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In order to establish the extent of the disagreement between
the pion-nucleon forward-scattering-amplitude dispersion rela-
tions and experiment in a statistical sense, the uncertainty in the
dispersion integrals and S-wave scattering lengths is systematically
included in the analysis. To accomplish this, we fit the total cross
sections below 335 Mev by a Chew-Low P-wave resonance,
phenomenologically modified, and calculate the error matrix for
the parameters. Our fit to the total cross sections is statistically at
least as good as the Anderson parameterization used in previous
work. Ignoring forward scattering amplitudes above 220 Mev
because of D-wave uncertainties, we still find that there is less
than a 459, probability that the published data are compatible
with a unique value for the pion-nucleon coupling constant f2, and
that no adjustment of the S-wave scattering lengths can remove
the discrepancy. However, if the 7~ forward-scattering amplitudes
measured by Ashkin ef al. at 150 and 170 Mev are abandoned in
favor of the values recently obtained by Kruse and Arnold at
130 and 152 Mev, the probability rises to 47.2%, for our param-
eterization, or 8.6% for the Anderson parameterization.

Cini et al. have pointed out that the conventional analysis of
the low-energy data to obtain the S-wave scattering lengths does
not satisfy crossing symmetry, and a re-analysis by Hamilton and
Woolcock gives a.=—0.083, a_=0.088, rather than the con-
ventional values of —0.110 and 0.077. We obtain some inde-
pendent evidence in support of this conclusion by using the dis-
persion relations to determine ay, a¢-, and f? simultaneously.
We find:

Energy dependence f? ay a_
Anderson 0.075+£0.018 —0.086:0.025 0.071+:0.020
Modified

Chew-Low  0.086+0.019 —0.1014+0.026 0.085--0.020

It is clear that a better theoretical description of the energy de-
pendence of the total cross sections will be required before further
progress can be made on this problem.

I. INTRODUCTION

S was first noted by Puppi and Stanghellini,! the
pion-nucleon forward-scattering-amplitude dis-
persion relations? are in apparent disagreement with
experiment. Since a rigorous derivation of these rela-
tions has been given,? and electromagnetic corrections
have been shown to be probably less than 59,* con-
firmation of this result would show that at least one of
the basic postulates of local field theory is incorrect.
Re-evaluation of the integrals occurring in the dispersion
relations using new low-energy total cross sections gave
corrections which reduced the original discrepancy,
but a residual discrepancy remains.>® We feel that this
discrepancy is best exhibited by asking the question
whether the pion-nucleon coupling constant f%, as
defined by the dispersion relations, is consistent with a
unique value. For this purpose, therefore, we syste-
matically include in the analysis the statistical un-
* This work was performed under the auspices of the U. S.
Atomic Energy Commission.
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certainties due to the S-wave scattering lengths and the
integrals over total cross sections, and explicitly exhibit
the dependence of f2on these quantities. We also discuss
the use of the dispersion relations to determine the
S-wave scattering lengths simultaneously with f2.

II. EXPERIMENTAL QUANTITIES

In order to calculate f? at a given energy, we must
know (a) the real part of the forward-scattering ampli-
tude at that energy, (b) two integrals over the total
cross sections, and (c) two subtraction constants which
can either be taken to be two values of the scattering
amplitudes at some energy (usually the S-wave scatter-
ing lengths) or treated as two additional constants to be
fitted simultaneously with f2. Our selection of the data
is given below.

(a) Forward-Scattering Amplitudes

As noted by Puppi and Stanghellini,! it is possible
to use the observed angular distribution for elastic
scattering toegther with the total cross section to
calculate the forward-scattering amplitude without as-
suming charge independence, by using the relation

Ref(0)==[A+B+C+---—(qoto/4m)* ], (1)
where

o(6)=[Ref(0) "+ [Imf(®)
=A+B cos#+C cos?¥+---. (2)
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TaBLE I. Forward-scattering amplitudes, in units of
(B/mc) =1.413X 1078 cm.

