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Electronic Structure of Polyvalent Metals
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A single-orthogonalized-plane-wave approximation is de6ned and used to construct the Fermi surfaces
for face-centered-cubic and body-centered-cubic metals of valence one through four and for hexagonal-close-
packed metals of valence one through three. The de Haas-van Alphen effect, cyclotron-resonance effect, and
anomalous-skin effect are discussed in detail in terms of these surfaces and the deduced properties are com-
pared with experiment where suitable experiments exist. In particular, earlier and equivalent comparisons
for lead and for aluminum are reviewed, and detailed comparisons with existing experimental data on zinc
and cadmium are made. It is found that the single-OPW approximation is in semiquantitative agreement
with experiment in all of these cases, both as to the form of the Fermi surface and its associated effective
masses. In conjunction with these studies, detailed descriptions of the apparent Fermi surfaces in zinc and
cadmium are given. An extension of the method to allow experimental determination of a more precise
description of the band structure is discussed, and the generalization of the method to studies of alloys is
outlined.

I. INTRODUCTION

'HE free-electron theory of metals has been an
extremely useful theory since it was originally

proposed by Drude' and particularly since quantum
statistics were applied by Sommerfeld. ' This theory
has been extended to include a very weak lattice po-
tential in the "nearly-free-electron" approximation' and
profitably applied to the study of many properties of
metals and alloys. More recently a "nearly-free-
electron" approximation has been applied to a study
of the de Haas-van Alphen eGect in lead by Gold4 and
to a study of Gunnersen's' data on the de Haas-van
Alphen e6ect in aluminum by the author. ' The success
of this theory has been remarkable, particularly since
free-electron wave functions are certainly quite poor
approximations to the true wave functions in a metal
and the lattice potential is certainly not small. Within
the past few years a new understanding of the reason
for this success has been developing.

In a careful orthogonalized-plane-wave calculation
of the band structure of aluminum, Heine7 noted that
the band energy in the first two bands is given quite
closely by the free-electron value except very close to
Brillouin-zone faces, suggesting that the effective lattice
potential is weak and that in much of the zone the wave
function is given fairly closely by a single orthogonalized
plane wave. It has been known for some time that the
effect of orthogonalizing conduction-band states to the
core might be represented by a repulsive contribution
to a pseudopotential, ' but only recently has it been

r P. Drude, Ann. Physik 1, 566 (1900).
s A. Sommerfeld, Z. Physik 47, 1 (1928).' See, for example, N. F. Mott and H. Jones, The Theory of the

Properties of Metals arsd Alloys (Dover Publications, New York,
1958), p. 59.' A. V. Gold, Phil. Trans. Roy. Soc. (London) A251, 85 (1958).' E. M. Gunnersen, PhiL Trans. Roy. Soc. (London) A249, 299
(1957).

6%. A. Harrison, Phys. Rev. 116, 555 {1959).
7 V. Heine, Proc. Roy. Soc. (London) A240, 340 (1957).
8 A review of the many contributions to this point of view is

given by J. C. Phillips, Phys. Rev. 112, 685 (1958).

pointed out, by Phillips and Kleinman, that this
repulsive contribution may, to a large extent, cancel
the core potential itself, making the eGective net
potential considerably weaker than might at first be
expected. Cohen" has pointed out that this cancellation
is not fortuitous and that it may be expected in metals
under fairly general circumstances.

The possibility that the effective lattice potential
entering the OPW approximation is weak suggests a
succession of approximations which might be applied
to the metal. One would erst construct plane waves,
suitably orthogonalized to the core states. In this
representation one could then calculate the matrix
elements of the Hamiltonian; the off-diagonal elements
arise only from the effective potential and are expected
to be small. They will in some cases, however, connect
degenerate states, so that if we wish to treat these
elements as small we must 6rst transform to a new
representation in which the off-diagonal elements
connecting nearly degenerate states vanish, It will be
seen in Sec. II that this transformation changes the
connectivity. of the bands but does essentially nothing
else. The single orthogonalized plane waves in the new
representation form the zeroth order of approximation,
and the lattice potential does not enter it explicitly,
except possibly by introducing deviations of the di-
agonal elements from free-electron values; we call this
the single-OPW approximation. In successive steps in
the approximation we would introduce the oG-diagonal
elements which enter most strongly, thus mixing suc-
cessively more plane waves to form the approximate
eigenstates. Our hope is, of course, that the initial step,
the single-OP% approximation, will give a good
description of the band structure,

This is apparently not the case in some of the
monovalent metals, notably lithium and copper. In
both of these cases the energy gaps at zone faces appear

' J. C. Phillips and L. Kleinman, Phys. Rev. 116, 287 (1959).
M. H. Cohen (private communication).
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to be large, and the Fermi surfaces may be badly
distorted. Cohen and Heine" have noted that though
a single OPW may be satisfactory in some of the band,
two are needed in important regions near zone faces.
Using essentially a two-OPW approximation, they have
developed a theory of the monovalent metals and their
alpha-phase alloys. In spite of this complication in the
monovalent metals, the success of the nearly-free-
electron approximation in lead and aluminum leads us
to retain the hope that the single-OPW approximation
will give a good description of main features of the band
structure in the polyvalent metals.

The author undertook a detailed analysis of alumi-

num, which appears in the preceding paper, in order to
determine the sense in which the single-OPW approxi-
mation may be a good representation. of a particular
metallic band structure. As a first step, a crude band
calculation was made by interpolating the self-con-
sistent calculations of Heine. "Constant energy surfaces
were obtained and compared with the available experi-
mental knowledge of these surfaces. The calculated
surfaces appeared to be quantitatively consistent with
the experimental results, except with respect to cyclo-
tron and speci6c-heat masses which were in error by a
factor of two. The surfaces calculated, then, were
regarded as a reasonable approximation to the "true
band structure, " though only semiquantitative with
respect to masses, and were compared with the single-

OPW approximation. The several sheets of Fermi
surface which were obtained with the single-OPW
approximation strongly resembled the corresponding
sheets from the band calculation. Ridges which were

sharp in the single-OPW surfaces became rounded in
the more complete calculation, and there was some
distortion in the regions of these ridges. In spite of such
distortions, the single-OPW approximation was in
semiquantitative agreement with the band calculation,
and therefore with experiment, in its values for the
various parameters which determine the electronic
properties.

Thus we 6nd that the single-OPW approximation
provides a very simple semiquantitative theory of the
band structure of aluminum. It is not clear, of course,
that this approach will be so successful if applied to
other metals, but the simplicity of the scheme and the
general success that has been met by the "nearly-free-
electron" approximation, as well as the plausibility of a
weak pseudopotential, suggest that a generalization to
other polyvalent metals may be justified.

The primary purpose of this paper is to apply this

method to a series of metals, to deduce electronic

properties in terms of the method, and to compare the
results with experiment wherever possible in order to
determine experimentally the range of validity of the
method. The application to zinc and cadmium will be

"M. H. Cohen and V. Heine, Suppl. Phil. Mag. 7, 395 (1958).
'2 V. Heine, Proc. Roy. Soc. (London) A240, 361 (1957).

of considerable interest in itself by clarifying the band
structure of these metals.

IL THE SINGLE-OPW APPROXIMATION

In the preceding paper we defined the single-OPW
approximation in terms of the pseudopotential approxi-
mation of Phillips, but we may clarify its signi6cance
by de6ning it here in slightly more general terms. We
assume the existence of a one-electron Hamiltonian for
the crystal:

H=p'/2m+V(r),

where V is the self-consistent potential, not to be
confused with the pseudopotential of Phillips. We
construct the core states as before and de6ne approxi-
mate conduction-band states fa to be plane-waves
orthogonalized to the core states and to each other.
We may de6ne the Hamiltonian matrix in the repre-
sentation of these wave functions and, as before, there
are no oG-diagonal elements connecting core states and
conduction-band states, so we consider only the con-
duction-band matrix. The diagonal elements T~ will

be independent of the direction of k if the core potentials
are spherically symmetric, if the core states do not
overlap, and if the orthogonalization of plane-wave
states diGering by a reciprocal-lattice vector has not
introduced appreciable anisotropy; we make these
assumptions. The off-diagonal elements, (lt ~.,V(r)p~),
will connect only states diGering in wave number by a
reciprocal lattice vector, since V(r) has the trans1ational
periodicity of the lattice. These oG-diagonal elements
must be equal to the corresponding elements of Phillips'
pseudopotential since they are to give rise to the same

gaps in the energy bands; the scheme becomes equiv-
alent to that of Phillips if we replace T~ by the free-
electron kinetic energy and use the oG-diagonal elements
as adjustable parameters. We will not make such an
approximation at this point, but simply note that we

expect these elements to be small.
The energy of a particular state will be given by T&

with corrections arising from the oG-diagonal elements.

