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studies. It also allows at least semiquantitative esti-
mates of the parameters which enter many electronic
properties. Finally, it provides a basis for experimentally
determining a more precise band structure in terms of
the observed deviations from single-OPW behavior.
In this last regard, it is worth remarking that for most
purposes one does rot desire a precise description of the
band structure. One more generally wishes to have a
parameterized model of the structure which is simple
enough to allow the calculation of a particular property,
but reliable enough to include the important features
of that effect.

In connection with the detailed studies of zinc and
cadmium, rather explicit descriptions of the Fermi
surfaces of these metals emerged. The surfaces resemble
those shown in Fig. 3 for valence two. The surfaces in
the combined first and second bands are distorted
qualitatively in the manner indicated on the right-hand
side of Fig. 4, but not to the extent that the lateral
ridges on the surface meet the lateral edges of the zone.

The ridges are everywhere rounded oG somewhat such
that the cross sections of the diagonal arms are reduced
by a few percent. In zinc the cross section of the
horizontal ring is narrowed down by a factor of ten
midway between the lateral edges of the zone; in
cadmium the ring is pinched off completely in these
regions. In the combined third and fourth bands the
needle-like segments along the lateral edges of the zone
are narrowed down greatly in zinc and disappear in
cadmium. In both cases the horizontal central disk is
reduced appreciably in size, while the V-shaped seg-
ments at the lateral zone faces are rounded off, but
presumably not greatly reduced in size.

In addition to the applications mentioned above, a
study of the anomalous skin effect in aluminum was
made, although there were no suitable data on single-
crystal specimens to allow for comparison. The oscil-
latory magnetoacoustic eGect was also discussed brieRy
in terms of the method. Finally, the generalization of
the scheme to a study of alloys was outlined.
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Examination of the spatial configuration of the magnetostatic modes of a ferromagnetic body shows that
those modes whose frequency lies between a&=p(B;H, )& and co=&(K+2sM) are surface modes. It is also
found that the complete spin-wave spectrum consists of a set of surface spin waves in addition to the spin-
wave band usually considered. The magnetostatic mode spectrum thus merges smoothly into the spin-wave
spectrum.

The characteristic equation for the surface modes on a plane surface at an arbitrary angle to the applied
dc field is given. The properties of the surface modes on plane surfaces and on spheroidal bodies are discussed.

'HE characteristic magnetostatic modes of a ferro-
magnetic slab, magnetized parallel to its surface,

were recently examined by the authors. ' It was found
that the mode spectrum extends over the same fre-

quency range as the magnetostatic mode spectrum of a
spheroid ' namely from to=&H; to &o=p(He+27rjtrI). It
was also found that the spectrum of a slab clearly divides
into two regions, one region extending from m=yII; to
to=y(B;Hr)& (coincident with the spin-wave band at
long wavelengths') in which the modes are spatially
harmonic plane waves, and the other region from
to=y(B;H, )& to o&=y(H+27rM) in which the modes are
surface waves with exponentially decaying amplitude
as one goes from the surface towards the interior of the
ferromagnetic medium. The purpose of the present note
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is to show the general existence of surface modes in this
frequency region immediately above the spin-wave band
for uniformly magnetized samples of rather arbitrary
shape and to discuss some of their properties. We find
that not only may the magnetostatic mode spectrum in
general be regarded as divided into volume and surface
modes, but that the complete spin-wave spectrum simi-
larly consists of a set of surface spin waves in addition
to the usual spin-wave spectrum of an infinite medium. '
Therefore, if one includes the surface spin waves, the
magnetostatic mode spectrum merges smoothly into the
total spin-wave spectrum. 4'

The general features of the surface modes may be
derived by considering a semi-infinite ferromagnetic
medium whose surface is at an angle, e, to the internal
dc magnetic 6eld, H;, as shown in Fig. 1. (In the limit
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of large wave numbers this may be considered to be a
small portion of the surface of a finite sample. )

Following Walker's method for the magnetostatic
mode problem, it is found that the characteristic po-
tential function, P, may be written as a product,
/=X(x)F'(y)Z(s), and, as expected, the solutions are
plane waves. V(y) and Z(s) have the form e'"» and
e'~", where k„and k, must be real and may take on
continuous values, due to the infinite extent of the
surface. Outside of the ferromagnetic medium X'(x)
=exp(k 'x) where k, '= ~(k„'+k2)&~. Within the me-
dium X'(x)=exp(ik, 'x) and for solutions with fre-
quencies within the spin-wave band k, ' is real and
boundary conditions may be satisfied for a given spin
wave, e'~', by adjustment of the spatial phase of the
spin-wave configuration. For a given k„and k, we find
that there is no more than one solution, in terms of
k, ' and co, which lies outside of the spin-wave band.
When it exists this solution lies in the frequency range
r(Bg')«co&r(H;+2xM) and the wave vector com-

ponent k, ' must have an imaginary part, thus assuring
a surface wave character. For these solutions
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The first and third terms of Eq. (1) are always positive
for co)r(B;H;)&, and, since p is negative, solutions are
only possible for positive k„.Thus all the surface wave

The characteristic equation for the surface modes, as
derived from the magnetostatic boundary conditions, is

(1+~ cos'n)k„'+(v cosn)k„+k '=0, (1)

where

solutions must be traveling waves with respect to their

y component.
Solving Eq. (1) for a& leads to a very simple expression

for the frequencies of the allowed surface modes in terms
of the applied Geld, the saturation magnetization, the
angle n (previously defined) and an angle P, which is
the angle between the surface propagation vector k,
(where k,'=k„'+k,') and the positive y direction (i.e.,
tanP= k,/k„).The result is
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where solutions are only permitted for

1)cosn cosP) (H;/B~) ~. (3)

For cosn cosP=1(n=0, P=O) the frequency is cv=y(H;
+2~M). Thus, the only mode existing at this frequency
would be a purely transverse (y directed) wave on a
sample magnetized parallel to its surface. Modes prop-
agating at the limiting angles (either in n or p) have
frequency co=&(B;H;)&. An increase in the dc field not
only compresses the frequency range of the surface
modes but limits their existence to more nearly trans-
verse modes on surfaces more nearly parallel to the
internal dc field.

In finite samples such as spheres and ellipsoids we
would expect, from the above, that surface modes will
exist in the frequency range p(B~;)«a&&&(H;+2~M)
on those parts of the surface most nearly parallel to the
internal Geld and that they will propagate in nearly
transverse directions. Indeed in the case of spheriods'
the argument of the characteristic function for the co-
ordinate normal to the sample surface changes from
real to imaginary as one goes from modes in the spin-
wave band to those above it. This assures a surface
mode character to the modes above y(8 jX~)& which
becomes most pronounced when the principal mode
number, e, is large. In each set of modes of a given (e,m)
there is only one mode, the (e,m, O) mode in Walker's
notation, that has the possibility of lying above p(B~;) .
Examination of the characteristic function of the (e,m, O)

modes lying above y(B;H;)' shows that they ha've sig-
nifica'nt amplitude only on that part of the surface that
is nearly parallel to the internal Geld. From Walker's
Eq. (21) in reference 2 it may be shown that the (n, m, 0)
mode of a sphere lies above y(B~;)& if

m (H)'
m+1+(0,1) KB,&

(4)
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I'IG. 1. Coordinate system orientation.

In the sphere we may identify e with the total surface
wave number and m with its transverse component, and
thus m/e-+ cosP. For n))1 Eq. (4) then corresponds to
Eq. (3) above. For small I the deviation of m/)m+1
+(0,1)g from m/n takes account of the penetration of
the surface waves to depths comparable with sample






