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Recent applications of the nuclear optical model to the de-
scription of neutron scattering by spheroidal nuclei have shown
that "shape effects" are very important for highly deformed
nuclei. It has also been found that the "adiabatic approximation, "
which assumes the nucleus to be rigidly fixed in orientation
throughout the scattering, is remarkably accurate for very low-

energy (S-wave) neutrons.
The first part of the present paper is devoted to a detailed in-

vestigation of this approximation, showing that the major factor
determining its validity for the heavy nuclei to which it has been
applied is the large size of the "effective rotating mass" of the
nucleus in comparison to the neutron mass. This is analogous to
the Born-Oppenheimer approximation in molecular physics, where
the large ratio of nuclear to electronic mass enables one to calcu-
late electronic wave functions by considering the slower nuclear
motion to be "frozen" completely.

The second purpose of the paper is to investigate the effect
of a "pear-shaped" deformation, or octupole moment, of the

nuclear optical potential on the S-wave neutron strength function.
(A square-edged potential well is used, which is somewhat similar
in its effect to a rounded-edge well with a smaller imaginary
potential. ) This is done for the very heavy nuclei, 225 &A &240,
where the possibility of octupole deformations has been suggested
by other data. The effect of a small octupole moment for these
particular nuclei is found to be largely masked by the nearly in-

'

distinguishable effect of their large quadrupole moments, and, in
view of the uncertainty in their quadrupole moments, neutron
scattering at this time cannot be said to provide any positive
evidence of octupole moments. On the contrary, if the quadrupole
moments reported from Coulomb excitation measurements are
employed, the measured neutron strength function puts an upper
limit on the octupole moments of about one-third the quadrupole
moment. More accurate data, both on the neutron strength func-
tion (as well as R') and on the quadrupole moments, would permit
a more accurate estimate of the octupole moments.

' 'T seems clear by now that any approximation scheme
~ ~ used to describe the interaction between nuclei and
low-energy nucleons must include, as a central feature,
a description of the "smeared out" or optical-potential
aspect of this interaction. Quite aside from recent
efforts to explain the origin of this independent-par-
ticle aspect of the interaction, the impressive suc-
cesses of the shell-model in describing the bound states,
and of the optical model in describing low-energy con-
tinuum states of the system of (A+1) nucleons, leave
little doubt that this is a dominant characteristic of
the interaction.

The complex optical modeP has consequently served
as a very natural starting-place for subsequent attempts
to provide a more detailed description of the scattering
of low-energy neutrons, the process with which we shall
be concerned here. A simple way of summarizing what
aspects of the exact neutron-nucleus interaction are
neglected by the spherical optical model in its original
form, ' is to observe that such a potential-well inter-
action does not couple the neutron to any internal
degrees of freedom of the target nucleus. The optical
model, consequently, cannot provide an explicit de-
scription of direct interaction processes in which in-
elastic neutron scattering occurs through the excitation
of a particular mode of the target nucleus; inelastic
processes are all lumped together under the heading of
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' E.g. , see L. C. Gomes, J. D. Walecka and V. F. Weisskopf,
Ann. Phys. 3, 241 (1958), which includes a bibliography of the
previous work of K. A. Brueckner et al.

2 H. Feshbach, C. E. Porter, and V. F. Weiskopf, Phys. Rev.
96, 448 (1954).

absorption from the coherent beam, and represented by
the imaginary part of the optical potential.

In response to accumulating experimental data on
the details of low-energy inelastic processes, ' consider-
able attention has recently been directed to generaliza-
tions of the optical model, obtained by adding to it
explicitly certain degrees of freedom of the target
nucleus which seem most likely to be excited byneutron
bombardment. The possibility of individual-particle
excitations has been considered in the "distorted wave"
approximation by Lamarsh and Feshbach, and by
Levinson and Banerjee' while collective rotational mo-
tion has been investigated for spheroidal nuclei by
Brink, Hayakawa and Voshida, and Chase, filets,
and Edmonds '

The investigation of rotational e6ects is, of course,
con6ned to target nuclei which are nonspherical. For
such nuclei, as was emphasized particularly by Margolis
and Troubetzkoy, ' the noncentral character of the in-
teraction with the neutron introduces observable effects
into the scattering which persist even at bombarding
energies much too low to produce direct excitation of

' See, e.g. , the summary by R. Sherr in the Proceedings of the
Pittsbnrgh Conference on unclear Strnctnre, 1957, edited by S.
Meshkov (University of Pittsburgh and Once of Ordnance Re-
search, U. S. Army, 1957).

