. We get super-
lattice reQections only if 240) v, . Both requirements
may be satisfied if s., (2Mc/A. Expressing 2' in terms
of the Neel temperature of the pure material by the
approximate relation 4~ J

~
S(S+1)= ItttTN we find that

this condition may be written

kgT~3A' m

p=
(S+1)ttt' 2

Taking a=3 A, Pre=80'K and S=s we get p=7, so

that the inequality (78) seems easy to satisfy. In our
example, the experiment is feasible with neutron wave-
lengths 2sr/ks between 1.5 and 3 A.

Our formula (71) was restricted to cases where the
deflection e= e2———e2 on the perturbed sites was small.
In practice this is not the case, and (71) does not apply.
However, it is always a good approximation to assume
that all deflections other than e2 and e2 are indeed small.
It may then be shown that the simple solution (71) is
still acceptable provided that we replace s by sine.
With this slight modification all the later formulas also
retain their validity.
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Electron-Hydrogen Scattering at Low Energies
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The effective range in the singlet electron-hydrogen system has been evaluated as 2.646~0.004 atomic
units by using the asymptotic amplitude of the 202-parameter H wave function of Pekeris. This value of
the effective range, together with the value of the electron afBnity of H, determines the scattering length
in the singlet system as 6.167 atomic units. The effective range in the triplet system is calculated to be 1.219
atomic units by a Hartree-Fock approximation. It is shown that the effective-range approximation is very
good for all energies at which only elastic scattering is allowed. The photo-ionization of H is briefly discussed
on the basis of the eGective-range theory.

I. INTRODUCTION

HE low-energy scattering of an electron by a
hydrogen atom is described by four parameters,

the scattering lengths u+ and a and the eGective ranges
re+ and rp . + refers to the singlet system and —the
triplet system. The s phase shift is given, in the so-
called effective range approximation, by

)'s cotst+ ———(1/a~)+ (re~/2) k'+O(k4). (1a)

The s scattering in the singlet system is also described
by the electron aflinity (y'/2) of H and by the effective
range p at the ion state.

h cotst+= y+ 'p(y'+It')+—OP(y'—+k')' 1 (1b)

Detailed variational calculations for the phase shifts
have been carried out by Massey and Moiseiwitsch'
among others' by taking into account the eGect of the
polarization. It has been found' recently that Massey-
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'H. S. W. Massey and B. L. Moiseiwitsch, Proc. Roy. Soc.
(London) A205, 483 (1951).

2 H. S. W. Massey, Revs. Modern Phys. 28, 199 (1956), and
the papers cited there.

~T. Ohmura, Y. Hara, and T. Yamanouchi, Progr. Theoret.
Phys. (Kyoto) 22, 152 (1959).

Moiseiwitsch's results are well reproduced by the
effective range approximation (1a) and (ib) even for
quite high energies, (h'&1). The most reliable values
hitherto obtained for the low-energy parameters may
be summarized as follows:

a =6—7,'4+ a =2.33—2.34,4'

II. EVALUATION OF p BY THE PEKERIS
WAVE FUNCTION

Recently Pekeris~ has succeeded in obtaining very
accurate wave functions for the ground states of two-

4 M. J. Seaton, Proc. Roy. Soc. (London) A241, 522 (195/).
'T. Ohmura, Y. Hara, and T. Yamanouchi, Progr. Theoret.

Phys. (Kyoto) 20, 82 (1958).' S. Borowitz and H. Greenburg, Phys. Rev. 108, 716 (1957).' C. L. Pekeris, Phys. Rev. 112, 1649 (1958).

p=2.44—2.6 ro =0.8—1.3.6 ~

The atomic units are used throughout this paper.
The effective range p of the singlet system will be

evaluated in II by using the asymptotic amplitude of
the Pekeris wave function for the negative hydrogen
ion state with 202 adjustable parameters. In III the
triplet effective range will be computed in the so-called
exchange approximation. In IV a discussion is given of
the comparison with Massey and Moiseiwitsch's result
and the experimental data, and of the bound-free
transition of the negative hydrogen ion.