! Energy

I (Mev) Reference Ref+(0) Ref=(0)

i 415 a 0.1024-0.034 0.104+0.014

B 80 b 0.26140.065

X' 98 c 0.434+40.011 0.195-£0.006

L. 100 d 0.4134-0.031

T o113 e 0.476=40.054
114 b 0.5280.070
120 b 0.584-0.048

T124 b 0.507£0.075

B 150 f 0.466+0.019 0.258-£0.017
170 f 0.2660.027
1217 g , —0.22140.077
220 f —0.5360.061 —0.1344-0.051
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Although Coulomb terms must be included in the
angular distribution for accurate work, it has been
shown? that this can also be done without assuming
charge independence, except for small correction terms
of order (e2/%2)?; in fact, the Coulomb interference term
can be used to give an independent measurement of
Ref(0). As noted in previous analyses.>® values of the
forward scattering amplitudes calculated from published
data above 220 Mev are unreliable because the angular
distributions do not go to small or large enough angles
to give accurate determination of the D waves. We
therefore limit our considerations to data below 220
Mev. The experimental values we have selected are
given in Table I.

(b) Total Cross Sections and Dispersion Integrals

The choice of total cross sections is mainly determined
by the most accurate experiments in any particular
energy region. At low energies we have chosen total
cross sections derived by integration of angular dis-
tributions, because u— e+r+7 decays necessitate
large corrections to transmission measurements below
about 50 Mev. At energies greater than 220 Mev we
have used only transmission measurements, because
of doubts about D waves. In between we have tried to
strike a balance between integration and transmission
measurements. Where possible we have avoided total
cross sections derived from a charge-independent
analysis, as they may be in error due to: (1) slight
energy differences between #+ and =~ beams, (2) con-
sequences of deviations from charge independence,?
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(3) neglect of higher partial waves, and (4) assuming
that phase shifts are real above inelastic threshold.
The mean energy spread of the beam is measured
either by the range of the particles or by inference from
the curvature of a current-carrying wire in the magnetic
fields through which the beam passes. The two methods
are known to agree to within 19,.° The energy spread
can be corrected for explicitly when the energy de-
pendence of the total cross section is known. In recent
experiments, where the accuracy justified it, such cor-
rections have been made. The values chosen are given
in Table II.

Although we have settled on the experimental values,
it is still not an easy matter to decide on how to evaluate
the dispersion integrals themselves, and, in particular,
to assign an experimental uncertainty to them. If we
make our subtractions at zero energy, these integrals
have the form

*©  gE(v)dv
Si(vo)—Pj: (—-————02— Dio—m)

©  gE(v)dv
+f1 (—1)4(v4v0) )

mc*=139.63 Mev.

V=14 (T'1an/mc?);

The difficulty arises, of course, because of the principal-
value integral. While one can subtract out the singu-
larity and obtain a reasonably accurate value for the
integral, as was done by Puppi and Stanghellini, this
method does not allow one to calculate the error. In
order to calculate the error it is necessary to fit some
analytic form to the total cross section by means of
adjustable parameters and evaluate the error matrix
for these parameters. The error in S is then calculable
if one evaluates the derivatives of .S with respect to
these parameters, as can now be done.

The most extensive available parameterization of the
total cross sections is due to Anderson.” Although he
quotes an error matrix, this has negative elements on
the diagonal, showing a lack of sufficient precision in
his matrix inversion routine, and hence is useless for
our purposes. As a first attempt we have, instead,
assumed that the total cross sections can be fitted by
a constant S-wave cross section and P-wave resonance
of the form given by Chew and Low," i.e.,

ot (g)) = A¥ 48w (l/mc)'F (¢%,I+,R"),
o (¢")=A~+8x (h/mc)’F (¢*,1~,R")/3, 4)
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Park, Maryland, 1959 (unpublished).
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TasLE II. Total cross sections.