4 An interesting discussion and summary of recent work on
direct interactions at higher energies is given by J. S. Blair and
E. M. Henley, Phys. Rev. 112, 2029 (1958).' J. R. Lamarsh and H. Feshbach, Phys. Rev. 104, 1633
(1957); C. A. Levinson and M. K. Banerjee, Ann. Phys. 2, 471,
499 (1957);5, 67 (1958).

e D. M. Brink, Proc. Phys. Soc. (London) A68, 994 (1955);
S. Hayakawa and S. Yoshida, Proc. Phys. Soc. {London) A68,
656 (1955); D. M. Chase, L. Wilets, and A. R. Edmonds, Phys.
Rev. 110, 1080 (1.958).'B. Margolis and E. S. Troubetzkoy, Phys. Rev. 106, 105
{1957).
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rotational levels. In other words, at such energies it is
predominantly the shape of the nuclear surface rather
than the rotational degree of freedom associated with
this shape, which influences the scattering. This sug-
gests the use of an "adiabatic approximation'" to de-
scribe the scattering, in which the nonspherical nucleus
is not allowed to rotate at all, but is held in a fixed
orientation by giving it an infinite moment of inertia.
(Such a nucleus can absorb angular momentum but
not energy, just as the "static nucleon" of the Chew-
Low model can absorb linear momentum but not
energy. ) The purpose of the present paper is to in-
vestigate the applicability of this approximation to the
case of S-wave neutron scattering, and, within the
approximation, to consider the eGect of an octupole
("pear shaped") moment of the target nucleus on the
low-energy scattering.

We shall be most interested in the adiabatic approxi-
mation in the k —+0 limit, i.e., as the energy of the
bombarding neutrons tends to zero. In this long wave-
length limit, it may at first seem surprising that any
"shape eA'ects" at all should appear in the cross section.
Although it is true that the neutron's exterea/ wave-
length is much greater than the dimensions characteriz-
ing the nuclear deformation, the well depth is so great
( 40 Mev) that the neutron's interma/ wavelength is
short enough to "feel" the shape of the nucleus, even
when the external wavelength is in6nite. In other terms,
even though only S waves are incident upon the nu-
cleus, the noncentral force it exerts on the neutron,
together with the neutron's large internal kinetic
energy, generates higher partial waves in the neutron's
wave function in the internal region of the nucleus.
These higher waves will, of course, leak out, but even in
the k=0 limit all except the outgoing S wave (which
leaves the nucleus in its rotational ground state) are
attenuated faster than 1/r, so that in the asymptotic
region again only S waves are detectable. The eGects
of the nonspherical shape then appear only in the
dependence of the S-wave phase shift on the nuclear
"radius, " which dependence is markedly different for
the spherical and nonspherical cases.

not proceed through an intermediate compound-nucleus
state, may begin to appear as the bombarding energy
is increased, and if we are to have a model which can
describe them, as well as the compound-nucleus type
of inelastic process, we must include the effects of at
least a portion of the residual forces by something more
explicit than an absorptive potential. That is, in mo-
lecular physics terms, we must include specific internal
coordinates of the target nucleus, and couple them
directly to the incident neutron.

If the Hamiltonian describing these internal co-
ordinates $ in a target nucleus of A nucleons is II~($),
the total Hamiltonian for the problem is (taking A=1)

E= —V'/2m+ V(r, p)+Kg($), (1)

where r is the position-vector of the neutron relative to
the center of the nucleus and V(r, g) is the interaction
potential between the neutron and the nucleus. If H~
has a complete set of eigenstates in $ space,

(2)

we can employ them to expand the wave function f(r, $),
following the standard procedure employed, e.g. , in the
atomic scattering case,"

It is then clear that the asymptotic behavior of fo(r)
determines the cross section for elastic scattering (i.e.,
no excitation of the $ coordinate), and in general f (r)
determines the scattering with excitation of the internal
state q „($).We shall still take V(r, )) complex, in order
to account for all other types of inelastic processes.

We note the following asymptotic properties of the
solution. Using the Hamiltonian (1) for the Schrodinger
equation, we can insert the expansion (3) and use Eq.
(2) as well as the orthogonality of the p„'s, to see that
the Schrodinger equation in the exterea/ region (V= 0) is

(—P+2nze„)f„(r)=k'f„(r), (4)

for each e. But, introducing the effective wave number

k,

I. INTERNAL COORDINATES AND
DIRECT INTERACTIONS'

The imaginary part of the optical potential is one
means of representing the difference between the actual
neutron-nucleus interaction and that described by the
real optical potential, i.e., the "residual forces" of the
nuclear shell model. In low-energy scattering processes,
these residual forces cause the formation of a compound
nucleus as an intermediate state, as indicated, e.g. , by
the symmetry of the angular distributions of such proc-
esses about 90'. However, direct processes, which do

' D. M. Chase, Phys. Rev. 106, 516 (1957).
For a more thorough discussion of the relation between direct

interactions and the optical model, see H. Feshbach, Ann. Phys.
5, 557 (1958).

