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Energy, Mev

124+1
128~1

~carbon (15 )

0.474+0.020
0.502a0.040

~be m

0.447&0.034
0.498%0.051

The polarization is a rapidly increasing function of
energy. Measurements were made with different cutoff
energies in the neutron counter, and the results are
displayed in Table II. As a check on the method, it is
interesting to compare the value of P, obtained with
the p-carbon~is and n-carbon' polarizations measured
at other laboratories. Figure 8 shows this comparison.

' J.M. Dickson and D. C. Salter, Nuovo cimento, 6, 235 (1957)."R.Alphonce, A. Johansson, and G. Tibell, Nuclear Phys. 3,
185 {1957).' E. M. Hafner, Phys. Rev. 111,297 (1958).

~ O. Chamberlain, E. Segre, R. D. Tripp, C. Wiegand and T.
Ypsilantis, Phys. Rev. 102, 1659 (1956).

TABLE II. Values of carbon polarization and beam polarization
obtained for different average beam energies. Standard deviations
include all known sources of error.

All errors have been increased to include the uncer-
tainty in beam polarization. The e-carbon result of
Harding has been shown as originally reported, and as
corrected for a higher beam polarization. "

It is also clear that neutron shielding can be designed
with accuracy. Calculations based on inelastic cross
sections have been shown to be adequate.
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The scattering of plane electromagnetic waves by the gravitational 6eld of an isolated physical system
is studied. On the level of the geometrical optics approximation the general theory of light rays is formulated.
In particular, the generalized formula for the Einstein deflection of light rays is obtained. On the level of the
vectorial optics the problem of polarization is examined in detail. The formula obtained, describing a
rotation of the plane of polarization due to the presence of the gravitational 6eld, admits a direct geometrical
interpretation. The theory is applied to the rotating body and a system of point masses. The physical results
established concerning the asymptotic behavior of the electromagnetic waves are independent of the coor-
dinate system used in the computations.

I. INTRODUCTION

HE aim of this paper is to investigate the scatter-
ing of electromagnetic plane waves due to the

gravitational Geld of a general isolated physical system,
e.g. , to the field of a rotating body or the field of a
system of masses carrying out the motion according to
Newton's laws (a double star, for instance). Generally,

by "gravitational field of an isolated system" we under-

stand the metric tensor g p in an arbitrary coordinate

system, this metric being induced by matter in motion
which during the motion is concentrated in a somewhat

finite 3-region 0 of the spatial coordinates x . We
assume the deviations of these quantities from Galilean
values rt tt (rtoo=1, rto =Op rtob= —3ab) defined as

~g p= g p
—p p to vanish at inGnity together with their

derivatives at least as O(r '), r= (a'xe) &.

We will also assume that the inQuence of the electro-
magnetic Geld on the metric field can be neglected.
When the intensities of the waves scattered by the

g field are small, the last assumption is certainly physi-
cally correct, We should like to mention here that the
scattering of electromagnetic waves by the field of a
rotating body has been recently examined independently
by Skrotskii, ' and Balazs. ' In the center of interest of
this paper, however, is the behavior of electromagnetic
waves in the presence of a gravitational Geld induced by
an isolated system when this Geld is as general as pos-
sible, consistently with it being physically reasonable.
The solution of our general scattering problem, how-

e On leave of absence from the University of Warsaw, Warsaw, ' G. B.Skrotskii, Doklady Akad. Nauk S.S.S.R. 114, 73 (1957)
Poland. Now at Department of Physics, University of California, Ltranslation: Soviet Phys. -Doklady 2, 226 (1957)g.
I os Angeles 24, California. s N. L. Balsas, Phys. Rev. 110, 236 (1958).
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ever, will provide us also with a new approach to the
interesting case of the rotating body.

2. MAXWELL'S EQUATIONS IN GENERAL RELATIVITY
THEORY AS ELECTRODYNAMICS IN A

MACROSCOPIC MEDIUM

The basic equations of our problem are of course: Gab

(-g)'
gab

feb g
goo goo

the simple form,

Da Ea+ SabEb+ PabcgbHcy

Ba Ha+ PabHb &abcgbEc&

where

(2.8)

(2.9)

f-s.e= (4-/ )i-, f~.s.,i =0, (2.1)

where the skew-symmetric f e is the electromagnetic
field tensor, j stands for 4-current vector, [ $ denotes
alternation symbol, and semicolon stands for covariant
differentiation. When j =0 the conventional energy-
momentum tensor,

At infinity, where g p tends to p p, both e,& and g, vanish
so that there D coincides with E and, respectively, 8
with E.

The "mixed" energy-momentum density (—g)&he

can be easily expressed in terms of our "macroscopic"
quantities as

( f-f'+—'g'f"-f )
4xc

fulfills in virtue of (2.1):

(2.2)

41rc(—g) &800= s (D,E,+B,H, ),

4n c(—g) &hp' ——s.b,EbH„

4s c( g) ha pabcDbBcy
(2.10)

8~&.
p
——0. (2 3)

4sc( g)'*8 —b= ', 3b (D,E—,-+B,H,)+D,Eb+B,Hb,

For our purpose, however, it will be convenient to
rewrite these basic equations in another form (i.e., in
a noncovariant notation), in which they will be formally
equivalent to the equations of electrodynamics in a
macroscopic medium in the case of the Qat space-time, '
As is well known, (2.1) are equivalent to

4n-

L(—g)'f'3, =—(—g)'j, f-. =o (24)
c

(A comma stands for ordinary differentiation. ) There-
fore, if we introduce

Ea= f.p B 0."=b fbD,.= ( g)'f",—
H, = ,'p.b, ( g)'*f-" (—2 5)

(s,b, is the three-dimensional Levi-Civita symbol), we
can rewrite (2.4) as

4m

Da, p+SabcHcbbaq , Ba,0+SabcEcb,
c (2.6)

D,,=4n-p, 8,, =0,

where i,= (—g) &j,p = (—g)
'*j'/c. The relations between

D, B and E, H (corresponding to the material equations
of the Lorentz theory) can be obtained from

( g)'f'= ( g)-'g "g'"f" -f"=( g) 'g-g. p-( g)'f'—
(2.7)

A simple computation (in which it is convenient to
use the properties of the 3-dimensional metric
e,b= —g,b+g pgbp/gpp) shows that those relations have

~ The possibility of such an interpretation was Grst pointed out
by J. E. Tamm, J. Russ. Phys:Chem. Soc. 56, 2—3, 284 (1924).

and (if j =0, i.e., p=0, i,=0) the equations

D g)'&—-'j;s= D —g)'~—-'ls sg", —-( g). '~—""=0(211)

are the conservation theorems in a convenient form.
The equivalence of (2.1) and the "macroscopic for-

mulation" described by (2.6) and (2.8), where s,b and

g, are given by (2.9), holds in any coordinate system.
The analogy with macroscopic electrodynamics makes
sense, however, only if the coordinates used correspond
to the Cartesian ones. In this paper we will limit our-
selves just to such coordinates.