By standard perturbation theory we can see that these
corrections will be second order in the off-diagonal
elements and small, except where two nearly-degenerate
states are connected by an oB-diagonal element. For a
lattice with a single atom per unit cell this will occur
for any set of nearly-degenerate states which diGer in
wave number by a reciprocal lattice vector; in a lattice
with more than a single atom per unit cell, such as the
hexagonal-close-packed lattice, some of these oG-

diagonal elerrlents may be required to vanish by
symmetry.

The condition for the oG-diagonal elements to become
important is the existence of two states lt q and gq I
such that Tj.=Ta I, or k'= (k—K)' since Ta is iso-

tropic. Here K is a reciprocal lattice vector corre-
sponding to nonvanishing matrix elements. This is just
the condition determining a Brillouin-zone face in
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band-structure language or determining a Bragg-
reflection plane in free-electron language. In the region
of such a plane we must treat the interaction between
the states exactly. Let VK be the appropriate oR-
diagonal matrix element; the eigenstates have the form
A kpk+A k zfk z, where the A k satisfy the condition,

{2(2'k—K—Tk)~[e(Tk z—&k)'+Vz*vz]&)Ak
VK~ k—K

obtained by diagonalizing the two-by-two matrix. This
corresponds to the transformation indicated in the
introduction. Choosing a particular sign of the ~, we
see that as k moves through the region where Tk and
Tk z cross, Ak rapidly drops from one to zero (if the
wave function is normalized suitably) while Ak z rises
from zero to one. This means that if we follow a state
continuously as we move across one of the Bragg-
reAection planes, the state changes from one of the
type pk to one of the type fk z, the distance over which
this transition occurs depending upon the magnitude
of VK. As we make the VK become small, the region of
transition shrinks, and the only important effect of the
potential is the alteration of the connectivity of the
energy surfaces at Bragg-refiection planes. All other
effects of the VK become small as VK becomes small and
are neglected.

This, then, dehnes the single-OPW approximation.
The constant-energy surfaces are spheres with con-
nectivity modifications at the Bragg-reQection planes.
The determination of these surfaces is quite straight-
forward. In particular, since we can calculate the radius
of the sphere which will contain a given volume of
wave-number space, and therefore a particular number
of electronic states, the determination of the Fermi
surface is a strictly geometrical problem; the only
information which we require is the crystal structure
and the valence of the metal. In developing this picture
we have assumed that there exists a self-consistent one-
electron Hamiltonian of the form of Eq. (1), that the
potential V(r) is made up of spherically-symmetric
potentials around the atoms, that the core states do
not overlap, and that the matrix elements between
single OPW's are small. If we wish to evaluate eRective
masses, we must know how the energy varies from
surface to surface; that is, we must know how Tk varies
at the Fermi surface. In the treatment that follows we
will assume the free-electron variation dTk/dk= iz'lt/rte.

It is of interest to examine the behavior of electrons
from this point of view. The states of an electron of a
particular energy, E, lie on a sphere in wave-number
space of radius k= (2rtzE/fz')&. As an electron moves on
this energy surface (as it will under the influence of a
magnetic Geld), it moves continuously except where
the surface intersects Bragg-refIection planes and at
these points it jumps to a point on the surface which
lies a reciprocal-lattice vector away. We would say that
in this representation, the electron trajectories in
wave-number space are discontinuous.

It will turn out that this is the representation of the
electronic states which is most convenient when the
details of the cyclotron-resonance behavior or of the
anomalous skin effect are considered. For most appli-
cations, however, another representation, the reduced-
zone scheme, is preferable. It is known" that all of
wave-number space may be mapped into the first
Brillouin zone by translations by reciprocal-lattice
vectors. Thus the constant-energy sphere described
above is translated by segments into the central zone.
Since all points diRering by a reciprocal lattice vector
are translated into the same point, a Bragg reQection
is represented by a cusp in the wave-number trajectory,
but no discontinuity. It should be noted that the same
reduction can be made to a reduced zone which is not
centered on a reciprocal-lattice point. If it is centered
on some point other than a reciprocal-lattice point,
however, the bands within the zone will have a sym-
metry appropriate to its central point rather than to
the lattice as a whole. The center of the constant-energy
sphere is required to lie on a reciprocal-lattice point by
the definition of the reciprocal lattice.

The construction of constant-energy surfaces in the
reduced-zone scheme may be greatly simplified by
noting that when a segment of a sphere centered on a
reciprocal-lattice point is translated by a reciprocal-
lattice vector, it becomes the segment of a sphere
centered on another reciprocal-lattice point. '4 Thus all
of the segments of the constant-energy surface in the
reduced zone may be obtained simply by constructing
spheres around every point of the reciprocal lattice.

In going from the extended-zone scheme, in which the
energy is a single-valued function of wave number, to
the reduced-zone scheme, in which the energy is many-
valued, we must sort out these various segments and
assign them to their appropriate bands. In lattices with
a center of symmetry the intersection of any two
spheres (of the same energy) corresponds to the satis-
faction of a Bragg condition so the constant-energy
surface corresponding to a particular band changes
spheres at the intersection, and surfaces from diRerent
bands cannot cross. Under these circumstances, it can
be seen that if we construct spheres corresponding to
a particular energy, the surface corresponding to the
first band will be the surface surrounding the volume
which lies within one or more spheres; the second-band
surface surrounds the volume which lies within two or
more spheres, etc. The bands defined in this manner
will never cross, and electron states will vary con-
tinuously within each band. A state which lies on one
face of the reduced zone will be equivalent to one which
lies on the opposite face and corresponds to the same
band. Thus if we move from state to state analytically,

See, for example, F. Seitz, Moderrl, Theory of $oltlle (MoGraw-
Hill Book Company, Inc. , New York, 1940), Chap. 8.

'4 This scheme was used by the author in reference 6 where a
two-dimensional example is described in detail.
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i.e., as we follow an electron trajectory, we will never
leave the band in which we start. "

In lattices such as hcp, which have more than one
atom per unit cell, the situation is not so simple. Then
the matrix elements corresponding to certain Bragg-
reflection planes vanish; notably those which bound
the central Brillouin zone in the direction parallel to
the c axis. Any electron following a trajectory which
crosses such a plane takes an electron from one band
to another. It is possible to consider a larger "reduced
zone" (in the case of hcp, one of twice the volume of
that of the hexagonal lattice) such that a trajectory
never leaves the combined band in which it starts, "
and such that a trajectory which crosses a face of the
combined zone reappears on the opposite face in the
same band. In order to construct the constant-energy
surfaces in such a case, one again constructs spheres
around each reciprocal-lattice point, but notes that the
constant-energy surfaces do not change spheres at an
intersection when the centers of the two spheres differ

by a reciprocal-lattice vector for which the matrix
element vanishes. Each section of the single-OPW
sphere appears twice in the combined zone but is drawn
as a constant-energy surface only once. This requires
some care in the construction, but by following appro-
priate trajectories along the constant-energy surfaces,
it is possible to sort out the surfaces. In the hcp lattice,
the only reciprocal lattice vector of interest for valences
through four, which has a vanishing matrix element, is
the shortest one parallel to the c axis.

The constant-energy surface which is of most interest
in a metal is, of course, the Fermi surface. Thus we
select a single-OPW sphere which has a volume large
enough to contain the valence electrons (one-half the
volume of the reduced zone times the valence times the
number of atoms per cell) and construct constant-energy
surfaces. It is convenient as a first step to select a plane
in the Brillouin zone and draw in the intersections of the
spheres centered at various reciprocal-lattice points with
this plane (these are simply circles). With the aid of
such figures, it is possible to draw up the surfaces in
three dimensions.