this is just the wave equation,

(6)

Consequently if we expand f„(r) in spherical harmonics,
we get for the asymptotic behavior of each outgoing
partial wave, R„t(r) —& e'" '/r. Provided the energy
8= 0'/2m is high enough to excite the level e, k„ is real
and this is indeed an outgoing spherical wave. If
E(e„,however, k is pure imaginary, and the accept-
able radial function decays exponentially, R„&(r)~
e ~" ~"/r. In other words, we are looking at a wave
function in a region of negative kinetic energy, and it

"N. F. Mott and H. S. W. Massey, Theory oj Atomic Collisions
(Clarendon Press, Oxford, 1949). See also reference 9.
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displays the characteristic asymptotic behavior of a
bound state.

Notice that precisely at threshold for the level e,
however, k„=O, and the wave equation becomes the
Laplace equation, for which the asymptotic behavior is

R„i(r) —& r—i'+" (7)

The kinetic energy is not negative in this case, but the
angular momentum barrier attenuates all partial waves
except the S wave more rapidly than r ' in the external
region, making them unobservable at large distances
from the scatterer.

Let us now specialize to the case of a nonspherical
nucleus, which is free to rotate, so that the q „'s repre-
sent rotational states of the target nucleus. In the very
low bombarding energy region, where direct excitation
is impossible, the way in which the experimental pa-
rameters such as I'„/D and R' (see references 2 and 7

for their exact definitions) depend upon the nuclear
deformation is rather complicated, and seems worth a
brief description.

For E& e~, direct excitation is impossible, and in the
asymptotic region we then need consider only the fo(r)
part of the wave function. Whether the potential is
spherical or not, we can define phase shifts for the
problem by expanding fo(r) in spherical harmonics in

the external region, and if we assume the potential to
have a finite range, say R, only those phase shifts for
which l&M will contribute significantly to the cross
sections. Since the "low-energy" parameters I' /D and
R' are measured by experiments done at energies low

enough so that kR(1 (say 10 kev or less), only the
S-wave phase shift will contribute significantly to the
cross section. This is entirely due to the angular mo-

mentum barrier, in the usual way, and is strictly true
at k=k0=0, where it agrees with the assertion of Eq.
(7), that only the 5 wave is detectable in the asymp-
totic region.

The nonspherical potential well problem is distin-
guished from the spherical well problem, however, by
the fact that, even in this zero-energy limit, the neu-
tron's wave function contains more than S waves near
and inside the well. The noncentral interaction gener-
ates (even from an incoming 5-wave) many higher
partial waves in the internal region, which are damped
out in the asymptotic region. The parameter governing
this admixture of higher partial waves seems to be
(Ed,R), where E is the internal neutron wave number
and AR is a typical deformation length, such as the
difference between major and minor axes for a spheroid.
This parameter is by no means small in the larger de-
formed nuclei, and in the "near zone" of such a nucleus
the neutron's wave function contains many higher par-
tial waves. Although they are unimportant very far
from the nucleus, and their phase shifts do not con-
tribute directly to the cross sections, they interfere
strongly with the S wave in the near zone, causing the
S-wave phase shift to be diGerent for a spheroid, e.g.,

from what it is for a sphere of the same volume. It is
through this interference that the eRect of the deforma-
tion appears in the observable parameters at low bom-

barding energy, and it is thus not surprising that the
"extra" resonances in I'„/D, e.g. , appear at the resonant
energies which characterize the higher partial waves
in scattering from a spherical well.

II. ROTATIONAL EXCITATIONS AND THE
ADIABATIC APPROXIMATION»

It is especially simple to apply this type of direct
interaction formalism to a rigid, axially-symmetric
rotator, constrained not to rotate about its symmetry
axis, for then the internal Hamiltonian is just II&
=L'/28 (d being the moment of inertia and L' the
usual angular momentum operator), and its eigenfunc-
tions y (P) are the spherical harmonics Yi (0'), where
0'= (0', q') is the direction of the axis.

That is, in this model the nonspherical nucleus is

presumed to have a symmetry axis (the usual assump-
tion of the collective model" ), and only its rotational
degree of freedom is to be considered in detail. Any
other degrees of freedom are to be included in the
complex-potential description. Further, only the ex-
citation of rotational states of the E=O ba~d is con-
sidered, which restricts the model to the description of
even-even nuclei. The Hamiltonian is thus taken to be

H = V'/2rN+ V—(r,Q')+L'/28,

and if (r,Q) are the spherical coordinates of r, the wave
function f has the form P(r, Q,Q'). We shall be interested
only in very low-energy scattering, and so neglect
spin-orbit coupling.