Now, we are suKciently prepared to formulate our
scattering problem more precisely. Let us treat the g p

field and therefore e,~, g as given functions in coor-
dinates corresponding to Cartesian coordinates, those
quantities being induced by the matter moving in some
finite region of x, say 0. Suppose now that at "time"
x = —~ a plane wave with given wavelength, direc-
tion, and polarization is propagated towards the gravi-
tational field due to the matter in Q. When x'=+ co

our wave certainly might be observed by observers at
infinity "on the other side of Q." The question arises
as to what differently located observers can measured'
How will the direction of the wave, and its polarization,
be changed after scattering due to the gravitational
Geld' The aim of this paper is to give a general answer
to these questions.

3. QUANTITIES s,b AND go IN PRACTICAL
APPLICATIONS

The general feature of the g's induced by real matter
in motion is that its deviations from Euclidean values
are extremely small, provided that we use a physically
reasonable coordinates system. Indeed, even in 0
(assuming a continuous distribution of matter) the
Ag e=g e qp are of order O(R,—/1.), R,=kM/c', 3l
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being total mass of the system, k the gravitational
constant, 1.a constant of the order of magnitude of the
radius of Q. Because of the smallness of k/c' in all
practical applications R,/1«1. Moreover, as is well
known, the theory involves an other parameter of
smallness, viz. , P=s/c, v being a characteristic velocity
of the matter, The "ou" and "ab" components of the
matter tensor are, respectively, of the type O(P), O(P')
and therefore the terms induced by them in dg p in the
case of small P are much smaller than these induced by
the "00"components. Therefore, in all practical appli-
cations, it is certainly reasonable and justified to take
for g p (which we need in order to know e,p and g ),
some approximate values given by an approximation
method which takes into account the smallness of the
parameters mentioned above.

In the case of small P=v/c, we can certainly use for
the g's the expressions of lowest orders of the E—I—H
procedure, ' ' according to which

2k

c' "
4k

dpx' D„„(x-x') T"(x'),
c2

(3.6)

4k
gg.'=— d,x' D„p(x—x') T"(x').

c2

4k
A

&= ( —g) *'g-"s=ti"ts+ —dpx' D...(x—x')T s(x')
cs J

+O(k'/c4), (3.4)

where D„p (x) =3(xp —
f
x

f )/ f
x

f
. Using it in (2.9), we get

e.p ———hgp'3. p+6'e, p+O(k'/c4), g.= hg '+O(k'/cp),

(3 5)
where

2k
I

1
gpp

——1—— dpx' T"(x',x') +O()i'),
C L X—X

fpf course, if we neglect in (3.5) and (3.6) terms of
higher order in X=c ' we would return to (3.2) and
(3.3).$

4k 1 Finally, one may try to use Las was done in references
"d,x' Tp (x& xo) +OOtp) )t=a—r (3 1) 1 and 2j Landau's formula for the g's, "valid for large

cs ~
f
x—x'

f
distances from physical system:

( 2k t 1
g, = 8,

f
1+——' d x' T"(x',xP) f+O()t').

E c' ~ Ix—x'I~

The matter tensor T t' which occurs here is that which
arises from the original T ~ by the substitution g p

—+ g p

in the latter.
Using (3.1) in (2.9), we easily get

e,p ———Agp5 p+O(X'), g =hg, +0()w.s), (3.2)

where

2k I

Dgp = —— dpx' T"(x',x')
c' J fx—x'f

(3.3)
4k

t
1

Ag, =— dpx' T"(x',x')
c' " fx—x'f

In the case of relativistic velocities, i.e., relatively
large values of P, we can use for g s the lowest approxi-
mation terms in the framework of the fast motion
approximation method which is essentially an expansion
in powers of k/c' (see Bertotti, ' Havas, ' and Plebanski
and Bertotti'). According to this method we have

4 A. Einstein, L. Infeld and B. Hoffmann, Ann. Math. 39, 66
(1938).

5 A. Einstein and L. Infeld, Can. J. Math. 1, 209 (1949).' L. Infeld and J. Plebanski Warsaw, 1960 (to be published).
The details concerning E.I.H. method in the case of continuous
T~& are given here.

7 B. Bertotti, Nuovo cimento 4, 898 (1956).' P. Havas, Phys. Rev. 108, 1351 (1957).
P J. Plebanski and B. Bertotti (to be published).

2kM 2k 1
gPO j- ) gPgg= 6gb6X J ~

C2 r C3 y3

2k My
g.,= —a., f

1——f,c' r

(3 7)

where 3f denotes the total mass of the system con-
sidered and J its classical angular momentum vector.
Using (3.7), however, it is important to remember that
the gp, have here the meaning of time averages of the
original gp, over the period of the motion of the matter, "
and that (3.7) is valid for large r only.

'OL. Landau and E. Lifshitz, The Clussica/ Theory of Fields
(Addison-Wesley Press, Cambridge, 1951), p. 328." (3.7) can be easily derived from (3.1). Substituting, in (3.1),
P Z m 53 (x—a), T =Z m b3 (x—a)aN, 0 (the matter is sup-
posed to be distributed in the form of material points) and taking
the expression so obtained for r =

f
x f)) f

a f, we get

2k Zm. 2kx.
gpp=1 —— ———Z pa,a +O(r '),

c2 r c' r3

4k & ma@~, o 2k x~

gp = + Z ra (a a~, p
—asap, p)

c r c3 f3
d 2kx~

+———2 m, e a +O(r-3).
dx' c' r'

Now, choosing the origin of x' coordinates properly, (so that
2 m, u =0) arid taking the time average value of go„we get
(3.7), where M =Z ra, J /c= p pg Z m, apa', p (witht he assump-
tion, of course, that in consequence of the equations of motionJ =const). The difference in signs between (3.7) and Landau's
original formulas arises from the adaptation of the latter to the
signature (+ ———) which we are using in this paper.
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Using (3.7) in (2.9), one gets

e.p
—— —8,shgp"+0(r '), g.= hg, "+0(r '),—

where
2kM 1 2k 1.

Xbgc
C2 r c' r'

From the discussion given in this section an im-

portant conclusion can be drawn: e b and g, in all prac-
tical cases are very small. Thus, terms involving &,b

and g, in (2.6), i.e., those describing the influence of
the gravitational field on the development in time of
E and B, are in practice extremely small. This implies
that the physically most important gravitational cor-
rections will be of the first order in e,b and g, . Therefore,
from the physical point of view we can be interested in
solutions of (2.6)—(2.8) only with an accuracy up to
terms 0(e p), 0(g,) inclusive, which of course remark-
ably simplifies our mathematical problem. Moreover,
as we have seen in this section, the most important
contributions to e,p are diagonal (when P((1). Hence,
for a large class of physical phenomena it will suffice

to adopt e,b and g, in the form

~ab= —~aha; p, ga= ~ga& (3.10)

where the dg together with their derivatives are to be
treated as very small.