Energy ot ' Energy ot o~
(Mev) Reference (mb) (mb) (Mev) Reference (mb) (mb)
41.5 a 9.03+0.18 8.12+0.73 256 g 37.5+ 1.9
58 b 15.8 1.5 270 1 85.2+3.0
65 b 15.3 £1.6 307 1 65.742.2
98 c 55.6 £0.5 219 £0.7 335 n 53.0+£5.0
113 d 79.0 £5.0 335 g 25.7+ 1.0
120 e 33.0 +£3.1 363 g 26.5+ 1.6
133 f 469 +24 393 g 259+ 1.6
135 f 126.0 4.0 450 0 24.8425 28.8+ 2.7
140 g 443 £2.7 470 p 27.0% 5.0
143 h 140.5 £5.0 500 0 31.5+ 4.8
144 i 151.0 £4.0 550 0 16.142.5
150 j 55.3 £1.6 550 0 37.4+ 3.0
162 h 170.5 £3.5 610 ) 37.0+ 2.1
164 i 169.0 £5.0 670 0 14.54+2.0
165 k 67.5 £1.5 700 n 42.0+10.0
170 j 194.9 £5.5 62.7 £1.9 790 o 19.54+2.0 46.1+ 34
170 h 198.0 £3.5 840 p 47.04= 5.0
173.5 h 193.5 £3.5 860 0 477 2.7
176 1 199.4 +4.9 900 0 4444 2.3
177 h 198.0 £5.0 970 0 451+ 2.7
183.5 h 192.0 £3.5 1000 0 23.5+14 46.0%= 3.0
184 g 65.7 £2.4 1070 o 27.3£3.7
189 k 194.1 +5.2 1080 o 36.3+ 2.6
195 h 1740 +£4.0 1150 o 31.34+1.7
195 f 63.1 £2.5 1250 0 38.8+2.5 29.2+ 3.7
200 1 177.9 £3.7 1350 o 30.1+ 2.8
205 h 178.0 +£4.5 1380 0 41.54+3.0 30.8+ 2.8
209 m 57.2 £29 1470 0 3144 1.8
216 g 57.3 £2.5 1500 o 35.342.5 30.0+= 2.0
220 j 1409 +4.2 521 £23 1670 0 32.6+1.8 31.44 3.9
240 1 125.6 £2.5 1779 0 31.7+24
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where The S-wave constant contribution to the cross section
F(@,I1,R)=¢*/[¢%+ (3w*I (1— Rw*)/4)*]; is assumed known from the scattering lengths (see Sec.

= (2—1)/ (14 2vm/ M+m2/M2) ; IIc below). After this term has been subtracted, the

w=14¢; m/M=014882; ) data up to 335 Mev in Table II are then fitted by the

method of least squares. The parameters and error

8 (h/mc)*=501.88 mb; matrices are given in Table III, and the x? values in
w¥*=w+[ (M/m)*+¢ 1 — (M/m). Table IV. To take partial account of possible departures

TaBLE III. Parameterization of the total cross sections.

A. Chew-Low shape
A (mb) I R (3I5R)

ot 3.04+0.23 12.284-0.14 0.4680=+0.0010 0.000110
' 5.884-1.48 12.6040.33 0.4639+0.0023 0.000584

B. Chew-Low shape-+Bg*
A (mb) I

R B(mb) (8I8R) (515B) (5R8B)

ot 3.044-0.23 11.39+0.16 0.4641+0.0012 —0.6344+4-0.0082 0.000144 —0.000711 —0.0000422
o 5.88+1.48 11.47+0.47 0.4590-£0.0034 —0.1264-0.0050 0.00142 0.001692 0.00001228
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from charge independence,® we fit the positive and
negative cross sections separately. We see from the
goodness-of-fit parameter that the Chew-Low shape
is not a good representation of the data. This is due to
the well-known fact that the cross section given by
this formula does not fall off rapidly enough beyond the
first resonance. If the discrepancy were in the opposite
direction, we could ascribe it to nonresonant P states
and account for it by adding a term proportional to g%
As it is, we are forced to subtract such a term and refit
the parameters. Adding additional powers of ¢ does
not improve the fit or change the sign of the ¢* term.
The fit is still not good in a statistical sense, but this is
due to inconsistencies among the data themselves, as
can be seen from a glance at Fig. 1. For comparison
with other analyses that make use of the Anderson
curve, we also give the statistical comparison of his
curve with the data. Although that formula has 15
parameters, our 6-parameter fit is better statistically.
This is due to the fact that we have used more recent
data than Anderson, and have not attempted to readjust
his parameters to fit them. In particular, the poor fit of
his formula to the 7~ data is due almost entirely to the
335-Mev point. If this is dropped (figures in parentheses
in Table IV), the fits are comparable.