The expansion of the wave function in the eigenstates
7'i (0') of Hg(Q') is

(9)

If fi (r,Q) is expanded in spherical harmonics of 0,
we shall have a double sum, over (l,l',m, m'), but in fact
the form of the m and m' sums is determined by the
rotational conditions which f must satisfy. That is, in
the noncentral field represented by V(r,Q'), the neu-
tron's angular momentum l' will, of course, not be a
good quantum number, but J'= (1+L)' will. The eigen-
states of J' are just the 'ti« ~~(Q,Q') which result from
the vector addition of Vi (0) and Vi (0'). P must be
expandable in. terms of these J' eigenfunctions, and so

only those combinations of Fi (0) and Vi ~ (0') can
occur in (9) which do in fact possess these rotational
properties.

"Many of the conclusions of this section were implied in the
comprehensive work of Chase et al. , reference 6, whose primary
concern was with numerical application of the formalism. Our
aim in this section is to describe somewhat more explicitly than
these authors did the relation between their work and that of
Margolis and Troubetzkoy, reference 7, who used the adiabatic
approximation.

'~ A. Bohr and B. R. Mottelson, Kgl. Danske Videnskab.
Selskab, Mat. -fys. Medd. 27, No. 16 {1953).
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Since we wish to consider only the very low-energy
region, we can restrict our considerations to incoming
5 waves. "But since the (even-even) nucleus is initially
in its ground state, L=O, only the eigenstates with J=O
can occur in it. This restricts the l' value to l'=l, and
we thus have P expanded in the simple form,

y(r, Q,Q') =P, R,(r) y«oo(Q, Q'). (10)

Further,

'jjrP(Q, Q') =P C(/, l,0; m, —m, 0) I'i (Q) I'i (Q')

=(21+ 1)
—

& P (—1)~I'i (Q)Fi ~(Q') (11)
= (2l+1)'*(4pr) 'Pi(cos8),

by the addition theorem, where 0 is the angle between
the directions 0 and 0.With a slight redefinition, then,
we have for incident 5 waves the simple result,

P(r,Q,Q') =Pi Ri(r)Pi(cos8). (12)

P thus depends only on the angle between r and the
nuclear symmetry axis, which we might have guessed
from the beginning, for with both the incoming neutron
and the target nucleus in 5 states, these are the only
two physical directions in the problem. Note also from
(10) that whenever the neutron acquires an angular
momentum (l,m), the nucleus spins in the opposite
direction at the same rate (t, —m) in order to maintain
the rotational invariance of f.

Since
L'P ( icso)8=l(l+1)Pi(cos8), (13)

the substitution of the expansion (12) into the Schrod-
inger equation with the Hamiltonian (8) can be written
as

[—P+2mV(r, 8)7 P R (r)P (cos8)

~
k' l(l+1) q

=2m P (
— ~Ri(r)Pr(cos8). (14)

i &2m 2a

The notation is simplified slightly if we let R be the
mean radius of the nucleus and define M, an eGective
rotating mass of the nucleus, by

a=—3M2. (15)

Then if we further define an eGective wave number k& by

m i(1+1)
kg'= k' ———

3f
(16)

'3 We shall follow the procedure customary in optical-model
calculations, and assume that the "eQ'ective neutron" being scat-
tered is a spinless particle. This presumably takes care of the fact
that the model is to be applied only to a&erages of cross sections
over many resonances with different spins,

we can re-write (14) as

L
—'P/2rNV (r,8)7 Pi Ri(r) Pi(cos8)

=Pi ki2Rt(r)Pi(c'os8). (17)

The equation is particularly interesting in this form,
for it is very similar to the Schrodinger equation de-
scribing the scattering of a particle by nonspherical
potential with a fixed orientation. Such an equation
differs from (17) only in the replacement of kP by k',
which is the same for all partial waves.

This is as it should be, for k~' ~ k' is just the M —+ ~
limit, which is the adiabatic limit of the rotator prob-
lem; it is thus explicitly clear how the rotating-nucleus
model of Chase et al. goes over, in this limit, into the
static-nucleus model of Margolis and Troubetzkoy. 7

The investigation of this limit is very analogous to
Born and Oppenheimer's" investigation of a similar
limit in molecular wave functions. Because of the large
discrepancy between the masses of the electrons and
nuclei in a molecule, the nuclear motion (by momentum
conservation) is very slow compared to the electron
motion, suggesting that electronic wave functions might
be obtained with considerable accuracy by considering
the nuclei to be rigidly fixed in their average positions.
This idea is given formal expression in the Born-
Oppenheimer treatment by expanding the molecular
wave function in powers of the ~-root of (ns/M), the
ratio of the electronic to the nuclear mass.