4. THE LIGHT RAYS THEORY

The study of light rays in a general (weak) gravita-
tional field which will be given here, should be con-
sidered from the point of view of Maxwell's equations,
(2.1), as a study of curves orthogonal to the charac-
teristic surfaces. In the last sense, the results of this
section will be later applied on the level of the vectorial
optics.

As is well known, the fundamental eikonal equation
has the form,

Substituting it into (4.3) and neglecting terms of the
type 0(h'), we get

k M +-'Ag"pk-k-=0 (4.6)

(The indices with bars are indices lowered by rl metric,
e.g. , k„=&„,kP ).

Now, introducing

1 k
m= —k= 1, (4.7)

k (k'k')&

one can easily check that

kp
2 S(xo,x') = —— dx")(

2 ~ro

Dg""(x" x' n'—( 'xx"—))e„ep, -(4.8)

is the solution of (4.6) which vanishes for x'=r'."
Hence, we have at our disposition the approximate
solution of the eikonal equation,

k p

S=k-(x"—r")—— dx"X

Age'(x", x' 5'( —'xx"))—Brsp, (4.9)

which depends on the three arbitrary parameters k

[keeping in mind that kp= (k'k')' n'=k~(k'k') &

terms connected with r" have an additive character, so
that they are not important from the point of view of
the Hamilton-Jacobi formalism. On the other hand,
they are so chosen that if x'=r', S is k;(x"—r") coin-

ciding therefore with the classical phase of the plane
wave .

Having the explicit expression for the 5, equating
BS/Bk~ to constants (we choose these constants to be
zero), we will get equations determining light rays as
x =x (x'). As easily seen, these equations are:

(4.1)g &S, S,p=0.

Now, according to the considerations of Sec. 3 let us x r +e
~

*
assume that"

g'= ( g)'g'=n'+~g—', (4.2) +(8"—rPes) —, ~ dx' (x'—x'P)h'g"~, pe„-ep

where AA & is small in comparison with 1. Using it in
(4.2), one gets

(ri P+hg'P)S, S,p=0. (4.3)

r 0

+ dx" d 'g"'er, (4.10)
go

This equation, however, can be easily solved with
accuracy up to 0(hg p) in;lusive. Indeed, let

S=rl pk (:rP rP)+M,— (4 4)

where rt' are arbitrary constants and kt' is an arbitrary
"minkowskian" null vecto:r:

ri pk~kP=kps —k'=0. (4 5)

~2 In the first part of this section, it is more convenient to use
b, g & instead of e,&, g,. Later we shall return to those quantities.

where the primes attached to EA "&
b and AA "I' mean that

in these quantities the arguments x', x' should be

"Indeed: AS, p = ——',kphg "&(x',x')ere p
go

+-,'kp dx"2 S" (x" x' —e'(x' —x"))e eye p.

On the other hand

AS, = ——' dx "AS"&, (x", x' —e'(x' —x'p))ere p.
r0

Substituting it into (4.6) and remembering the notation (4.7),
we verify that (4.8) is really a solution of (4.6).
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replaced by the arguments x", x*—n'(x —x"), respec-
tively [as in Eq. (4.9)).

This equation has the form x'= r'+n'(x —r')+0(h).
Therefore, preserving accuracy up to 0(d,) inclusive,
we can substitute in place of x', where these enter as
internal arguments of Ag's, simply r'+n'(x' —r'). Doing
so, we get our light rays in the 6nal form,

This formula enables us to And the relation connecting
the initial and final directions of a light ray which
"enters" into the gravitational 6eld at "time" x'= —~
from in6nity, and "leaves" it at x'=+ oo. In order to
get such a relation by a limiting process let us decom-
pose the initial position r into the parallel and orthog-
onal parts with respect to 't:

r ='t'r„+ri, t'ri 0. —— (4.16)

&(Dg"p(x ', r'+n'(x '—r'))n„-n„-
~

I

~0

+(~"—' ') -' " d*"(+—")
J„0

XAg "P,b(x'', r +n (x"—ro) )n-n-

~0

+ dx'o Ag"b(x', r'+n'(x' r) )n—; . (4.11)
&

&&

Now, keeping the ri constant (but arbitrary) let us
put r„=r'. According to (4.11) and (4.14) our ray has
now the form, x'= t'x +r;+0(A) On .the other hand,
the equation x'='t'go+re' just describes a classical ray
having the direction 't at x'= —~ characterized by
the "impact vector" r& . We will get the direction of
the corresponding "relativistic" ray by substituting
(4.16) into (4.15), where r„ is understood as r' and
tends in the so-obtained expression with r' to —~.
This direction is given as

tl(xo) ota+(gob oto otb) gg.b(xo r I+ot ~) ot

Into this formula there enter as arbitrary quantities
the vector n"=[1,n')and the parameters r', r' One.
can easily 6nd their meaning. First of all, we have
obviously x'(r') = r', so that r' is just the initial position
of the ray at the "time" r'. On the other hand, as
follows from (4.11),

(ax
(x') =n [1——,'Ag" (g r'+n'(x' —r') )n;no]

dx

+-,' dx'o ag"p, b(x'o, r, +ot x'o) ot„ot„. (4.-17)-
—00

[The limit lim„o „dg"b(r', ri'+r t') t„- vanishes be-
cause when (x'x')& —+ ~ according to our assumptions
Ag~o(xo, x') ~0.) Now, letting x here tend to +oo
and denoting t (+oo) =t r, we get

ta Ot»+1 (g»b Ot» Otb)

+(0" n.nb)—
0

dx"X

hg"pb(x"& r'+, n'(x"—r') )no

+kg" (x, r'+n'(x —r )) n„-, (4.12)

so that the unit vector t'(xo) tangent to the ray is given
as

t'(g') =n'+the second line of (4.12). (4.13)

Denoting the initial direction of t (x'), t (r') as 't, we
find from (4.13) that

n» ot» (tI»—b ot» otb)t& g&b(ro p 8) otp op [1 ot») (4 14)

which. explains the geometrical meaning of rI, .
Eliminating n in (4.13) with the help of (4.14), we

obtain:

t'(x') ='t +(5 '—'t" 't') hg"'(x', r'+'t'(x' —r')) 'tp

~0

—Ag"b(r, r')'tp+-' " dx" &&

p0

Ag.p b(go r'+ot (xo ro)) ot ot (415)

Ag "P,b (go, r, '+'t' )x'ot p 't
p (4.18).

This formula, which solves the problem of Einstein's
deflection of light in the general case, has a very simple
structure. First of all, it is evident that only the com-
ponents &og~, Ag" 't, hg'b't''t are active in the
process of deflection. (If the coordinate system is so
chosen that 't =[1,0,0) the "active" combination of
components of Ag"o is Ag&potpotp ——Agw —2&g"+Ag".)
Secondly, the ray in approximation of classical physics
is x'=ri'+ t'xo; therefore, in order to get the 6nal
direction one has to add to the initial direction 't' that
part of the gradient of the "active" combination of
do's which is orthogonal to t, taken along the classical
ray and integrated over the whole history of the ray.