The Fermi surfaces for face-centered-cubic and body-
centered-cubic metals of valence one through four have
been drawn up by Warner" at our laboratory, and are
shown in Figs. 1 and 2. In addition, he drew the
surfaces for a hexagonal-close-packed lattice of ideal
e/a ratio for valence one through three, shown in Fig.
3. Such figures are of considerable value in isolating the

'5 This is not strictly true. There exist lines of contact between
adjacent bands across which the wave functions change con-
tinuously from one band to another. In the single-OPW approxi-
mation these will lie on zone edges (as may be seen for face-
centered-cubic lattices in the preceding paper by letting the
potential go to zero). Such lines are not important physically
since for any fixed set of applied forces the total volume of wave-
number space comprised by trajectories which cross these lines
is zero.

"Now at the Department of Mathematics, Massachusetts
Institute of Technology, Cambridge, Massachusetts.

features which may be important in a particular
phenomenon. Detailed dimensions for these and for
related structures are best found by reconstructing the
intersections of these surfaces with various planes in the
zone.

Armed with this concrete, though approximate,
picture of the Fermi surfaces, we may proceed to con-
sider the expected electronic properties of these metals.

III. ELECTRONIC PROPERTIES

Before considering various electronic properties in
detail, it is desirable to summarize the aspects of the
electronic structure each emphasizes. We look first at
the de Haas-van Alphen eRect, the Azbel'-Kaner eRect,
and the magnetoacoustic absorption, all of which
depend upon the application of a dc magnetic field.

The motion of an electron in wave-number space
under the influence of a magnetic field is given by"

Aitk/itt = —(e/c) v&& H, (3)

"See, for example, W. Shockley, Electrons and Holesin Semi-
colductors (D. Van Nostrand Company, Inc. , New York, 1950).' For a discussion of this simple approach, see R. G. Chambers,
Can. J. Phys. 34, 1395 (1956).

"M. Ia. Azbel' and E. A. Kaner, J. Exptl. Theoret. Phys.
(U.S.S.R.) 30, 811 (1956) I translation: Soviet Phys. —JETP 3,
772 (1956)j and J. Exptl. Theoret. Phys. (U.S.S.R.) 32, 896
(1957) /translation: Soviet Phys. —JETP 5, 730 (1957)$.

where v is the velocity of a wave packet in real space
and is given by (1/h)BE/itk. It is seen that the com-
ponent of k parallel to the field is independent of time
and that energy is conserved. Therefore, the trajectory
in wave-number space is given by the intersection of a
constant-energy surface and a plane perpendicular to
the magnetic Geld, there being a distinct orbit for each
such intersection. In the three osci11atory phenomena
under consideration, each orbit will contribute an
oscillatory term to the eRect. The observed oscillations,
then, have periods corresponding to regions of the
Fermi surface which give extremal periods since they
are heavily weighted. There may be a further condition
relevant to the Azbel'-Kaner effect, which will be
discussed later.

The period of a de Haas-van Alphen oscillation is
determined by the area of the electron orbits in wave-
number space in the region of the Fermi surface giving
rise to the oscillation. The period is related to that area
by

6 (1/H) =2sr%AA, (4)

in Gaussian units, as can readily be obtained by
applying the Bohr-Sommerfeld quantization rule to
the orbits in the field" as determined from (3). Thus,
measurements of the periods of the de Haas-van Alphen
oscillations give measurements of various cross-sectional
areas of the Fermi surface.

The Azbel'-Kaner effect (cyclotron resonance in
metals), on the other hand, measures the frequency of
electron orbits in the field. " By performing a time
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integral around the orbit and applying (3), we see that
the orbit frequency is related to the band structure by

co.= (2~eH/A'c)/(BA/BE) err,

where (BA/BE) a~ is the rate of change of the orbit area
in wave-number space in a plane perpendicular to H
as the energy is changed. It is customary to define a
cyclotron mass in terms of this frequency by

co.=eH/m*c; then the period of the oscillation is

6 (1/H) =e/c(o, m*, (5)

with m*=h'(BA/BE)a~/2m, in Gaussian units. Thus
cyclotron resonance gives information with respect to
dE/dk mixed with information about the geometry of
the surface. An equivalent determination of the cyclo-
tron mass may be made in terms of the temperature
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dependence of the amplitudes of the de Haas-van
Alphen oscillations.

Oscillations in the ultrasonic attenuation as a func-
tion of magnetic field may correspond to coincidences
in the orbit dimensions Lin real space, or by use of (3)
indirectly in wave-number space jwith the sound wave-
length. "This eGect should, in principle, give the most

This effect, originally proposed by A. B. Pippard [Phil.
Mag. 2, 1147 (1957)]has been confirmed by extensive theoretical
treatments by T. Kjeldaas and T. Holstein, Phys. Rev. Letters

direct information about the shape of Fermi surfaces,
but well-dered oscillations have been reported only
in copper, "bismuth" tin, '3 and in aluminum. '
2, 340 (1959) and by M. H. Cohen, M. Harrison, and W. A.
Harrison [Phys. Rev. 117, 937 (1960)]."R.W. Morse and J. D. Gavenda, Phys. Rev. Letters 2, 250
(1959). The period of these oscillations has been confirmed by
B. W. Roberts (private communication).

~ D. H. Reneker, Phys. Rev. 115, 303 (1959).
2'T. Olsen and R. W. Morse, Bull. Am. Phys. Soc. 4, 167

(1959)."B.W. Roberts, Bull. Am. Phys. Soc. 4, 423 (1959).
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For the orientations used in the copper experiment,
the periods should correspond to a measurement of the
radius of the Fermi surface along a (100) direction.
These measurements correspond to a radius of 0.63, in
units in which the distance from the center of the zone
to the center of the square face is one. This is smaller

by 20%%uo than the value given by Pippard" and the
value obtained with a single-OPW sphere (the two
being comparable). If we assert that the Fermi surface
cannot extend beyond this measured radius, we con-
clude that the Fermi surface must lie within a cube,
the edge of which is 1.27 in our units. Such a cube has
a volume about equal to that required by one electron
per atom and the volume available to the electrons is
even further reduced by truncating the cube to fit it
in the zone. We conclude that there is some difficulty
in interpreting the results, and there is uncertainty in
the use of the method as long as this discrepancy
remains uninterpreted. Because of this, because the
data on polyvalent metals are limited, and because the
significance of pictures such as Figs. 1, 2, and 3 in any
attempted interpretation of data is quite clear, we will

not discuss the eGect any further.
In addition to these three phenomena, which depend

upon the application of a magnetic field, the anomalous
skin effect and the electronic specific heat give infor-
mation about the electronic structure, but in a some-
what less direct form than the phenomena discussed
above.

The measurement of surface impedance in the
anomalous limit gives information about the curvature
of the Fermi surface perpendicular to a line which runs
around the Fermi surface and is the locus of points
corresponding to vanishing velocity perpendicular to
the specimen surface. "In particular, let the specimen
surface lie in an x-y plane with x and y chosen along
principal axes of the surface-resistance tensor. We
define r„ to be the radius of curvature of an intersection
of the Fermi surface with the plane k„=constant at
the points where the intersection is parallel to the
2; direction. Then the surface resistance in the x direction
is given by"

(6)

the integration being taken over all such points on the
Fermi surface. Thus the result is not complicated by a
dependence on the gradients of E with respect to k nor

by eGects of scattering. However, the rather compli-
cated dependence upon the shape of the surface makes
the data de.cult to interpret and the necessity of
preparing a new specimen for each point makes the
data dificult to obtain.

Finally, the electronic specific heat at low tempera-
tures, yT, gives a measure of the total density of states
at the Fermi surface. y is related to the band structure
by

dV
7=

12% dE

where k is the Boltzmann constant, and dv/dE is the
change in volume in wave-number space of the Fermi
surface with change in energy. This involves a sum-

mation of contributions over the entire Fermi surface
and gives the least-detailed information of the phe-
nomena considered. It is clear that the change in
connectivity of the single-OPW sphere brought about
by the lattice potential does not affect the electronic
specific heat, so in this approximation only the form
of the single-OPW kinetic energy, T&, enters; i.e., the
value of dT~/dk. Since this quantity also enters the
cyclotron mass through (BA/BE) s~, the measured
electronic specific heat is of interest in connection with
the analysis of the cyclotron masses, and we will discuss
it only in that connection in what follows. The intro-
duction of a finite lattice potential may modify the
electronic specific heat appreciably in some cases, but
as was pointed out in the preceding paper, this eGect
may be much smaller than at first expected.