The analogous procedure in the present problem is to
employ an expansion of the wave function in some power
of (rrl/M), the ratio of the neutron mass to the eRective
rotating mass of the nucleus )which ratio appears in
ki, Eq. (16)7. It is not dificult to see that this expansion
has the form

g =Pp+ (ns/M)gr+ (18)

Po is then the wave function of the adiabatic limit,
which as we noted above is just the wave function for
the scattering of neutrons by a nucleus of Axed orienta-
tion, i.e., of infinite moment of inertia, all of whose
rotational excitation energies are zero.

The solution of (17) even in this limit is not obtain-
able in simple analytic form, for the wave equation for
a nonspherical potential well does not separate in any
coordinate system. The equation of it r is similar, with
the addition of an inhomogeneous term, and is just as
difficult to solve, so that we have found it impossible
to give an analytic estimate of the error made in
neglecting it r, for any given (ns/M).

On physical grounds, one might argue as follows that
the neglect of Pr should be not a serious one for heavy
nuclei. If we evaluate 8, the moment of inertia, from
the rotational spectrum of the target nucleus by setting
Ei——l(1+1)/28, then for a nucleus near the end of the
periodic system, we find m/M-1/35, which is a reason-
ably small number. Physically, this implies that the
nucleus will turn through only a very small angle during
the time a neutron takes to traverse the nucleus at its
Aeterna/ velocity. For if v is this velocity and R mean
radius of the nucleus, the maximum angular momentum
of the neutron inside the nucleus is about mvR; then

i~ M, Born and J. R. Oppenheimer, Ann. Physi 84, 457 (1927).
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since we are assuming the total angular momentum to
be zero, the angular momentum of the nucleus is

ol
I.= 8co =MR'o) &m~R,

R(u/s &m/M 1/35.

III. THE EFFECT OF "PEAR-SHAPED" DEFORMA-
TIONS IN THE ADIABATIC APPROXIMATION

The above calculations were all done for spheroidal
nuclei. That is, the target nucleus was assumed to have
an axis of symmetry, and its section in a plane through
this axis was taken to be"

R(8) =Rs[1+asPs(coso)]. (19)

This is a parity-conserving interaction. If the initial
state contains only incoming S waves, this interaction
will couple it, in the internal region of the nucleus, with
higher partial waves of the same parity.

Among the observable parameters of.the low-energy
scattering, the strength function I'„/D, is most sensitive
to the appearance of these higher partial waves in the
wave function. I'„/D, for a spherical-well optical model
at low energies, has a characteristic resonant behavior
as a function of E., with resonances appearing at the
usual S-wave positions. When a spheroidal deformation
is introduced, further resonances appear in I'„/D, even

'5 There is also another factor assisting the adiabatic approxi-
mation in this low-energy region. This is the fact that ks I Eq.
(16)g, the wave number associated with the S-wave part of the
wave function, is always equal to k, i.e., it does not change as we
deviate from the adiabatic limit by increasing (m/3II). But for
reasonable deformations the S-wave remains the dominant part
of the wave function, and the fact that its wave number is inde-
pendent of (m/M) should give the whole wave function an addi-
tional stability about the value m/& =0.

"Our definition of the quadrupole deformation parameter a2
agrees with the definition used in reference 7, and the parameter
P of Chase et al. , reference 6, is P =1.58a2.

But this is approximately the ratio of the traversal
time of the neutron to the period of nuclear rotation,
and suggests that, as in the molecular case, one could
obtain a fairly accurate neutron scattering wave func-
tion by considering the nucleus to be 6xed rigidly in a
given orientation.

This expectation has been confirmed by the work of
Chase et al. ,

' who compared the results of the adiabatic-
limit of Margolis and Troubetzkoy' with a calculation
which included at least the most important part of Pr
(and higher terms). They found the adiabatic approxi-
mation to be valid, at 4=0, to within something like
one percent. One might in general expect that another
necessary condition for the validity of such an approxi-
mation would be the requirement that the neutron
outside the nucleus should also move fast relative to the
nuclear rotations. In general, this is probably true, but
if the neutron is asymptotically in an S state, it is in-
sensitive to the orientation of the nucleus, and so at
k =0 it is not unreasonable that the adiabatic approxi-
mation should be a good one for heavy nuclei. "

at k=0, which are associated with the l= 2, I=4, etc. ,
partial waves.

There is a set of these "extra" resonances for each
value of the principal quantum number e, i.e., for each
S-wave resonance, and as e increases, the positions of
the resonances of each such set cluster more and more
tightly about the corresponding S-wave resonance
position. (This corresponds to j&(x) approaching more
arid more closely to its asymptotic sinusoidal behavior
as x —& ~.)

If now an odd-l deformation were introduced into
(19), odd partial waves would also appear in the neu-
tron's wave function, and additional resonances in
I' /D would appear at the /=1, /=3, etc. , resonant
values of R. These are characteristically located be-

tmeee the S-wave positions, so they should show up
quite distinctly.