The formula (4.18) is invariant under coordinate
transformations of the type x'"=x +ha (xo), where
ha" o vanishes for (g'g')&~ oo. [Thus, one can show
that (4.18) is invariant with respect to the substitution:

Ag"p~ Ag"p+pt»Aa" +rt"pAap —q"OAap .

the contribution from the Aa's form an integral of total
diGerential which vanishes because limbic p

——0 when
(x'x')&-+ ~.)
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The "impact vector" r&. entering into (4.18) is in
some sense "the vectorial parameter of collision" with
respect to the center of coordinates which we are using
(see Fig. 1). In applications the origin of quasi-Car-
tesian coordinates is supposed to have been chosen
conveniently, e.g., as identical in the classical approxi-
mation with the center of mass.

The formulas obtained in this section are often too
exact to some extent. Namely, in a large class of appli-
cations we have

goo=1+ ~go, go~~go, gab= —4b(1—~go) i (4 19)

so that formulas for e, b and g, have form (3.10). But
if (4.19) is true, then

hg "~—2hgo, Ag"~hg„hg'b —0, (4.20)
so that

EA "&' 't t — 2(d -go+—hg. 't )= —2', 'i&' (4.21)

(this explains, incidentally, why it makes sense to
introduce the formal "vector" hg, =)Ego,Ag„)). There-
fore, in this case we have, instead of (4.18),

t;=or —(8'—ot. op)~~ dao ot ag„b(xo, r, +oVxo).

(4.22)

At the same time, Eq. (4.17), which is of importance
subsequently, takes the form,

~a(&o) —o~s (gob 0[m 0[b)
~

d&&0 o~p

&&bg, , b(x' r *+ t'x' ) kgb(xo r .+—o~axo)) (4 23)

5. THE "VECTORIAL" OPTICS

wave with well-defined polarization; we will take such
an "unperturbed" wave in the form

8.= Re h. &o& exp(ikyo)
=Re (al Rib&&') exp(ik'fox"),

(5.2)X.=Re BC.&o& exp(ikyo)
=Re (a&t'+it&N~) exp(ik o3-x")

where to"=$1, to'), ot' is a unit vector indicating the
direction of propagation of our wave; I, v are unit
vectors forming together with Ot the "dreibein"
(0(a o b Nb&&a oba orb ob o[c &&a orb~ 0[blc) ~ a and b are:
the axes of the "electrical ellipse" (the upper sign cor-
responds to the "right" elliptical polarization); k=&oc,
where co is the frequency of the wave. "

The most obvious method of attacking Eqs. (5.1)
would consist (from a physical point of view) in an
adaptation of the idea of "Born's approximation. " In
other words, one can decompose the solution of (5.1)
into the unperturbed and the scattered wave )of order
0(a)):

E,= 8,+b,8., H, = K,+6K,. (5.3)

Substituting (5.3) into (5.1) and neglecting terms of
order 0(LP), one gets linear inhomogeneous equations
for Ab, AK, with known inhomogeneity. These last
equations can be easily solved in the framework of
standard methods. "

Solutions of this type might be interesting in the case
of small k. However, in the optical domain (k very big)
the mathematical form of solutions obtained in the
way discussed above is unnecessarily involved from the
point of view of physical interpretation: a much more
convenient approach consists in the application of the
method of "vectorial optics. "" According to this
method we consider solutions (5.1) of the form,

Throughout this section we shall treat E, H as
fundamental field variables.

Let us assume that o,b and g have the form (3.10).
Under this a,ssumption we can write instead (2.6)—(2.8):

E,= Re ($.&o&+DE.) exp(ikgyo+&y)),

H, =Re (X,&o&+AH,) exp(ikLyo+dy)),
(5 4)

L(1 ~go)Eu+oabe~gbHc), 0+esbcHcb(4'&r/o), os,

D1—Ago)E, +o,b,d gbH, ). =4~p,

L(1 Ago)Hb oobckgbEc), 0+osbcE~, b=0)

L (1—Ego) H —o,b,hgbE, ).,=0.

(5.1)

where 8,&", X,"&, Po correspond to the unperturbed
solution, complex Ap.„ddsc, are analytic in 1/ik, hp is
real and independent of k. When k is very big

AE, =AB & )= lim AE„AH, =ABe, & ~= lim AIJ,
I&;-+oo fg-+&6

We are interested in solutions of (5.1) Lwhen i,=0=p)
which when hg tends to zero correspond to a plane

0)O

Fto. 1. A schematic illustration of the meaning of vectors
t'g 0P, ty .

The expression (5.4) with hE„~, replaced by hh, &o&,

AK, &" form just the Qeld in the "vectorial optics"

' In this section the gravitational constant will never enter
into our formulas explicitly, so that the same symbol for sue and
the gravitational constant cannot lead to any misunderstanding.

'0Particularly convenient would be the method of "Hertz
vectors. "Namely, one can easily show that

~ ~a =&abc~a, bp +~Za, 00 ~Zb, ba

~a= &abc~c bp +~ZO, pp

where the "Hertz vectors" b,Z, ('), hZ, (') are solutions of

AZ~ = —Ag 0 G~+ e~b,kgb', ) Qb,Z~ = —hgp Xp—e,b,h,gb 8,.
The retarded solutions of these equations should be taken.

'0 A similar method was used in reference 1.
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approximation. In practical applications this approxi-
mation is fully justified. '

Substituting (5.4) into (5.1), neglecting terms of
order 0(dP), and omitting the symbol "Re," one gets
after simple computation:

(a) ik(AE, ye, p, 't~aH, + t'ht 8 &'&

+8,&P&AQ)+DE. , p ep,hH—,, p

PfP+g h &P&+Pfagg h &P& —Q

(b) ik(AH, —e,p, pt'DE, +pt'DtpXp&p&

+ 3C,&p&AQ)+AH, ,p+e, p,DE, , p

pf aug p ~ &p)+pt Dgp, p BCp&p& =0,

(c) ik('t'AE—,+hf, 8,&'&)+DE... Dgp, ,8, &—&

+(Dgp —Ag p) 'f hp&"=0

(d) —ik( f'AH +Af, BC,& &+AH. ..—Agp, K &'&

+ (gg» Ag p) PfaXp(P& 0

where we have denoted

(5.6)

hf, =hg hy, +'f —(hg p Ay, p). — (5.7)

Before proceeding with expansion in powers of 1/ik,
we shall deduce from (5.5) an important equation
(exact from the point of view of the parameter k).
First of all, let us decompose

DE,=DE, i+pi'hE„, AE„pt =0, EEp pf =DE„,
AH, =hH i+Pt'BHn, AH, i Pt'=0, DH, Pt'=AH(, .