We may now proceed to consider these phenomena
in the light of what we expect from the single-OPW
approximation and what is found experimentally.

1. de Haas-van Alphen Effect

It has been demonstrated that de Haas-van Alphen
data generally are not suKciently complete to allow

one to deduce the Fermi surface; it has been shown, in

particular, that quite a wide variety of surfaces are
consistent with data which would appear to be reas-
onably complete. On the other hand, they have proven
to be the best source of information for filling in the
details of the surface once its general shape has been
postulated. This is just the situation which calls for an
approximate band theory such as the single-OPW
approximation.

The best representation of the band structure for
this purpose is that in which the electron trajectories
are continuous; that is, the representation illustrated in

Figs. 1 through 3. As we have indicated, the appropriate
analysis of data in lead and aluminum has been made,
and we will summarize the findings with only minor
modifications. We will then proceed to cadmium and
zinc for which sufhcient data exist to enable the
analysis, but for which this analysis has not been made.

a. Lead

"A. B. Pippard, Phil. Trans. Roy. Soc. (London) A250, 325
(1957).

'6A. B. Pippard, Proc. Roy. Soc. (London) A224, 273 (1954)
and E. H. Sondheirner, Proc. Roy. Soc. (London) A224, 260
(1954).

Gold' has found four sets of oscillations in lead which

he labeled ot, P, ys, and Vr in order of increasing period,
or decreasing wave-number cross section. In terms of a
picture such as the valence-four picture of Fig. 1, he
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TABLE I. Areas of Fermi-surface sections in lead in units
of (2z./o)'= 0.45 atomic unit.

Oscillation
type

Assumed
band

Single
OPW Experimental'

a, (100) field 2nd
n, (110) Geld 2nd
P, (100) field 3rd (central hole)

y2, (110) Geld 3rd (center arms)
y~, (110) field 3rd (end of arms)

1.82
1.04
0.13
0.16
0.14

1.11
1,00
0.30
0.11
0,11

a See reference 4.

associated the n oscillations with the second-band
surface, the P oscillations with the hole through the
center of the horizontal "anchor ring" of the third
band, the y~ oscillations with the pockets in the fourth
band, and the y2 oscillations with orbits around the
"arms" of the third-band surface. We prefer to make
one minor modification in this interpretation and
associate both the y~ and y2 oscillations with orbit'
around the arms in the third band, the larger-period
set being associated with minimum cross sections near
the ends of the arms. There are several reasons for
suggesting this modification: The variation of the
period of the y oscillations with orientation would
indicate that the arms are tapered toward the ends"
implying that such minima must exist; also, the single-
OPW approximation suggests such a taper. Further,
Gold has indicated that it would be surprising if the
fourth-band pockets were as large in section as the
third-band arms since the existence of energy gaps
should reduce the fourth-band pockets considerably. In
our interpretation we will also find the experimental
periods more nearly alike than we expect, but find the
discrepancy more in line with modifications expected
from the existence of gaps. Either interpretation appears
to be consistent with the general orientation depend-
ence, and the agreement with the single-OPW approxi-
mation is comparable for the two interpretations.

Table I lists the relevant areas as calculated using
the single-OPW approximation and as measured by
Gold. It is convenient in interpreting these to note that
the area of a square face in the zone is one-half in these
units. As was expected, these areas are only in semi-
quantiative agreement. The large discrepancy with
respect to the area of the second-zone surface per-
pendicular to a (100) field is to be expected, since the
major part of the edge of this area lies along a ridge
which will be rounded by the introduction of more
OPW's; the edges of all other sections listed at most
cross ridges. The remaining discrepancies correspond
to shrinking of the 3rd-band arms around the symmetry
lines as is observed in aluminum and expected upon

the basis of the band calculations in the preceding
paper.

Gold also obtained eGective-mass data from the
temperature dependence of the amplitudes of the
oscillations. This will be considered in the section on
cyclotron resonance which follows.

b. Aluminum

The interpretation of the data in aluminum is dis-
cussed extensively in reference 6 and in the preceding
paper. We simply repeat the remark that there is a
question whether the long-period oscillations (7i in
the table) are to be associated with orbits around the
ends of the arms or with small regions surrounding
lines of contact in the third band. The comparison with
the single-OPW calculations is given in Table II. Gold s
notation for the oscillation types is used. The agree-
ment may be regarded as somewhat better than that
for lead, since the areas in question are much smaller
and shortcomings of the model would make much
larger percentage errors in the areas; that is, we infer
that the matrix elements of the effective potential are
somewhat smaller in aluminum.

TABLE II. Areas of Fermi-surface sections in aluminum in
units of (2s/o)'=0. 68 atomic unit.

Assumed
band

Oscillation
type

ys(110) field 3rd (center arms)
yr(110) Geld 3rd (end of arms)

Single
OPW

0.022
0.001

Experimental'

0.011
0.001

c. ZMc

We now proceed to zinc and cadmium which have
not been previously interpreted with a single-OPW or
"nearly-free-electron" approximation. Both metals are
hexagonal-close-packed and therefore correspond, ex-
cept for differences in c/a ratio, to the appropriate
pictures in Fig. 3. The available data are more extensive
for zinc, and we consider it Q.rst.

The most complete de Haas-van Alphen data for
zinc have been given by Verkin and Dmitrenko, "who
observed three sets of oscillations. The most prominent
set they attributed to needle-like segxnents of Fermi
surface lying parallel to the c axis. The maximum
period observed was 0.62&(10 ', (gauss) ' corresponding
to an area of 0.000154 A '. We consider these first and
seek the corresponding segments in a 6gure such as
Fig. 3. We should first consider how these surfaces
change as the c/a ratio is altered. Figure 3 as drawn
corresponds to the ideal c/a ratio of 1.6330. As c/a
increases, the diagonal arms in the combined first and
second bands for valence 2 stretch further and further

~~ The ratio of periods of the y oscillations for 6elds in the (100)
direction to that for fields in the (110) direction is 0.78, implying
a ratio of sections of the surface of 1.3 for the two orientations.
If the surface were cylindrical, this ratio would be V2; the fact
that it is smaller implies a taper toward the ends.

+ See reference 5.

~88. I. jerkin and I. M. Dmitrenko, Izvest. Akad. Nauk
(S.S.S.R.) Ser. Fiz. 19, 409 (1955) Ltranslation: Bull. Acad. Sci.
(U.S.S.R.) 19, 365 (1955)g.
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FIG. 4. Fermi surface in the
combined Grst and second
bands of divalent hexagonal-
close-packed metals according
to the single-OP% approxi-
mation. The Ggure on the left
corresponds to an ideal c/a
ratio of 1.633; that on the right
to a s/o ratio of 1.862, roughly
that of cadmium.

4 p2s y' (2N3 a zy '

a&a) E 8s. c2)
(8)

where s is the valence of the metal; two for zinc and
cadmium. The area corresponds to electrons in the
third and fourth bands if the expression in the square
brackets is positive, and to holes in the first and second
bands if it is negative. This may be set equal to the
observed area and solved for the necessary c/a ratio;
we obtain 1.8419 for electrons, 1.8799 for holes. The
true c/a ratios necessary to explain the observed areas
would presumably be somewhat farther from the
critical ratio of 1.8607 since the eGect of the lattice
potential would be to reduce the areas in either case.

The observed c/a ratio in zinc is 1.856 at room tem-
peratures, but we note that the"de Haas-van Alphen
data have been taken at low temperatures. We may
estimate the c/a ratio in zinc at low temperatures from
the thermal expansion coefFicients measured by

toward the top and bottom faces of the zone while the
ridges near the lateral edges move closer to the edges;
at the same time, the needles lying along the edges in
the combined third and fourth bands become smaller.
At the critical c/a ratio of 1.8607, the arms in the first
and second bands reach the horizontal faces, the ridges
disappear with the surface meeting the zone faces all
along the lateral edges, and the needle-like portions in
the third and fourth bands disappear. At c/a ratios
above this the erst- and second-band surface resembles
that shown in the right-hand side of Fig. 4; segments of
surface near the zone corners may be rearranged to see
that needle-like portions of holes exist at the corners
and lie along the c axis. Because the c/a ratio in zinc
lies near the critical value, we cannot be certain at first
whether the needles seen by the de Haas-van Alphen
effect are electrons in the third and fourth bands or
holes in the erst and second bands.