The investigation of the eRects of such "pear shaped"
deformations on neutron scattering is of interest for
two reasons. In the 6rst place, the Brookhaven group'~
has noticed a set of experimental I' /D values in the
neighborhood A 230—240 which are anomalously high
compared with those found for A 100, which are
located symmetrically on the other side of the S-wave
resonance at A =150. This is interesting, for a I' wave,
if present in the neutron's wave function, should be in
resonance at about 3 230.

Secondly, Stephens, Asaro, and Perlman, " in in-
vestigating the low-lying rotational levels of even-even
nuclei in this region, 6nd that they do not follow the
usual 0+, 2+, 4+, . . . sequence, but contain 1- and
3-states as well. It has been suggested that these levels
can be understood as part of a rotation -inversion spec-
trum, of the type found in the NH3 molecule. That is,
if the nucleus does have a pear-like shape, it should be
possible for the large and small ends to exchange
positions by an inversion process, involving a passage
through a potential barrier. There should then be a
series of vibrational-type levels corresponding to this
inversion, which are of alternating even and odd parity
and will be grouped in even-odd pairs if the potential
barrier is high. One could then have an even-l rota-
tional band built on the even (lower) member of such a
pair, and an odd-t band built on the other, thus repro-
ducing spectra of the type observed among these heavy
nuclei. An estimate of the frequency of the inversion
period is given by the splitting between an even-odd
pair. " Since these and other properties of such a spec-
trum have already been discussed by Lee and Inglis"
and by AMer et al. ,

"we shall not consider the details
further here.

R.B.Schwarz, V. E.Pilcher, D. J.Hughes, and R.L. Zimmer-
man, Bull. Am. Phys. Soc. 1, 347 (1956)."F.S. Stephens, Jr., F. Asaro, and I. Perlman, Phys. Rev.
100, 1543 (1955)."F. Hund, Z. Physik 43, 820 (1927).

2' K. Lee and D. R. Inglis, Phys. Rev. 108, 774 (1957).
2' K. Alder, A. Bohr, T. Huss, B. Mottelson, and A. Winther,

Revs. Modern Phys. 28, 432 (1956).
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The inclusion of Pi(cosO) =cosO in the shape expan-
sion (19) corresponds merely to a shift of the center of
mass of the nucleus, so the lowest non-trivial odd-order
deformation is the octupole deformation, P3(cosO). In
fact, it is appropriate to include both l=3 and l=1
harmonics, choosing the coe%cient of I'& in such a way
as to keep the center of mass of the nucleus at the origin
of the coordinate system; this condition gives a&
=—27a2a3/(35+30a2). Including a quadrupole de-
formation as well, the nuclear shape is then

E (8) =ROL1+aiPi (cosO)

+ g2Pg(cosO) +GgPg (cosO)]. (20)

Knowing from the numerical results of Chase et al. ,
that the adiabatic approximation is a good one for the
rotational degree of freedom, we shall consider the
target nucleus to be fixed in orientation. If the rotation-
inversion picture of the spectrum outlined above is the
correct one, it might be expected that the inversion
degree of freedom should also be included explicitly in
the model Hamiltonian. However, we may use the
following estimate to indicate that this degree of free-
dom can also safely be treated in the adiabatic approxi-
mation. The classical inversion period, as we noted
above, is given by the splitting between an even-odd
pair of vibrational levels. Assuming the validity of the
inversion-rotation picture of the spectrum, this splitting
may be estimated from the known levels as T; k/AE,
with AE Ei—(Eo+E~)/2. Since Stephens et al. , find
AE 250 kev, this gives T; 1.6&10 " sec as the
inversion period. But the traversal time of a neutron
inside the nucleus (assuming as in the rotational case
that, for incident S waves, this is the relevant time) is
more than 100 times smaller than T; (for a 40 Mev well).
We therefore expect the adiabatic approximation to be
extremely good for the inversion process as well as for
the rotations, and we shall apply it to both.

In this static limit, the most convenient method for
obtaining a numerical solution of the Schrodinger equa-
tion seems to be that employed by Margolis and Trou-
betzkoy' for a spheroidal deformation, and it is this
method which we have used. The formalism needed
when a nuclear octupole moment is included differs
from theirs only in the replacement of their sums over
even partial waves by sums over all partial waves.
Since the difference is so slight, we shall not describe
the method further here, but refer the interested reader
to their paper for the necessary details. It is unfor-
tunate that this method of solution is applicable only
to a square-well potential. This means that we shall

not, in this paper, be able to investigate the simul-

taneous effects of an octupole deformation and a diffuse
nuclear surface.