(5.8)

In a similar way one can decompose the left-hand
members of (5.5) (a)—(b). Their parallel and orthogonal
parts must vanish separately. Now, replace in the
orthogonal part of the left-hand member of (5.5a) the
free index a by d. Next, multiply the left-hand member
of (S.Sb) by eq„, Pf". The difference between the two
expressions so formed must vanish because of (5.5).
A simple explicit computation therefore gives

Moreover, considering in (5.5) (a)—(b) terms of order
0(k) and taking into account DQ=O and (5.11), we
see that

hh, i"'+e.p. 't'd, K i"'=0 ABC, i"&—e.p 't'Ah r"' ——Q.

(5.12)

The set of Eqs. (5.10)—(5.12) solves our problem in
the approximation of "yectorial optics. " Indeed, the
fundamental equation,

(5.13)

is essentially equivalent to Eq. (4.6) for the correction
to the eikonal Lkhp should be identified with d6',
moreover in the present assumptions (4.21) is valid;
pfl' in (5.13) corresponds to m in (4.6) defined as k"/kp].
It can be solved in the identical way":

Substituting (5.14) into (5.7), one gets

Af = (p p —pt' pt p) Ag— dx" 't&)&

&g $($' s' —pt'(xp —s')) . (5.15)

Therefore 6h»&'&, ABC„&" defined by (5.11) can also be
treated as known. As far as the orthogonal components
are concerned, we have Eqs. (5.12) and the second of
Eqs. (5.10). This last equation can be considerably

simplified. Eliminating AK ~(0& in it with the help of
(5.12) and using for the parallel components the ex-
pressions (5.11), where hf, is given by (5.7), it follows
that it reduces to'

(5.5) (c)—(d) imply that

Ah„&P&= —At.8.&'&, AX„&P&=—Af. X.&'&. (5.11)

2ikh &"AQj't&(AE„—e,p, 'f'DH„) p

—2h, &P&hgp, p Pf&+e,p, PPAH„, ,
—(8 —f 't')AE„p ——0. (5.9)

where

't'68.
,,= AI'8, &"+hI'e. , 't—'h, &", (5.16)

Now, let us consider Kqs. (5.5), (5.9) from the point
of view of the dependence on k. First of all, Kq. (5.9)
has two important consequences: because DE, and AB
are analytic in 1/ik, the vanishing, in (5.9), of coef-
ficients of terms of order 0(k) and 0(k') implies that
AQ=0,

'f&(AB„&" ep 't'ABC r&"),p
——2h. &'&Dg p

'P'

+e p Pfbg~ &P& (&&~5 Pfa, P[b)+h~~ p&P& —0 (5 10)

On the other hand, the terms of order 0(k) in Eq.
7 The validity of this approximation in some practical cases is

evident in Sec. 7.

Integrating (5.16) in a similar way to that for (5.13),
we get"

' The general solution of the homogeneous equation t~hp, ~=0,
if 't is identified with the direction of the s axis, has the form
a@=AP(x' —s, x, y) where AP(x', x,y) is an arbitrary function. If
for x'=r' the solution of {5.13) has to vanish for every s, one must
accept it in the form (5.14)."It is simplest to compute the last two terms involving parallel
components in the second of Eqs. (5.10) by using explicit coor-
dinates.

~ The solution is so choosen that it vanishes for x =r .
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AX ~= — dx'o Ar(x'o x —ot (xo—x'o))X &o&

~ro

+e,b, otb X,&"

)
dx"

&&AP(x', x' —t'(x' —x")). (5.19)

Collecting our results, we can write the 6eld in the
approximation of "vectorial optics" as

Z.= Re (b.fo&+e.b.AQb8. &o')

)&exp[ik ('t-x"+A&) —AI' j+0(1/k, A'),
(5.20)

8'.=Re (X &"+e.b.AQbX. "&)

Xexp[ik( t„-x"+A&)—AI'j+O(1/k, A'),

where AP is given by (5.14). AI' stands for
~0

Ar= I d 'oAr( 'o, '—'t'( '—")), (5.21)
po

aild
AQ, =AP, +Ace, =AP 't'+e, b, otbAt„(5.22)

~0

AP = ', dx" ot'e—,b.Ag, , b(x'o, x' —V (x'—x")); (5.23)
ro

At, is given by (5.15). For x'=r' this solution reduces
to the unperturbed wave (5.2).

All quantities appearing in (5.20) have a direct
physical interpretation. First of all, let us observe that
the amplitudes,

8.'= 8,&o&+e.b,AQOB. &o&, X,'= X.to&+e,b.AQOX, &o&,

(5.24)
fulfill

Ah ~= — dx'o Ar(x'o * —ot (x —x'o))h f i

Qzo
X

+e, otbB, ~o& dx" AP(x", x'—'t'(x' —x")),
Jzo

(5.18)

and finally, using (5.18) in (5.12), we obtain

This small rotation is the sum of two independent
rotations: the rotation caused by her, = e,&, ot~ht, must
be interpreted as due to the change of direction of the
propagation vector (under this rotation 't' transforms
into t') T.he rotation AP, =AP 't AP—t should be
interpreted as the rotation around the propagation
vector 3 by the angle AP. Thus, AP is the angle of
rotation of the plane of polarization. The Ap quantity
describes the correction to the phase; the real factors
exp[ —Arj describes a sort of "damping" or "absorp-
tion" of electromagnetic waves by the gravitational
field. Physically speaking, this is due to the nonclassical
form of the laws of conservation in the gravitational
field [see Eqs. (2.10)—(2.11)j.

Our solution (5.20) is valid for arbitrary values of r'.
In order to establish the correspondence of the results
of this section with our theory of light rays we must
go to the limit r'= —oo. When r'= —~ in (5.20), the
solution (5.20) for x' —+ —~ tends to the unperturbed
wave"

Moreover, our solution with r'= —~ has an im-
portant property. When the argument x' is divided into
x'=xi'+ot'xi~, xi' and x' are kept constant but arbi-
trary, and x„—& —~, the expressions (5.20) again
tend to the classical unperturbed wave [i.e., the
operation lim~» — lim„o — performed with respect
to AP, AI', AQ, gives in all cases 0").This property can
be interpreted as meaning that our solution (5.20)
satisfies just the correct boundary conditions: on the
plane at infinity (x„=—oo ) which is orthogonal to the
"unperturbed. " direction 't' (5.20) reduces to the
"unperturbed" wave.

Now, when our wave arrives from the plane nil =
at x' at the time x', then according to (5.26) it has the
direction

t'(x x') ='t'+ (fi' ov 'tb) Ag —(x' x')

~0

oot Ag b(xo x ot (x x')) (52't)

h '+ e.b,tb X,'= 0= Xo' —e,b.tbsp, ',

where

ta otaPAt Otg+ (fieb ote otb)

X ~g.—,
Jqo

(5.25)

(5.26)

and, according to (5.23) its plane of polarization in
comparison with the initial situation at g"= —~ is
turned around t through the angle

g0

AP(xox )= dxoot e b Ag b(xo x ots(x xo))

(5.28)

The relations (5.25) are characteristic of amplitudes of
a plane wave with direction vector t . Therefore t from

(5.26) must be identified with the direction of the
perturbed wave of event x', x'. The characteristic term
"e ~,AQ~. .." appearing in the expressions for perturbed
amplitudes has a simple meaning: geometrically speak-

ing these terms describe the fact that h ', 3C,' are
derived from 8,&'), K, (') through the small rotation QQ~.