We now calculate the contribution to S* below 335
Mev, and the error, by numerical integration. This is
done with a 1-Mev grid after all singular terms have

200
190
180
170
160
150
140
130
120
1o
100
90
80
70
60
50
40
30
20
10

CROSS SECTION (MILLIBARNS)

1
100 150 160 170 180

LABORATORY ENERGY (Mev)
Fic. 1. Comparison of curvesfffitted to the =*+p total cross

sections with the experimental points. 4 =Anderson parameter-
ization; CL= Chew-Low+const; M CL=Chew-Low-}const-}Bg*.
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been subtracted out and evaluated analytically; this
integration routine was shown to be accurate to at
least 0.019;. Above 335 Mev we simply use trapezoidal
integration on the experimental points, and assume the
cross section constant above the highest value. Previous
discussions®® have shown that the discrepancy is in-
sensitive to this region; data showing the higher =%
resonances? also introduce negligible changes in our
region of interest. The trapezoidal integration we have
used is adequate for the purpose of this paper, but the
reader should be warned that it rapidly becomes un-
reliable for evaluating the principal-value integral when
the singularity lies much above 220 Mev. This is
particularly true for S* because of the large experi-
mental uncertainty in the total cross section for
wt4p scattering at 335 Mev and the absence of data
between 335 and 450 Mev. For example, if we try to
use values of S* and S~ computed by our prescription
at 310 Mev, we obtain f2=0.04, rather than the value
of f2=0.08 obtainable by integrating under a reasonable
smooth curve drawn between 335 and 450 Mev. It is
clear that the parameterization must be extended to
give an accurate representation of the fall of the positive
cross section and the beginning of the second resonance
in the negative cross section before accurate values of
f? can be computed from forward scattering amplitudes
in the 300-400 Mev energy range. The values of the
integrals for various shapes are compared in Table V.
As will be seen in detail in the next section, an error of
2 to 3 millibarns in S would not prevent us from making
a significant test of the dispersion relations, but the
difference in the integrals of up to 17 millibarns for
different forms for the resonance-energy dependence
is serious. Although it would not prevent us from
establishing the existence of a discrepancy, it makes the
value of f? calculated from any individual experiment
untrustworthy.

(c) The S-Wave Scattering Lengths

Since experiments at very low pion energy are
difficult, it is customary to obtain the S-wave scattering
lengths by assuming an energy dependence for the
phase shifts, and charge independence.* The most
recent analysis of this type gives a.=—0.1104-0.004

TaBLE IV. Comparison of different shapes with experiment.

Shape (x®; Expected (x®- Expected
Chew-Low 166.9 22 49.3 14
Chew-Low+Bg* 69.5 21 36.8 13
Anderson 84.0 16 111.8 9

(32.4) 8)

2 H. C. Burrowes, D. O. Caldwell, D. H. Frisch, D. A. Hill,
D. M. Ritson, R. A. Schluter, and M. A. Wahlig, Phys. Rev.
Letters 2, 119 (1959); R. R. Crittenden, J. H. Scandrett, W. D.
Shephard, W. D. Walker, and J. Ballam, Phys. Rev. Letters 2, 121
(1959).

13 J. Orear, Phys. Rev. 96, 176 (1954).
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TasLE V. Values of the dispersion integrals for various parameter-
izations of the total cross sections.

A. Parts of S* in millibarns

(3.04:0.23) X
+Chew-Low (3.04+0.23) Anderson  Trapezoidal
Energy +Bgt to +Chew-Low to 335 above 335
(Mev) 335 Mev to 335 Mev Mev Mev
41.5 143.97 +£2.42 143.50£1.74 14493  22.284-0.52
80 181.944+2.42 183.12+1.83 174.46  22.8940.56
98 193.40+2.05 197.11£1.55 183.92  23.2440.59
100 193.98 +1.99 198.07 +1.48 184,54  23.28 +0.59
113 192.21 +1.41 198.62 +1.08 184.96  23.59 4-0.60
114 191,59 +1.39 198.72 4-1.03 184.67  23.6140.60
120 186.05 +1.13 194.60 +0.91 181.67  23.77 +0.60
124 175.23 +1.11 189.94 4+0.85 178.32 23.88+0.61
150 103.39+2.01 114.92 4-1.99 12090  24.70-+0.66
220 —122.274+0.85 —121.2840.79 —123.66  28.64+0.91
B. Parts of S~ in millibarns
(5.88 1-1.48)
~+Chew-Low (5.884-1.48) Anderson Trapezo d
Energy +Bgt to +Chew-Low to 335 above 335
(Mev) 335 Mev to 335 Mev Mev Mev
41.5 67.02 4-2.42 66.7042.20 72.46  22.69+0.54
98 80.3042.17 81.294-2.06 81.56  23.6240.58
130 72.67 £2.09 76.04 4-1.83 75.84  24.38 +0.62
150 52.744+2.91 56.5142.20 58.64  24.86--0.62
152 49.9743.13 55.6142.22 55.96  24.9410.62
170 24.09 +3.08 26.21 4-2.28 29.88  25.47+0.64
217 —22.90-2.02 —23.16+1.83 —21.71 27.4140.71
220 —24.24 42,02 —24.4511.83 —22.93  27.56+0.71