The cross-sectional area of these segments in the
single-OPW approximation may be evaluated and is
given approximately by

Gruneisen and Goens" in single crystals of zinc. A
value of 1.8246 has been obtained in this way. This
clearly favors the association of the oscillations with
electrons in the third and fourth bands. H we accept
this interpretation we may compare the single-OPW
estimate with experiment; taking the c/a ratio as
1.8246 at low temperatures, we obtain from (8) an
area of 0.00056, four times the area observed experi-
mentally. This agreement may be regarded as good in
view of the smallness of segment involved and the
uncertainty of the low temperature c/a.

Another aspect of this data which bears on the
question as to which segment of the surface is involved
is the variation of the period with orientation. Ke note
that the segments of electrons are ellipsoidal, whereas
the segments of holes are hyperbolic in shape. We have
replotted the data of Verkin and Dmitrenko on the
variation of period with orientation in Fig. 5 along with
a curve fitted to their data at 0=0 and calculated

Ct'o 5
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Fro. 5. Experimental variation of the longest-period de Haas-
van Alphen oscillations in zinc as observed by Verkin and
Dmitrenko (see reference 28). The Geld orientations are indicated
in the Ggures below. The curves represent the variation of periods
for an infinite cylindrical Fermi surface with its axis parallel to
the c axis and its cross section adjusted to Gt the data for Gelds
parallel to the c axis.

s9 E. Griineisen and E. Goens, Z. Physik 29, 141 (1924).



1200 WALTER A. HARRISON

assuming a cylindrical shape. (This curve is simply
0.62 cos8.) The fact that the experimental points lie
above this curve for large 0 implies that the cross-
sectional area is growing more slowly with rotation
than it would for a cylinder and therefore that the shape
is of the ellipsoidal type. This conhrms our supposition
that the relevant surfaces are the needle-shaped
segments of electrons in the combined third and fourth
bands.

There are several other sets of de Haas-van Alphen
data which we should consider in the light of this
interpretation. These involve the variation of the
period with temperature, with alloying, and with
pressure; we consider these next.

Berlincourt and Steele" have found that the period
of the de Haas-van Alphen oscillations in zinc increases
rapidly with temperature, rising from 0.064 (k gauss) '
at 4.2'K to 0.125 (k gauss) ' at 61.2'K. This corre-
sponds to a sharp decrease in the cross-sectional area
of the Fermi surface. The temperatures involved are
much less than the degeneracy temperature, so we do
not expect any observable change in period to come
from a change in the Fermi energy with temperature,
but we do expect to see e6ects arising from the change
in c/a ratio. Since the c/a ratio is increasing with
temperature, we expect segments of electrons to
decrease in area while segments of holes would be ex-
pected to increase in area; thus the observed tempera-
ture dependence also supports the interpretation of the
oscillations as arising from electrons. Though the data
on the thermal expansion coeKcients in this tempera-
ture range are scant, " we may use it to estimate the
change in area according to the single-OPW approxi-
mation. We obtain a decrease in this temperature
range from 0.00056 to 0.00048 A '. This is to be com-
pared with the observed change from 000015 to
0.00008 A '.

A change in the period of the oscillations upon
alloying with copper has been observed by Marcus, "
who found that the period decreased due to the addi-
tion of copper. He also found an increase in period
upon alloying with aluminum, but this increase was
within the error of the experiments. These results
represent an increase in cross section as the electron
density decreases, and interpretation on the basis of
the rigid-band model, of course, would indicate that
holes are involved. Such an interpretation overlooks
the change in c/a ratio which occurs with alloying. It
is seen from Eq. (8) that the cross section of the
segments of Fermi surface in question depend upon
su/c, rather than simply s. Consider first the addition
of copper to zinc; Owen and Pickup" have found that
the addition of 1.85 atomic-percent copper to zinc

~T. G. Berlincourt and M. C. Steele, Phys. Rev. 95, 1421
(1954)."J.Marcus, Phys. Rev. 77, 75D (1950).

~ E. A. Owen and L. Pickup, Proc. Roy. Soc. (London) A140,
179 (1933).

lowers the c/a ratio from 1.856 to 1.817 and that the
changes were linear in concentration; thus the addition
of 1.85 atomic-percent copper raises sa/c from 1.078
to 1.091. Hence the inclusion of the effects of the c/a
ratio just reverses the direction of the effect and an
increase in area with addition of copper actually
supports our proposal of electrons rather than holes.
Owen and Imbalp' find that the addition of 3 to 5
atomic-percent aluminum raises the c/a ratio to 1.869,
thus sa/c is raised to 1.086 or 1.096. This should give
a shift in the de Haas-van Alphen period of opposite
sign to that suggested by Marcus, but neither the
de Haas-van Alphen nor the x-ray data were conclusive
for this case, so we do not give the result much weight.

Quite recently a change in the de Haas-van Alphen
period with pressure was observed by Dmitrenko,
Verkin, and Lazarev, '4 and their observations appear
to be in contradiction with our proposal. They found
that. increased pressure gave increased period and
therefore decreased area. Furthermore, they note that
the c/a ratio becomes more nearly ideal as the pressure
is increased so we should expect the area of the electronic
sections to increase. One might suggest the possibility
that the applied pressure was not isotropic, in which
case this experiment would not be meaningful. However,
still more recent studies by Verkin and Dmitrenko
of the change in de Haas-van Alphen period with
uniaxial compression and tension along the c axis,
confirm their conclusion that a reduction of the c/a
ratio reduces the cross section of the segments of Fermi
surface in question. This one eGect does not agree with
our proposed interpretation and is somewhat dis-
turbing. We note, however, that these changes in
period are small (of the order of a few percent) and are
accompanied by very large and unexplained reductions
in amplitude. The weight of the evidence seems to
support our proposal; this one eGect remains
anomalous.

We will now consider the other sets of oscillations
observed in zinc by Verkin and Dmitrenko. '8 Their
data representing these other sets are plotted in Fig. 6.
Consider first the smallest periods observed. These
correspond to an area of 0.048 A '. We should expect
them to be associated either with the horizontal or with
the diagonal arms shown in Fig. 4. The single-OPW
areas of these are 0.045 and 0.06 A ', respectively. The
fact that they are relatively independent of orientation
in the range in which they are observed is inconsistent
with the expected orientation dependence for the
horizontal arms, so we associate them with the diagonal
arms. The curves shown are calculated for these arms
assuming a cylindrical cross section, oriented appro-

38 E. A. Owen and J. Imball, Phil. Mag. 17, 433 (1934}.
~ I. M. Dmitrenko, B. I. Verkin, and B. G. Lazarev, J. Exptl.

Theoret. Phys. (U.S.S.R.} 33, 287 (1957) /translation: Soviet
Phys. —JETP 6, 223 (1958)g.

35 B. I. Verkin and I. M. Dmitrenko, J. Exptl. Theoret. Phys.
(U.S.S.R.) 35, 291 (1958) /translation: Soviet Phys. —JETP 8,
200 (1959)g.
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priately. These curves correspond to a cross section of
0.048 A ', in suitable agreement with our single-OPW
value of 0.06.

The intermediate-period oscillations have an orien-
tation dependence appropriate to the horizontal arms
of Fig. 4, but the corresponding cross-sectional area is
0.00435 A ', a factor of ten smaller than our single-OPW
estimate. The dashed curves shown in Fig. 6 correspond
to cylindrical surfaces of the proper orientation. The
fact that the data fall below the line at small 0 indicates
a hyperbolic shape as expected if these are to be
associated with the arms of Fig. 4. The lower dashed
curve on the left is not expected to appear, since it has

just half the period of the upper curve and would

appear in the data only in a change in the shape of the
oscillations. Since these, in turn are superimposed

upon the longest period oscillations, such a distortion
cannot be discerned in the data. Because of this very
good Gt to the orientation dependence, and because we

see no other segments which would Gt the data, we

must conclude that their oscillations are to be asso-
ciated with the horizontal arms of Fig. 4.