"One should mention, however, that there exists a difhculty
here; namely, because in practical app]ications for big r = (x'x')&,
Ago~r the limit of Ap from (5.14) (i.e., lim 0„„6@)is di-
vergent. This difhculty being rather of mathematical, nonphysical
origin, can be avoided in a formal way, e.g. , by introducing some
kind of convergence factor into (5.14). The physically much more
interesting quantities such as AP, AF, At, behave, however, in a
regular way, e.g. , lim 0 „lim,o „AP=O.

'2 6@ is understood here as involving some "convergence factor"
securing the existence of lim, o„„hp.
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At the same time the "absorption factor, "expL —AI'j, is

exp — dx'o ~r(xo x'—'t'(x' —x")) . (5.29)j 7

—00 ~I

Now, let us study the quantities along the light ray
starting from the plane x&l ———~ at x'= —~ in the
direction 't and with "impact vector" r&'. Such a ray
is given by x = 't x'+r &'+O(h). Substitution of it into
(5.27) gives

t'(x') = t'+(b'p 't"t')—Ago(x, t'x'+rJ'),

YVe claim that

+00

aPf= ', " -dx"t p...ag" p(x' r, +'t x')'t„(5.3-3)

fulfills these conditions. Indeed, when the metric has
the form (4.27) we have, according to (4.28), hg"''t
=hgp. On the other hand, under x —+ x"+ha" the
Dg"& quantities transform according to

AA"~ ~ AA"~+q»Aa" +q"~d a~, q"~ha—~ .

Thus, under the inhuence of the coordinate transfor-
mation b,Pr from (5.33) changes into APE plus

~+00

( /p+ppp)(530)Q t pa/Qd/(/happ(~ri'+'t'x)
00

+rtvl'Aai p(xo r &'+ptsxo)

which is identical with (4.23), as it should be. Therefore,
all previous conclusions from Sec. 4 concerning the
deflection of the direction of a geometrical ray can also
be interpreted as true with respect to the direction of
the wave. "

Taking ZP along the ray, we have

gp(xo) i, dx 0 ptapgp~hg, (p' xoris+ot'x'p). (5.31)

aP p(xo r&~+ot'x )j t„. (5.34)-
The Grst term here vanishes as it is the rotation of a
gradient. The last term vanishes because g"' 't„-='t' and

't 't'= 0. The remaining term vanishes because

dx'rt"&ha' p(x', r;+'t'x') 't„

(d~
=dx'~ ~aa' p(x', r,'+ot'xo)

Edxo)

When the ray leaves the gravitational field the plane
of polarization is therefore turned through (in com-

parison with the initial situation at x"=—~)

Let us examine (5.32) from the point of view of
coordinate transformations. Under the transformation
x ~ x +ha~(x~) the quantities hg =bgo, transform
into Ag, +ha, o+bap, „whereha =rt, ha~. Thegradient
hap, , cannot contribute to (5.32) because hg, enters in

(5.32) in the form of a rotation. However, the formula

(5.32) is based on the assumption that the metric has
the form (4.19). Transformations induced by Aap

preserve this form, while those induced by du do not.
Therefore one cannot demand from (5.32) the in-

variance with respect to transformations generated by
arbitrary Aa which produce oG-diagonal Ag b.

One can, however, generalize (5.32) to the case of
a metric of the more general form (i.e., the case of p p

having in general off diagonal elements). The gener-

alized formula must fulfill two conditions: (1) When the
metric has the form (4.19), it must go over into (5.32);
(2) it must be invariant under general coordinate
transformations.

23 The direction of a wave is here understood to be the direction
of the Poynting vector associated with it.

~+00

dxo ar (xo, r;+'t'x'), (5.35)

where 6& is defined by (5.17). Under the assumptions
(1) that dg vanishes when (x'x')l~ oo, (2) that the
d'Alembertian of Ag, Ag "„vanishes or is negligible
along the path of the ray o' and (3) that the coordinate
condition 2b.gp, p

—hg, ,
=0 is valid, the expression (5.35)

can be computed to be

+00

AFr ——— t dx )~go, o(xo, r;+Pt'xo)j „
+o 't'Ag„p(x' r;+'t'x') j. (5.36)

~ According to any reasonable approximation procedure hg,
is proportional to the P' components of the tensor of matter—
this assumption means that the ray does not enter into the region
0 where matter is present.

forms a perfect differential; 4a', b must vanish for
(x'x')& —+ po in the case of a transformation tending to
the identity at infinity. Therefore all terms in (5.34)
vanish.

Summarizing, (5.33) must be regarded as the formula
describing the rotation of the plane of polarization in
the general case, the case of arbitrary small hg p. If
there exists a coordinate system such that the metric
has the form (4.27), the APE reduces to (5.32).

.For the sake of completeness we will 6nd also the
6nal value of hl' taken along our ray. This value, AFf,
obtained from (5.29) is
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bx (x') =dr~ —(5"—to"t )bd, g" b(ro, r') otr(ho r')dr'—

g0

—i t' ~ dx' Ag'», , t„t„dr'--
J„0

+-', (5"—'t"t') dx" (x'—x")
g0

Xgg&» ot ot drc+ (gab oto otb)

~0

dh'o Sg"b„ot„dr, (6.1-)
y0

where the prime over symbols hg indicates that they
should be taken with the arguments x'~ x", x' —+ r'
+'t'(x"—r'). According to (4.15) the unit vector tan-
gential to x'(x') can be rewritten in the form

t'(x') ='t'+At. ( h)o='t +(5"—'t 't')

X Ag" (x, r'+'t'(x r)) t„-—b "—g(rb, r') t„-

+'" dx'o~g'»-b«„ot„. -(6.2-)
J„o

Now, let us decompose the vector 8x (x') joining the
fundamental ray with the second ray into two parts,
respectively, orthogonal and parallel to t'(x'):

bx'(x') = sh '(h')+t'(x')5x (x'),

Sx,.(x')t. (x') =O.
(6.3)

Remembering that dr is orthogonal to t', one can
easily find that

bx, ( (x') = pb, g
"b(xo, r'+'t '(x' —r')/

—hg" (r br'o) j 't„dr'. (6.4)-

0. GEOMETRICAL INTERPRETATION OF THE
ROTATION OF THE. PLANE OF

POLARIZATION"

In this section we shall give some geometrical inter-
pretation of the formulas (5.32), (5.33).

Let us consider a light ray starting at the time r from
the point r' with initial direction t'. Such a ray is
given explicitly by (4.11) where I is given by (4.14).
Now, at time r' let another ray start from the point
r'+dr with the same direction 't; dr' is assumed to be
orthogonal to 't . Let us call this second ray x"(xo).