The parameters which enter the calculation are R,
the effective radius of the well; Vo, the depth of the real
part; t'Vo, the depth of the imaginary part; and the
deformation parameters a2 and a~. With Gve parameters

available, there is no question of our ability to fit the
small group of experimental points around A 235
mentioned earlier. ' In fact, they can be fit by many
different sets of values for these parameters, so that
little meaning can be attributed to a chance fit unless
at least most of the parameters can be determined in
advance by other means.

We shall assume that R, Vo, and f can be determined
by fitting the optical model to low-energy scattering
data for nuclei which are spherical. To determine an
effective radius R for a nonspherical nucleus, we shall
make the usual assumption that all nuclear matter has
the same density, so R is taken as the radius of a sphere
whose volume equals the volume enclosed by the sur-
face (20). This R is not quite equal to the Eo of (20),
but is related to it by

(21)

correct through second-order quantities in the deforma-
tions. We shall assume that R=roA& to relate R, and
thus Ro, to A; ro is determined by fitting the model to
spherical nuclei.

There seems to be no reason for thinking that Vo
should depend on the shape of the nuclear surface, so
we shall use the 'Vo which fits spherical nuclei best.
Finally there is t, the parameter determining the depth
of the imaginary potential. This, we feel, should also
have the value determined by the fit to the scattering
from spherical nuclei. This is because, although a non-
spherical nucleus does possess rotational degrees of
freedom which a spherical one does not, we have taken
account of them explicitly, so that i V represents only
inelastic processes other than rotational excitations, just
as in the spherical case.

Since we are employing a square-well potential, the
parameters rp, Vo, and i which we use should be deter-
mined by fitting the scattering from spherical nuclei
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I'IG. 1.Low-energy strength functions for near-spherical nuclei
The curve is an optical model calculation for spherical nuclei with
r0=1.45f, V0 ——42 Mev, and /=0. 03. The data for the non-
spherical nuclei at 2 235 are included to emphasize their devia-
tion from this curve.
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with a square-well potential. This was just the model
originally employed by Feshbach, Porter, and Weiss-
kopf, ' and in fact still provides as good a 6t to the
low-energy scattering by sPherical nuclei as any of the
more recent modifications employing diGuse-edge wells. "
In Fig. 1 we have reproduced a plot of the strength
function calculated from such a model, using the best
choice of parameters of reference 2: r0=1.45 fermis, Vo
=42 Mev, and /=0. 03. The data plotted in Fig. 1
refer only to spherical or nearly-spherical nuclei" (ex-
cept the points around A=235, in which we shall be
particularly interested later), and they are seen to be
quite reasonably reproduced by this choice of pa-
rameters. The fit to these data determines (VvR'), this
being the quantity which determines the resonance
positions at zero energy. We shall, below, wish to
determine another resonance position very accurately,
at A 235. To do this we shall use the value of (VvR')
determined from Fig. 1 for spherical nuclei in some
convenient region, say at A =A 0, and then assume that
R=rvA&, so that (VvR') at A =A' is given by (VvR')'
= (VoR')o(A'/Av) &. To avoid extrapolating too far, we
have chosen Ao as large as possible, i.e., about 140.
We estimate that the points in this region determine
the position of the steeply-rising section of the curve to
within about 5 units in A.

We shall, then, employ the values of reference 2 for
I'v, Vo and $. The quadrupole deformation parameter
a2 has been determined for two or three nuclei near the
end of the periodic system by Coulomb excitation.
Heydenberg and Temmer" use ro= 1.2 to interpret their
measured E2 transition probability in terms of a quad-
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FIG. 2. Low-energy strength functions for heavy nuclei, calcu-
lated for several combinations of quadrupole and octupole de-
formation parameters. The curves are labelled by these pa-
rameters, as (a2,a3). A square-well potential was used, with
t'0= 1.45f, Vp=42 Mev and f=0.03.

"See e.g. , V. F. Weisskopf, Revs. Modern Phys. 29, 174 (1957).
"The deformation of these nuclei are estimated from their

static quadrupole moments, as given by C. H. Townes, Encyclo-
pedia of Physics, edited by S. Flugge (Springer-Verlag, Berlin,
1958), Vol. 38, Part 1, p. 442.

~ N. P. Heydenbnrg and G. M. Temmer, Anriea/ Review of
Nuclear Science, (Annual Reviews, Inc., Palo Alto, 1956), Vol. 6,
p. 77.

rupole deformation parameter. Since it is the charge
distribution which they are measuring, this use of the
ro determined by electron scattering" seems correct, and
gives a& 0.2, with an accuracy of perhaps 20'Po. This
work has more recently been repeated by Alder et al. ,

"
who 6nd a2 0.15, with about the same accuracy
claimed. This leaves a3 as our only free parameter,
which we can choose appropriately to fit the Brook-
haven data on I'„/D.