(h/mc).* Since we wish to avoid the assumption of
charge independence, we take the value of a_=0.077
+0.011 (#/mc) from an analysis of 10-30 Mev elastic
scattering data,!® rather than using %(es+2¢1). The
constants in our fit to the total cross sections are

At=4r€a,2=3.044-0.23 mb
and
A-=4n[%a 2+ %(e-—0a.)?*]=5.8841.48 mb.

The constant 4~ is poorly enough known and makes so
small a contribution to the dispersion integrals that we
need not fear the charge-independence assumption
used in evaluating it. As was pointed out by Cini et al.,!¢
the conventional analysis is incorrect in that the
assumed S-wave energy dependence does not satisfy
crossing symmetry. Hamilton and Woolcock!” have
recently carried out a reanalysis of the low-energy
scattering data along these lines, and found e, = —0.083,
a_=0.088. We will return to this point in the next
section.

III. COMPARISON OF THE DISPERSION
RELATIONS WITH EXPERIMENT

(a) Calculation of f?

It has been customary in discussions of the Puppi-
Stanghellini discrepancy to assume that the dispersion
relations predict a value of Ref(0), and to compare

14 S, Barnes, B. Rose, G. Glacomelh, ] Ring, and K. Miyake,
and K. Kinsey, Phys Rev. 117, 226 (1960).

D, E. Nagle, R. H. Hlldebrand and R. J. Plano, Phys. Rev.
105, 718 (1957).

W, Cini, R. Gatto, E. L. Goldwasser, and M. Rudermann,
Nuovo cxmento 10, 243 (1958).

17 J. Hamilton and W. S. Woolcock, communication to the Kiev
Conference on High-Energy Nuclear Physics, 1959 (unpublished) ;
I am indebted to Dr. Hamilton for private discussions and per-
mission to publish these results.
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F16. 2. Uncertainty in f? calculated from =" data due to un-
certainties in the scattering lengths and dispersion integrals.
da=((a3da,)*+ (a-da_)2)}; 85=((65)?)}; H—B=difference be-
tween Hamilton and Barnes scattering lengths MCL— 4 =differ-
ence between .S evaluated using the modified Chew-Low or the
Anderson shape.

this with the experimental value. Although the influence
of uncertainties in the scattering lengths and coupling
constant have been discussed qualitatively, it is not
easy, in such a comparison, to see their effect simul-
taneously at different energies. We therefore propose, to
take the point of view that the dispersion relations
define a value of f2 at each energy in terms of the four
experimental quantities given in the last section, and
ask whether the values so determined are consistent
with a unique f2. That is, we write the dispersion rela-
tions in the form

f=erato o +B.5% 4. Ref*(0), (6)

= (1+m/M) (Fv—m/2M) (14=v)/4%,

a_= (14+m/M) (Fv—m/2M) (1Fv)4%’, (7)

Bi= (Fo+m/2M)/8x*(h/mc)?,

vo=— (Fo+m/2M)/2kq(H/mc),

BP=1—1,

and =+ refers to positive and negative pions, respectively.
We can now see clearly the effect of the experimental
uncertainties in .S and the scattering lengths by plotting,

as a function of energy, the errors in these quantities
given in Sec. II, as is done in Figs. 2 and 3. Taking, as

where
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Fic. 3. Same as Fig. 2, except for =~ data.

an example, the scattering of negative pions at 150 Mev,
we find that the combined uncertainty in.S and @ makes
f? uncertain by =+£0.0065. By computing y_ at this
energy, we find that a measurement of Ref=(0) to
better than =40.015 cannot appreciably increase our
knowledge of f2 at this energy. We note that if this were
the only source of uncertainty, a significant test of the
dispersion relations to a few percent accuracy would
be possible with the present data.