Consider the difference 8x'(x ) =x"(x') —x'(x'). Using
(4.11), (4.14) one can easily show that

Sx, (ho) =dr ot.—St, (xo)dr +'(S"-t—t )(S" 't —ot')

g0

X I dk" (x'—x")4g'», b~ 'to 'tp
~r0

+2 dx' hg'"'g't-
J,o

—2(x —r )6 g",g(r', r') 't„- dr", (6.5)

where

aRb(xo) =o„,otoZt, (h )+otb AT(xo), (6 7)

AT(ho) =-', dx" 't o,b.hg'"', b 't„
J„0 —-'(x' —r') ot'o b.hg"', b(r', r') 't , (6.8)-

th, D —1()ac oto ota)(gbd 0th oui)

~0

X ~ dx' (x —x ) tr tpAg'""
ro

+ (~g'"'. +~g'"'..) . (6.9)
dx'0

These formulas, together with (6.4), explain entirely
the geometrical situation: the part of 8h'(x ) orthogonal
to the tangent to x (x') is according to (6.6) the result
of the deformation (due to the symmetric ZD b) and
of the small rotation around the direction ARq through
the angle (~btt Rb)& performed on the initial value of
8xb'(xo), i.e., dr'. This rotation can be considered as
the superposition of two independent rotations: The
first rotation characterized by »o, t"odd, ( )xois due to
the change of direction of the tangent to the ray (under
this rotation 't goes over into t'='t'+bt, ). The second
rotation 't dT—t hT is a rotation around the tangent
t'(x ) through the angle b,T.

Now, let us examine the AT quantity when the
initial point r' is decomposed as r'= r &o+'t'r', 't'r &'= 0,
and r' tends to —~. In other words, we will consider
the case when our two rays start from the plane at
inhnity x&&= —~ at the time r'= —~. In this case,
according to (6.8), d,T(xo) is given by

where ht, is defined by (6.2). This formula has the
structure oxb'=dr +Boo bdrb. Let us decompose h~ b

into symmetrical and shew-symmetrical parts. A
straightforward computation enables us to rewrite (6.5)
in the form,

gx J (ho) =dr'+ o,bomb(ho)dr'+ED bdr (6.6)

This enables us to compute 5x;=ox' —t ox)( as

"The author owes the idea of the application of the methods
of Sec. 4 to the problem of this section to Professor John A.
Wheeler.

AT(ho) =-,' o ohio b gg" b(x o r '+ot.x o) o

+—iolim (x —ro) o

g 0~00

Xd,g"',b(r', r;+'t'r') 't&. (6.10)
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However, because in the case of the gravitational 6eld
of an isolated system deviations from Euclidicity behave
at infinity, like f(x' —r)/r Lwhere f(x') is bounded j, the
derivatives DA ', b(rp, r&'+pt'rp) will behave for large
r' as f-[r' (r,—'+r ')-*'](r '+'t'r')/(r, '+rp').

The factor 't e,~,..., however, kills here the contri-
butions 'tP. Hence, the limit in (6.10), which can be
written as

lim (x'—r') Pt'p p. X
go—+ —oo

2k +"
tt'=pt' ——i~ dxp I dpy(r, '—y, )

T,p(x' q, y-) T(x' q,
—y)-

X + (7 2)

where

and interchanging the order of partial differentiation
8/Bx' and integration dpy, one gets:

vanishes. Thus

f- LrP- (r,'+r, ')«], (6.11)
r ip+rp'

7= 2 "~

(7.3)
q= L(x' —y )'+(r.—y.)']«.

xo

AT( o) =,'~( «'o't".„Ag-,(x", r +~t x") 't;.
However, observing that

it fx'—
y() )

(612) (
1— (T(xP—

q, y)
exp E q )

Now, the 6nal angle of rotation around the tangent
when the rays leave the gravitational field follows on
setting x'=+ ~ in (6.12), i.e.,

&Tt=-', ~ «''t' .phd"' (xp' r '+'t'x') 'tp. (6.13)

(7 4)

we can rewrite (7.2) as:

T,p(xP q, y) T—(xP q, y)—= (r,—yi)'

2k +"
I

r, y, d-
One can also mention here that the corresponding t'f= t' ——«' ~py

limiting transition in (6.4) gives c „~rJ—yJ~ dx

lim lim Bx„(x')=0.
~o~ + oo r&~ —oo

(6.14)

Therefore at the end of the history of our two rays bx
is orthogonal to the final direction of the tangent to the
fundamental ray. The formula (6.13) is evidently iden-
tical with (5.33), guessed from (5.32) by the use of the
condition of invariance with respect to coordinate
transformations.

It follows that the total rotation of the plane of
polarization of a wave observed along the light ray z
is identical with the rotation of the in6nitesimal vector
bx joining x and a second ray x' when the tangents
to x and x' are initially parallel to 6x initially normal
to both rays.

"l. APPLICATIONS

In this section we shall apply the general results of
the previous sections, that is the general formulas (4.18)
and (5.33) for the deflection of a ray and the rotation
of the plane of polarization along the ray, in a few
concrete cases.

Before doing so we would like to mention, however,
that the substitution into (4.18) and (5.33) of AA t' in
the form (3.4) leads to some general results. Namely,
substituting Ag & into (4.18), which according to (3.4)
can be written in the form,

4k r T ti(xP ~»—y~, y)
Ag"s(x', x')=—

I
d y (7 1)

c

( xp —y)) p
X ) 1+ ~T(x'—q, y) . (7.5)

E q )
Now, if the integral over d3y is uniformly convergent
one can interchange the order of dsy integration and the
differentiation d/dxP, so that the integration over «P
can be performed. Again in the assumption of uniform
convergence we can interchange the order of lim~o

and dsy integration. But because in the upper limit the
factor 1+(x'—y, ~)/q is equal to 2 and for x' —+ —~
vanishes, and because limzo + (x'—q)=y„, we get
simply

+oc
~ ~ a ~ a

(ri —y.)'

X T""(x' y '+'t'x') 't„'t„-. (7.6)-
In the particular case of a point singularity at rest,

we have T' =nt5p(»), T"=0, T' =0, so that our for-
mula gives

4kns 1 r
~a o~a

C 'fJ 'fJ
(7.7)

which coincides with Einstein s formula for the deAec-
tion of a ray in the case of Schwarzschild's metric.

Now, substituting Ag"& in the form (7.1) into (5.33)
and using exactly the same arguments as previously
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[e.g., Eq. (7.4)$, one can find that"

4k p+
aug ————'I, e.g,

c J—00

rg —pg
dX

(r,—y,)'

(xo yrs+otaxo) ot„. (7-.g)

Now, let the gravitational field be induced by a
rotating body; the speed of rotation we assume to be
small. It therefore makes sense to assume that the
deformation caused by rotation is negligible and that
the body has spherical symmetry. For simplicity we
will also assume that the density of our rotating sphere
of radius l is constant and that the body rotates uni-
formly with angular velocity co . The terms due to
pressure in the energy momentum tensor as proportional
to c ' can be neglected. Hence, the energy momentum
tensor of the rotating body can be taken in the form,

where

2' s = pv"vs for (x x') '
*&~ l,

T &=0 otherwise,
(7.9a)

2km 1 2km(31 1 lxl' 1 )
c' !x!