The fact that the observed arms are very much
smaller than calculated in the single-OPW approxi-

mation implies that a matrix element connecting a
pair of the OPW's in this region must be large. Further-

more, this must be the matrix element associated with

the reciprocal-lattice vector parallel to the c axis or
the diagonal arms would be similarly distorted. It does

not seem surprising that this Fourier component of the

potential is larger than the others; in fact, if we ex-

amine the beryllium band calculation (beryllium is

also divalent and hexagonal-close-packed) by Herring
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FIG. 6. Experimental variation with orientation of the short-
period de Haas-van Alphen oscillations in zinc as observed by
Verkin and Drnitrenko (see reference 28}.The field orientations
are indicated in the 6gures below. The dashed curves represent
the variation of periods for infinite cylindrical segments of Fermi
surfaces with axes parallel to the edges of the hexagonal faces and
with cross sections adjusted to 6t the data for 6elds along such
an edge. The solid curves represent the variation of periods for
in6nite cylindrical segments of Fermi surface with axes given by
8 = arctan (a/c) in the figure on the left. The maximum period was
adjusted to fit the data for fields along the cylinder axis.

and HilP' we note that they 6nd a large band gap
associated with this lattice vector as evidenced by the
5 electron-volt splitting between F3+ and F4 . This is
perhaps easier to see in the comparison of the band
calculation and the "empty-lattice approximation" as
given by Herman. "

This is the first case we have encountered where
there is a very large distortion of the single-OPW
surfaces by the lattice potential. Even in this case it
is possible to isolate the region of surface giving rise
to each set of oscillations.

We should also note the implications of this large
band gap for the horizontal disk in the combined third
and fourth bands. The minimum cross-sectional area
of this surface is 0.7 in the single-OPW approximation.
We may expect this segment to be drastically reduced
in area by the distortion associated with this gap. Even
though the area of this segment may be greatly reduced,
we could not associate it with the smallest-period
oscillations observed because of the orientation de-
pendence. Furthermore, we would expect its associated
period to be smaller than the smallest period observed.

Finally, the V-shaped segments of electrons in the
combined third and fourth bands should not be dis-
torted appreciably; the large band gap does not acct
them. Their cross-sectional area is comparable to that
of the horizontal disk and their period signi6cantly
smaller than the smallest period observed. Thus
oscillations have been observed for the three smallest
sections of the surface; the largest sections remain
unseen.

d. Cadmium

The picture in cadmium is somewhat simpler. The
c/a ratio at room temperature is 1.884, and corrected
to low temperatures using the thermal expansion data
of Gruneisen and Goens" it becomes 1.862. This is well

within error of the critical ratio 1.8607 at which the
regions of holes along the lateral zone edges vanish, as
well as the regions of electrons along these edges. Thus
it is not surprising that oscillations corresponding to
the lowest frequency oscillations in zinc have not been
observed in cadmium. It should be noted that since the
lattice potential tends to reduce the cross sections of
any such segments, both will fail to appear over a range
of values of c/a near 1.8607.

The diagonal arms in the first and second bands are
expected to give rise to oscillations, however, and their
orientation and minimum area may be evaluated
assuming a c/a ratio of 1.862. We find that they are
expected to lie 28.23' from the c axis Larc cot(c/a)
=28.23'J, and have a minimum cross-sectional area
of 0.054 A ', the latter being obtained graphically.
Berlincourt" has found segments of Fermi surface

lying 28.5' from the c axis and having a maximum

3~ C. Herring and A. G. Hill, Phys. Rev. 58, 132 (1940)."F.Herman, Revs. Modern Phys. 30, 102 (1958).
"T.G. Berlincourt, Phys. Rev. 94, 1172 (1954).
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period of 1.88X10 ' (gauss) ', corresponding to a
minimum area of 0.051 A . This close quantitative
agreement of the single-OPW approximation with
experiment should probably be regarded as fortuitous.

We might also expect oscillations arising from the
horizontal arms in the first and second bands, corre-
sponding to the intermediate oscillations in zinc, but
these have not been observed. The single-OPW section
is 0.037 A ', even smaller than the corresponding section
in zinc and signi6cantly smaller than the diagonal arms
in cadmium which have been observed. Thus it seems
plausible to say that the distortion in this region is even
larger than it is in zinc and, in particular, that it is
large enough to pinch o8 these arms completely and
isolate the sections near the lateral zone edges. Pre-
sumably the larger sections in the third and fourth
bands are present as in zinc.

In addition to these four metals, de Haas-van Alphen
oscillations have been observed in thallium, which is
close-packed hexagonal and valence 3. From Fig. 3 it
is seen that there are several possible sources of oscil-
lations in this metal, and it is not clear which set is
causing the observed oscillations. Although no oscil-
lations have been reported in calcium or strontium,
they would appear promising; both are face-centered
cubic and divalent. The very thin sections indicated in
the appropriate first-band 6gure of Fig. 1 would be
expected to vanish under the inQuence of the lattice
potential yielding arms lying along (110) directions.
Barium would also look promising; it is body-centered
cubic and divalent. The arms lying in (111) directions
and indicated in Fig. 2 would seem ideal for de Haas-
van Alphen study. Some data exist for several other
metals of the types discussed here but are insuKciently
complete to warrant a comparison with theory. Finally,
extensive data exist on tin and on the semimetals, but
these are outside the realm of metals considered here,
though they may very well be appropriate for single-
OPW study. This approach could be regarded as only
a preliminary step in the semimetals. Bismuth, for
example, is pentavalent and has two atoms per cell so
that the appropriate single-OPW sphere contains ten
electrons. Segments of the surface lie in bands two
through eight, and are in all cases fairly small. Pre-
sumably all of these segments collapse except for
segments surrounding holes in the 6fth band and
electrons in the sixth. The consideration of the potential
required to clarify the picture is more detailed than is
appropriate here.

which lie within the skin depth, so if the applied fields
are properly synchronized with the orbit frequency,
an electron will see a field in the same direction each
time it traverses this segment of the orbit, thus giving
a resonant eGect. Now electrons in the presence of a
magnetic field move in helical orbits with the helical
axis lying along the magnetic field. Thus most electrons
will have a net drift along the field. Experimentally,
one applies the field parallel to the surface so that this
drift would not take the electrons away from the region
of the surface; thus any collection of electrons could
give an observable e6ect as long as a large enough
number of electrons with nearly the same frequency is
involved. Phillips, s' however, has suggested that the
field is never aligned sufIiciently well for this to be the
case and that any electrons which drift along the field
will quickly drift into the surface or out of the skin
depth and will not contribute to the resonance. If this
is the case, an additional condition for observable
resonance is the existence of a vanishing drift velocity.

It can readily be shown that this condition is equiv-
alent to that for the observation of de Haas-van
Alphen oscillations; i.e., that the cross-sectional area
be extremal at the point in question. To see this we let
the field lie in the s direction, and draw the intersection
of a plane, k,=constant, and the Fermi surface. This
intersection represents the orbit of an electron in wave-
number space. We also project on this plane the inter-
section of the Fermi surface and a neighboring plane,
displaced by bk, from the 6rst plane. These intersections
are drawn schematically in Fig. 7. We may evaluate the
energy associated with a point on the projected inter-
section to 6rst order in the quantity bk, and set it equal
to zero, since both intersections lie on the Fermi
surface '

8E= (BE/8k, )ek,+ (BE/Bki) Ski+ (BE/elks i)Ski i
=0.

We note that BE/Bk„=0, so the above equation gives

A.
Sk)) 5k~ &~

2. Cyclotron Resonance

As has been indicated, the cyclotron-resonance
experiments measure a frequency of the electron orbits.
In the customary picture of cyclotron resonance in
metals, the electron orbits lie largely in the body of the
material where the applied high-frequency 6elds do
not penetrate; it is only small portions of the orbits

Fzo. 7. The projection of two neighboring electronic orbits in
wave number space onto a plane perpendicular to the magnetic
Geld. Both orbits correspond to electrons with the Fermi energy.
The magnetic Geld lies along the k, axis.