Unfortunately, there is another source of uncertainty
which is not statistical. As already noted, the energy
dependence assumed in evaluating the scattering lengths
can change their values appreciably. In Figs. 2 and 3
we plot the difference between the contribution of f2
computed from Hamilton and Woolcock’s'” values for
the scattering lengths and the contribution computed
from Barnes* values, we see that, although insignificant
for negative pions, this difference could significantly
lower the value of f? computed from positive-pion data.
We also plot the difference between the values of 85 as
computed from the Anderson curve and as computed
from the modified Chew-Low curve, and note that in
the resonance regions this can change f2 by as much as
0.03! Clearly a theoretically reliable energy dependence
for the S-wave phase shifts and for the total cross
sections must be derived before individual values of f?
can be considered reliable. For convenience in calcu-
lating f? from our integrals, we also give plots of 8.5 for
both cases, in Figs. 4 and 5.

Fortunately, although individual f? values are un-
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reliable, we can still obtain significant statistical infor-
mation. The values of f? computed from the data given
in Sec. II are plotted in Fig. 6, and the x? computed
from their least-squares adjusted average values are
given in Table VI. We see from the table that even if
the uncertainties in the scattering lengths and the dis-
persion integrals are included in the analysis, the value
of x%is 25.50 as compared with an expected value of 14.
This corresponds to a probability of only 439, that the
discrepancy is due to statistical errors. If we leave out
the errors in the scattering lengths, the results shown
in the second and third columns of Table VI are
obtained. Treating the scattering lengths as free param-
eters by the method described in the next section and
adjusting them to give a best fit leads to a x? value of
24.47 in the best case, compared to an expected value
of 12. Since this corresponds to a probability of only
2.879,, we conclude that no choice of scattering lengths
could reconcile this set of data with the dispersion
relations. We therefore confirm the existence of the
discrepancy discovered by Puppi and Stanghellini. By
examining Fig. 6, however, we note that, as in previous
discussions, the negative-pion values at 150 and 170
Mev are most out of line. If these are dropped, the
remaining data are statistically consistent with a
unique f2. We conclude that either these points are in
error, or that there is at best a 439, probability that the
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F16. 4. Contribution to f2 from the scattering lengths and dis-
persion integrals for =t data. B: a¢,=—0.110, ¢-=0.077; H:

a4+=0.085, @_=0.085; A=Anderson parameterization; MCL
=modified Chew-Low parameterization.
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TaBLE VI. Comparison of the dispersion relations with experimental data below 220 Mev.

(23
a_ —0.1104-0.004 —0.110 —0.085
Energy dependence of the 0.07740.011 0.077 0.085
total cross sections bii x> 9 Prob. 2 x2 % Prob. 12 x2 % Prob.
Anderson 0.08444-0.0033 30.49 1.04 0.0832+40.0023 37.06 0.18 0.0790-£0.0023 32.88 0.71
Modified Chew-Low 0.0829-+0.0033 27.67 2.54 0.0813=£0.0023 34.88 0.46 0.0771£0.0023 28.83 1.73
Modified Chew-Low
(including parameter error) 0.0832+0.0034 25.50 4.54 0.0818+0.0026 30.81 0.97 0.0768+0.0026 25.63 4.51

forward-amplitude pion-nucleon dispersion relations are
in agreement with experiment.

After the completion of this analysis, we learned of
two new measurements of Ref~(0) at 132 and 152 Mev,
by Kruse and Arnold.!® These values are 0.2434-0.015
and 0.218-0.016, respectively, in clear disagreement
with the older values. If we-abandon the old values at
150 and 170 Mev and substitute these two measure-
ments, the probabilities rise to 8.65%, for the Anderson
curve, 43.59, for the modified Chew-Low curve, and
47.29, if the parameterization error is included in the
latter case. We therefore agree with Kruse!® that the
pion-nucleon forward-dispersion relations are now in

CONTRIBUTION TO 2
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F16. 5. Same as Fig. 4, except for =~ data.