Xe(l—Ix!), (7.1Oa)

p= const, v = [1,v'j, v'= (1/c)e,b,cobe'. (7.9b)

Since we are dealing in this case with small velocities,
we should limit ourselves to the approximate formulas
(4.22), (5.32) in which the quantities dg are to be
taken simply in the form (3.3). An elementary com-
putation gives

4kmr,
! ( r,'q-:I
1—0(l—r&)l 1—

c2 r 2 l ) I

8k rg rj.'
otbeb„J" 1 0(l —r,)—

c rg

r,'q *( 3r,'q 4k eb, to'J'

xl 1-
I I

1+-
P) 4 2P) c' rrs

r,'q l

X 1—0(l—ri)l 1——I, (7.11a)
p)

10k't J'( rise *'

AI'f =
I

1——
I

0(l r,—)
c' P E P)

km( r,'q &

I
1-—

I
e(l-r, ). (7.11b)

c' l P)
In order to find the physical interpretation of this

result, let us introduce the unit direction st'= r i /r i and
another unit vector m = e,~,u' 't'. The triple 't, I, m

forms a "dreibein"; let J'=n ot +Pw +yN, . Now,
(7.11a)—(7.11b) can be rewritten

4km 1
- ( r,'q l

f t I —1——0(l—rr)
c' r, E P)

4kP ( r,'~ -*' ( rosy -
I1—0« —r )I 1——

I I
1+4—

I

cry l')& l) I

4kv ( r,'q '-
+tv' 1—0(l—r,) I

1——I, (7.12a)
c'r &'

Ag, =—2km
&abc

C X

2km
CggcX J

C

10ku ( ri q
**

I
1—I 0(l-r,).

c'P ( P)
(7.12b)

(51 3!x!
xi ——— — Ie(l —I xl), (7.1ob)

i2ls 2 lb Ixls)

where 0(I) is defined as 1 for I))0 and equal to 0 for
N(0, m= Jdsxp is the total mass,

J = daX PtggcX 5
4

is the angular momentum (J'=ma&'X ssP). These for-
mulas coincide in. the external region !xi)l with
Landau's formulas (3.9), so that the results which we

are going to get by applying (7.10) will cover also
Landau s approximation. Substituting (7.10) into (4.22)
and (5.32) and performing integrations, one gets

IBoth formulas (7.5), (7.8) hold only under the assumptions
mentioned concerning the correctness of interchanging the order
of integration, differentiation and taking limits vrhen x' ~ &~.

Therefore, in the deflection of a ray only the "orthog-
onal" part of J' (components P, y) are active; the
polarization can be influenced only by the component
of J which is parallel to 't (n).

The term is (7.12a) which is proportional to m
describes the Einstein deflection of light; this deQection,
of course, is a deflection in the plane of the t', r&'
vectors. The component of angular momentum which
is orthogonal to both 't', ri, i.e., Ptv, causes some
correction to this deflection. If r&&l the angle of this
deflection is given as Arp=4km/r&c' 4kP/rises. The-
component of angular momentum along r&, however,
induces a new deAection in the direction m = e,q,u 't'.
The corresponding angle (for r,)l) is M=4k'/roc';
see Fig. 2.

For the values of r, (l, (7.12a) describes the deflec-
tion of the ray which in a part of its path penetrates
through the rotating body. Of course, it does not make
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4)0 form (3.3). Assuming in (3.3)

T~=P m,bs(x —a(x')),
a=1

(7.14)

T' =g m,bo(x —a(x'))aa, o(x'),

Fxo. 2. An illustration of the meaning of the angles b, q, M. where m, denotes mass of the ath star (a=1, 2 ~, 1V)
which motion is given as a'= a (x'), we get

any sense in the case of a star. However, in the case of
a rotating cloud of interstellar matter with very low

density, a ray which penetrates through the cloud will

be only partly absorbed, so that the problem of its
deflection due to the gravitational field of the cloud
makes sense.

In the limit r;~0 (a ray going through the center
of the cloud), the formula (7.11a) gives

2k ~ t'+" (r,' a—, (x'))
tt'=st' Q——m dx'

c' a=r " „((xo—a„(H))s+rp]-**

X(1—2&«(x'), o), (7.15a)

2k N

~~y= ——Q ma ' dx
C2e1

iOk
lim t y= t'—

gg-+0 c8

1
OtbJc =Ot

l2

4k' 1
e.o, 'toM' . (7.13)—

C' 12

't e.o,(r,' aP(x'))—a', ,o(x')
(7.15b)

f(x'—a~~(x'))'+r~']'*

The ray is therefore deRected in the plane of t and
the direction orthogonal to 't' and J' through angle
10k'/O'P.

As far as polarization is concerned, (7.12b) says that
in the case of r~&l the polarization of the wave of the
end of the history of the ray remains unchanged in
comparison to the initial one."However, for r&(/, in
the case a "rotating cloud, " (7.12b) gives nontrivial

APfp which depends on r~ by the interesting factor
(1 res/P)&. Of cour—se, the polarization of a wave going
through the cloud will be affected by the interaction
with matter. Our EPf can be only treated as a small
correction to "classical" rotation of the plane of
polarization due to this interaction.

As the next application of our formulas, let us
consider the deflection of light rays and the rotation of
the plane of polarization due to gravitational field of a
system of stars in their motion. Because the motion of
stars in astronomical practice certainly can be treated
as "slow" (o/c small), we should again use the formulas
(4.22), (5.32) where ~g are to be taken simply in the

'7 This result differs from the corresponding result of reference
2. [According to reference 2 APr AO for r'&t in the case of the
rotating body. g One can check the correctness of the statement
that b,Py vanishes for r&& l simply by substituting (3.7) into (5.32);
the corresponding integral vanishes.

where g„(go)—stadia(xo) ~~a(xo) —Ga(xo) ot &»(xo) The
origin of coordinates in these formulas is supposed to
be identical with the classical center of mass of the
system. In the case of a double star (direction 't'
orthogonal to the plane of motion), APE is diferent
from zero.

It might be of some theoretical interest also to
investigate the case of a rotating body when its angular
velocity is so big that terms of higher order in c ' are
important. The formulas (7.6), (7.8) valid for arbitrary
velocities of matter could be applied in this case. The
energy momentum tensor can be taken here accordingly
with the results of Salzman and Taub."

ACKNOWLEDGMEÃT3

It is a great pleasure to express my gratitude to
Professor Robert Oppenheimer for the hospitality at
the Institute for Advanced Study. I am also grateful
to the Rockefeller Foundation for a grant which made
my stay at the Institute possible. I am indebted to Dr.
Hans Buchdahl for his help in the preparation of the
manuscript and for interesting comments. I owe also.
thanks to Dr. Bruno Bertotti for his interest in this
paper.

G. Salzman and A. H. Taub, Phys. Rev. 95) 1659 (1954).