"J.C. Phillips, Phys. Rev. Letters 3, 327 (1959).
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us a relation between bk& and bk, . We may take a time
integral of the equation around the orbit, replacing the
derivatives of energy with respect to wave number by
the appropriate electron velocities, and using (3) to
eliminate the component of velocity perpendicular to
the field. We obtain

fink, v,dt 5't, eH bk&kCh=0.

pp I Il

2.0-
6
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I

.8
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The first term is equal to 2s.A8k, 8,/ce„where v, is the
drift velocity along the Geld. The cyclotron mass
m*=eH/cd. is introduced and we solve for 8„

FIG. 9. The distribution of cyclotron masses in aluminum ac-
cording to the single-OPW approximation for a magnetic field in
the (110) direction. A free-electron energy dependence was
assumed. The curve is normalized such that J'(dE/dm*)dta*=1.
The numbered peaks correspond to extremal orbits discussed in
the text.

where A is the orbit area in wave-number space. Thus
the condition that the drift velocity vanish is equivalent
to the condition that the cross-sectional area be
extremal.

Phillips has indicated that under typical conditions
for cyclotron resonance, tilting the Geld by even half a
degree to the surface restricts the electrons which
contribute to the surface conductivity to those with
very small drift velocity. One might argue that irregu-
larities of the surface will guarantee such misalignments,
but it should be noted that because of surface irregu-
larities there will be some regions of the surface which
will be very closely aligned with the Geld. It is con-
ceivable that the observed absorption arises largely
from such regions; this also would explain the occur-
rence of resonances when the Geld is tipped slightly
out of the apparent surface of the specimen. For fields

FIG. 8. The Fermi sphere in aluminum, and its intersections
with Bragg-reQection planes, projected on a (110) plane. One
particular electron orbit corresponding to a magnetic 6eld in the
(110) direction is illustrated; the dashed portions indicate Bragg
reQections.

exactly parallel to the surface, an observable resonance
may occur whenever there is a sufFiciently sharp peak
in the distribution of masses.
'" Thus there remains an uncertainty as to whether
the condition of extremal area is necessary for obser-
vation of a resonance. Coupled with the fact that
sometimes a particular resonance may not appear for
other reasons, (as is suggested by zinc data to be
discussed) this leaves a considerable ambiguity in the
interpretation of cyclotron-resonance data unless the
data include sufricient orientation dependence to
isolate the section of Fermi surface in question.

In spite of this dif6culty, we may frequently make a
reasonable interpretation of the data in terms of the
single-OPW surfaces. We will illustrate this by se-
lecting a particular orientation of the magnetic Geld
for a particular metal and determining the distribution
of cyclotron masses. We give a detailed treatment of
aluminum, followed by more cursory treatments of
other metals for which suitable data exist.

a. A/Nmielm

We let the Geld lie in the (110) direction. The
reduced-zone representation used for the de Haas-
van Alphen effect was found inconvenient for treatment
of cyclotron resonance because of the difIiculty in

determining the velocity of the orbit in wave-number
space over the various portions of the surface. It is
more convenient to construct the Fermi sphere with
its intersections with Bragg planes. This Ggure, then,
is projected onto a (110) plane for a 6eld in the (110)
direction as shown in Fig. 8. The projection of the
electron wave number then moves with constant
angular velocity in this figure under the inQuence of
a constant field, making di.scontinuous jumps when the
orbit intersects the projection of an intersection of the
sphere 'with a Bragg-reQection plane. One such orbit
is sketched in the figure, with dashed lines indicating

. the Bragg reflection. To determine the period of the
orbit, one simply adds the total angle through which the
orbit moves (not counting the Bragg reflections), and
this is proportional to the period. It i.s easily seen that
the particular orbit drawn in Fig. 8 has a period less
than the corresponding orbit in the absence of Bragg
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TABLE III. Cyclotron masses in aluminum in units
of the electronic mass.

1 OPW
mass-one

Experimental
Langenberg and

Moore' Fawcettb Gunners en'

I 0.10
II 0.17

III 0.80

0.18W50%
0 18~50Vo
1.5 &10oro

0.11
0.235, 0.215

0.15

a D. N. Langenberg and T. W. Moore, Phys. Rev. Letters 3, 137 (1959).
b E. Fawcett, Phys. Rev. Letters 3, 139 (1959).
& See reference 5.

reAections. Taking the effective mass associated with
the sphere without rejections as unity, the distribution
of cyclotron masses has been evaluated and is shown in
Fig. 9. It is seen that there exist masses over almost all
of the range zero to 1.6. Extremal masses are repre-
sented by the singularities I, II, III, and IV corre-
sponding to orbits around the third-band arms lying
parallel to the field, third-band arms lying at an angle
to the field, central orbits around the second-band
surface, and circular orbits on the surface of the third-
band arms, respectively. (The orbits IV lie at the center
of Fig. 8. ) The orbits I and III correspond also to
extremal areas and orbit II very nearly does. These,
therefore, have vanishing, or very nearly vanishing,
drift velocities and should be observable even if the
conjecture of Phillips is correct. Orbits IV have large
drift velocity; furthermore, they involve such a small
number of electrons and are suKciently sensitive to
distortions arising from the lattice potential, that they
might not be observable in either case. The peak at
no*=1.6 corresponds to a maximum mass and a maxi-
mum area, but these maxima are sharp in the single-
OPW approximation and will remain fairly sharp in a
more complete calculation so that the number of
electrons involved may be expected to be quite small
compared to that of the peak III. Though it would be
tempting to associate this peak with the observed high
mass of 1.5, it seems unlikely that resonances associated
with this peak should appear and those with peak III
not. Thus we expect the peaks I, II, and III to give
the most prominent resonances, and we associate these
with the observed resonances. It may be noted that
these are just the peaks we would most naturally select
by examining the surfaces of Fig. 1, so we will use the
reduced-zone figures to select the relevant segments in
interpretating the other metals, in each case deter-
mining the actual masses graphically.

The appropriate masses for fields along a (110) axis
in aluminum were determined from Fig. 9 and are listed
in Table III. It may be noted that the values diAer
from those given in the preceding paper by a factor of
1/0. 79 because we have used a mass-one parabola
rather than that determined from the band calculation.
The corrections listed with Langenberg and Moore's
results reAect the anisotropy of the mass which they
observed and the fact that the numbers they give did

not correspond to fields along the (110) direction.
Their measurements and those of Fawcett were deter-
mined from cyclotron-resonance measurements; those
of Gunnersen are based on the temperature dependence
of the de Haas-van Alphen amplitudes. The agreement
is semiquantitative; the most disturbing comparison
is that of III, where the influence of the lattice potential
should be smallest and our agreement the best. The
fact that we tend to underestimate the mass has been
discussed in the preceding paper.

c. Zinc

Cyclotron resonance has been observed in zinc by
Gait, Merritt, Yager, and Dail. 4' With a 6eld along the
six-fold axis they find evidence for a carrier with mass
less than 0.015, presumably corresponding to the mass
of 0.0068 obtained from the de Haas-van Alphen eGect
(this is the geometric mean, (rrtrsrts)'*, of the masses
given by Shoenbergs'). In addition, they find a mass of

TABLE IV. Cyclotron masses in lead in units
of the electronic mass.

Oscillation
type

Assumed
band

Single
OPW

(mass one) Experimental'

n, (100) field
n {110)Geld
P, (100) Geld

y2, (110) Geld
yi, (110) Geld

2nd
2ild

3rd (central hole)
3rd (center arms)
3rd (end of arms)

0.95
0.57
0.17
0.22
0.19

1.0 ~0.1
1.33a0.15
0.56&0.06
0.56%0.06

a See reference 4.