18 . E. Kruse and R. C. Arnold, Phys. Rev. 116, 1008 (1959).
We are indebted to Dr. Kruse for receipt of this data prior to
publication and for interesting discussions.

agreement with experiment, with the reservation that
more theoretical work is needed on the energy depend-
ence of the total cross sections before all lingering
doubts can be removed.

(b) Calculation of a,, a_, and f?

As has been pointed out,? it is possible to consider
the dispersion relations as defining the three parameters
ay, a_, and f? rather than f? alone. Schnitzer and Salz-
man? have carried through such a calculation by fixing
f? and adjusting a3 and a1. They obtained f*>=0.08
4+0.01, a3=—0.08940.048, ¢,=0.19340.050 (or a4
=—0.089, ¢_=0.099). This method conceals the corre-
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F1c. 6. Comparison of values of f2 with the average value.
Circles give values for the modified Chew-Low parameterization,
and triangles for the Anderson parameterization.

9 H. P. Noyes and D. N. Edwards (unpublished).
2 H, J. Schnitzer and G. Salzman, Phys. Rev. 113, 1153 (1959).
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TaBLE VII. Values of f? and x? for various scattering lengths, using the Kruse data at 130 and 152 Mev.

ay —0.085 —0.110
a- Best fit 0.085 0.077
Energy dependence of the
total cross sections f? X % Prob. S X 1 X
Anderson 0.0755 25.30 2.16 0.0824 28.03 0.0862 27.89
Modified Chew-Low 0.851 14.89 22.2 0.0802 16.37 0.0841 18.56
Modified Chew-Low
(including parameter error) 0.0861 14.45 25.4 0.0800 15.89 0.0847 17.29
TasLE VIII Values of f2% a_, and a; and their errors for best fit to the data below 220 Meyv,
using the Kruse data at 130 and 152 Mev.
Energy dependence of the Error matrixX10¢
total cross sections Nk a_ a, 652 @a2?)  (8a.2) (5f%a_) (5f%a.) (Sa-da,)
Anderson 0.0755  0.0714 —0.0861 3.28 3.82 6.21 3.44 —4.33 —4.63
Modified Chew-Low 0.0851 0.0854 —0.0990 3.28 3.82 6.21 3.44 —4.33 —4.63
Modified Chew-Low
(including parameter error)  0.0861  0.0861 —0.1007 3.56 4.12 6.74 3.70 —4.69 —4.67

lation in error between the three parameters, so we
prefer to adjust all three simultaneously. The values of
f? and x? for the Barnes, Hamilton, and best-fit values
for ¢, and a_ are given in Table VII, and the param-
eters and error matrices in Table VIII. We note that the
Anderson curve favors the Hamilton rather than the
Barnes value for @, as is also true of the values found
by Schnitzer and Salzmann, but that with our assign-
ment of errors, does not give a good statistical fit. Con-
versely, the modified Chew-Low shape gives a better
fit, but a higher value for a;. This again points up the
need for a better parameterization before further pro-
gress can be made. We also note that when the correla-
tion in error is included, the present data do not deter-
mine these three quantities well enough to allow a
definite conclusion as to the values of a4 and a_.

IV. CONCLUSION

We have evaluated the statistical uncertainty in the
dispersion integrals by parameterizing the energy de-
pendence of the total cross sections. The uncertainty
from this cause is shown to be small enough to allow a
significant comparison of the forward-amplitude pion-
nucleon dispersion relations with experiment. Although
individual values of f?are sensitive to the parameteriza-
tion, we show that the published data have at best a

439, probability of being consistent with the dispersion
relations, even if we ignore measurements of the forward
amplitudes above 220 Mev because of uncertainties due
to D waves. However, the discrepancy is removed com-
pletely for one assumption as to the energy dependence
of the total cross sections if the values of the negative-
pion forward-scattering amplitudes at 150 and 170 Mev
are abandoned in favor of the values recently obtained
by Kruse and Arnold at 130 and 152 Mev. Calculation
of the scattering lengths, as well as f?, from the dis-
persion relations gives some slight evidence for a value
of a; lower than the value —0.110 given by Barnes.
Unfortunately, the uncertainty in this result is too
large to allow a definite conclusion to be drawn, and, is
sensitive to the parameterization. We conclude that
additional theoretical work on the energy dependence
of the .S phases and the total cross sections will be
required in order for further progress to be made.
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