Figure 2 gives the results of the calculation of the
strength function for A &215, for four diGerent choices
of the deformation parameters, (ae, a&)." For av dif-
ferent from zero, I'„/D has a resonance in this region
which brings its values well above those of the spherical
model (I'„/D 0.25&&10 ') shown in Fig. 1. It is rather
surprising to 6nd that this resonance is present for a
pure quadrupole deformation, i.e., even when a&=0, for
this is a region very far from the S-wave resonant posi-
tions. This resonance, which was also seen by Chase
et al. ,

6 can be identified as due to the /=4 partial wave
from the fact that it drifts rapidly to the right as a2
decreases, and seems to disappear (as av —+ 0) at about
A =285, the l=4 resonant position.

As we mentioned earlier, the I' wave is expected to
show a resonance in this region if a3/0. However, the
fact that there is also an l=4 resonance present means
that we can expect an interference between them, with
the resulting curve depending strongly on a2 as well as
on a3. The effect of a& is felt most strongly in the region
A 220—230, as expected, and increasing u3 at constant
a2 is seen to have the eGect mainly of shifting the
resonance to the left—an eGect difFicult to distinguish
from increasing a2 at constant a3.

In Fig. 3 we have plotted curves with a2 ——0.15, cor-
responding to the measurements of Alder et al. , for
a3=0 and a3=0.10.27 We have also included the experi-
mental points mentioned earlier, "and find that they are
actually 6t best by a2 ——0.15, a3=0. The choice a3= 0.10
appears to be definitely too large, and by interpolation
it would seem difficult to fit these data with a value of
a3 greater than about 0.03, if the value a2 ——0.15 is
adhered to. (Using the Heydenburg-Temmer value a&

=0.20 decreases the upper limit on as, and in fact it
makes it difficult to fit the data even for av 0).

The limit a3&0.03 should be taken with a grain of
salt, however, for it depends sensitively on the values
assumed for the other parameters of the problem. In

'~ R. Hofstadter, Revs. Modern Phys. 28 (3), 214 (1956).
26 The sign of a2 is significant, distinguishing between prolate

and oblate quadrupole deformations; a2 is positive for the few
cases measured among the very heavy elements. The sign of a3 on
the other hand is meaningless. Reversing the sign of a3 inverts or
interchanges the large and small ends of the nucleus. But for an
axially-symmetric body, the same effect can be achieved by a
180' rotation, and since the incoming S waves are insensitive to
the orientation of the nucleus, this operation leaves the results of
the calculation unchanged.

2'For comparison, curves were also calculated using &=0.04
rather than 0.03. This broadened the curves slightly, but did not
shift them sideways.
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FIG. 3. Comparison of experimental strength function data
with curves calculated for nuclei having quadrupole and octupole
deformations. The square-well parameters are rp=1.45f, Vp=42
Mev, I =0 03 Ca.lcu. lated curves of R'/R are also included.

Particular, if (Verss) is changed, the whole curve can be
shifted to the right or left, and a different value of a3
will then be needed to bring it back to the experimental
points. As we mentioned earlier, (Vip ) is determined
principally by the points near A = 140 of Fig. 1. Shifting
the curve of Fig. 1 sideways by more than about 5
units in A would spoil the Gt to these points, and this
corresponds to a shift at A=240 of about 8 units. In
other words, the positions of the resonances of Fig. 3
are really only determined to within about 8 units in A,
which means that the upper limit on a3 is known only
with an error of something like 0.05.

We have also included in Fig. 3 the calculated values

of R'/R (whose definition is given, e.g. , in reference 2).
For a spherical nucleus, it would be very nearly 1.0
throughout this region, and our choice of parameters
is seen to keep it quite close to this value. R' has been
measured for only two of these heavy nuclei, ' and the
experimental values Gt neither the spherical-nucleus
curve nor either of our curves for nonspherical nuclei.

It is interesting to note that Froman" has recently
estimated the value of a3 for nuclei in this region by an
analysis of their n decays. For the daughter nuclei of
various isotopes of Th and U, he finds a3 0.006—0.02,
and for the daughter of Cm'", aa 0.001. These values
are quite consistent with our "best estimate" of an
upper limit on a3.

In summary, a square-well potential model with the
parameters rp=1.45f, Vs=42 Mev, and )=0.03 is
capable of fitting the zero-energy strength function data
for the spherical-nuclei quite well, and can also fit the
data for A 230 with a quadrupole deformation of the
size inferred from Coulomb excitation measurements. A
nucleus with a small octupole deformation can also Qt
these latter points; with the above choice of parameters,
and a2=0.15 from Coulomb excitation measurements,
we estimate that the most likely upper limit on u3 is
a3&0.03. This limit depends sensitively on the values
assumed for the other parameters, and by stretching
the 6t to the spherical nuclei, it could be varied by
perhaps as much as 0.05.
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