~ R. L. Dolecek, Phys. Rev. 94, 540 (1954).' J. K. Gait, F. R. Merritt, W. A. Yager, and H. W. Dail, Jr.,
Phys. Rev. Letters 2, 292 (1959).

ss D. Shoenberg, Progress sN lore TemPerature Physses (Inter-
science Publishers, Inc., New York, 1959), Vol. II, p. 226.

b. Lead

Cyclotron resonance has apparently not been ob-
served in lead directly, but Gold4 made mass deter-
minations for various segments of the Fermi surface
from the temperature dependence of the de Haas-van
Alphen oscillations. Because they are directly asso-
ciated with the de Haas-van Alphen oscillations, there
is no ambiguity in their interpretation except for the
ambiguity we have mentioned in the interpretation
of the periods. The masses as determined by Gold are
listed in Table IV, along with the masses determined
from the single-OPW approximation. We notice that the
agreement with experiment is very much improved by
doubling all of the calculated masses, as was the case
in aluminum. The P oscillations show an experimental
mass which is considerably higher than we expect, even
if we make the factor-of-two correction. The doubling
of the masses is consistent, as in aluminum, with the
experimental electronic specific heat, "which is approxi-
mately twice the free-electron value.
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0.55&0.03 for this fMld orientation and tentative
evidence that the latter arises from electrons rather
than holes. Finally, they find a mass of 0.43+0.04 for
fields along a binary axis and indications that it also
arises from electrons. If it is true that the heavy-mass
resonances are associated with electrons, they must
arise either from segments in the 3rd and 4th bands or,
when the field is parallel to the c axis, from orbits
around the central hole in the 1st and 2nd bands. This
suggestion is supported by the fact that the masses
associated with the segments observed in the de Haas-
van Alphen eGect would be expected to be smaller than
those observed by a factor of at least four, whereas the
mass calculated for the central disk in the 3rd and 4th
bands, for example, ranges from 0.39 to 1.00 in the
single-OPW approximation. In the absence of orien-
tation dependence of these masses, it would seem a
little bold to associate them with particular segments of
the surface.

The low-mass carriers, on the other hand, certainly
correspond to the needle-shaped segments which we
have discussed. In the single-OPW approximation,
these have a cyclotron mass for fields parallel to the
c axis of 0.011 assuming a mass-one single-OPW
parabola and a c/a ratio of 1.8246. If we were to assume
a slightly diferent c/a ratio of 1.8425, which would

bring the observed area into agreement with experi-
ment, we obtain a mass of 0.005, to be compared with
the experimental value of 0.007 obtained by Shoenberg.
The agreement with experiment is remarkable in either
case in view of the smallness of the segment and its
sensitivity to the c/a ratio.

d. Cadmium

Cyclotron resonance has not been observed directly
in cadmium, but Berlincourt" made an estimate of the
cyclotron mass from the temperature dependence of
the de Haas-van Alphen amplitudes. He obtained a
value of 0.141 for fields parallel to the diagonal segment
in the combined first and second bands. This is to be
compared with the single-OPW value of 0.142, obtained
using a c/a ratio of 1.862. As was the case in considering
the cross-sectional areas of these arms, the agreement
is too close to be regarded as other than fortuitous. We
can note, however, that the factor-of-two discrepancy
found in lead and aluminum does not appear in
cadmium.

There is insufhcient data for other metals encom-
passed by our analysis here to warrant further com-
parisons with experiment.

3. The Anomalous Skin Effect

Since only the curvature of the Fermi surface affects
the anomalous surface resistance and since it enters
in such a way that regions of very large curvature do
not enter, the change in the connectivity of the Fermi
sphere in the single-OPW approximation does not

FIG. 10. The Fermi
surface in aluminum
in the extended-zone
scheme according to the
multiple-OPW calcula-
tion of the preceding
paper. Shown is the in-
tersection of the Fermi
surface with a central
(110)plane. The dashed
lines represent Bragg-
reRection planes.

/

X Ux
/
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acct the results. Thus in the single-OPW approxi-
rnation the surface impedance is, strictly speaking,
isotropic and determined only by the number of con-
duction electrons present. On the other hand, we will

be able to see how the introduction of the lattice
potential will a6ect the orientation dependence of the
surface impedance by examination of the single-OPW
approximation, and this seems appropriate for con-
sideration here. As an example, we will treat aluminum
with some care.

It is most convenient to treat this effect in the
extended zone scheme, as we did the cyclotron reso-
nance. A central (110) cross section of the Fermi
surface was determined from the band calculation of
the preceding paper and is shown here in Fig. 10. It is
seen that the Fermi surface is sheared wherever it
intersects a Bragg-reaction plane. The main e8ect, as
far as the anomalous skin eGect is concerned, may be
the opening up of gaps in the sphere at these inter-
sections. Thus, as a starting approximation, we treat
the Fermi surface as a sphere with gaps opened up at
each intersection with a Bragg plane; such intersections
have been shown for aluminum in Fig. 8. Such a figure
will, in fact, be very convenient for treating the anoma-
lous skin eGect graphically.

A formula for the surface impedance in the extreme
anomalous limit has been given in Eq. (6),

V3( vrco'k'

g

R,=R,' 1+(1/3mk p')
gSP8

lr„ldk„,

E.,' being the surface impedance for the complete

For a spherical Fermi surface, the points where the
intersection of the Fermi surface and a plane k„=con-
stant is parallel to the s direction lie in the x-y plane.
Thus the integration is taken over the intersection of
the Fermi surface and the x-y plane. For a spherical
Fermi surface, the integral J'lr„ldk„=eke'. For a
sphere with gaps we must subtract oG the integration
over the gaps. In the spirit of the single-OPW approxi-
mation we regard the gaps as small and obtain
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1.2

to the gap which could give large effects; it is not clear
that we have isolated the most important source of
anisotropy in the surface impedance. Further appli-
cation of the scheme does not seem warranted until
suitable data are taken.

III Oll
l I l I 1 I I

20 30 40 50 60 70 80 90

IN DEGREES

Fro. 11. The calculated surface impedance of aluminum as a
function of the surface orientation. R, is the surface impedance
of a three-electron sphere; E, is the surface impedance of a three-
electron sphere with suitable gaps introduced at the Bragg-
reflection planes. The normal to the surface lies in a (011) plane
and makes an angle iLwith the (100) direction; ff, is the surface
impedance in the (011)plane.

spherical surface. Now let the gap lying along a par-
ticular Bragg-reQection plane have a small width, 5.
Then the region of the integration at each intersection
of a gap with the x-y plane is dk„= (6/kr) ( ~ r„I/~ sin8I)
where 0 is the angle between the line of the gap and the
x-y plane. The integration over the gaps becomes a
summation over the intersections of the gaps and the
x-y plane and we obtain

If we wish to proceed graphically from Fig. 8, it is
convenient to write r„'=k,' and note that 1/sine
=L1+cot'0'/(1 —k '/kr'))&, where 8' is the angle of
intersection of the x axis and the projection of the
Bragg-reQection line onto the x-s plane. Then the axes
are taken with y perpendicular to the plane of Fig. 8,
and all relevant quantities may be measured directly
from the 6gure. This procedure has been followed in
order to And the surface impedance for the normal to
the surface lying in directions ranging from a (100)
direction to a (011) direction. For this calculation
6/4 was estimated from Fig. 10 to be 0.05 for gaps
associated with intersections of the sphere and a (111)
plane, and 0.10 for gaps associated with intersections
with a (200) plane. The resulting curve is shown in Fig.
11. The graphical scheme used becomes somewhat
inaccurate in the region of the peaks, but the sharpness
of the peaks, in any case, comes from treating the gaps
as very narrow and a great deal of smoothing would
be expected from a better calculation.

It is dificult to assess the reliability of this somewhat
crude approximation and, unfortunately, there ap-
parently do not exist data on single crystals of aluminum
which would allow us to see if this gives us the main
features of the e6ect. There is a possibility that there
may be appreciable distortion of the surface adjacent

IV. EXPERIMENTAL DETERMINATION
OF BAND STRUCTURE

We indicated in the introduction that the single-
OPW approximation may be regarded as the zeroth-
order approximation in a series of successive approxi-
mations for calculating the band structure; the
zeroth-order approximation has turned out to provide
a reliable semiquantitative theory of the polyvalent
metals. This immediately suggests the possibility of
using the experimentally-observed deviations from the
single-OPW picture in order to improve the approxi-
mation to the band structure. The most promising
approach would appear to be the use of experimentally-
determined sections of the Fermi surface to evaluate
the matrix elements connecting particular pairs of
plane waves. Once these are obtained, constant energy
curves are readily obtained in the manner described
in the preceding paper on the band structure of
aluminum.

Aluminum itself would appear to be a difficult case
to treat in this way; the matrix elements are small,
and a careful determination of the Fermi-energy (i.e.,
the Fermi radius) would be needed at each step in the
calculation. Furthermore, the de Haas-van Alphen data
are limited.

Lead and zinc, on the other hand, would seem quite
suitable for such a treatment. In both cases there is
one measured area which is modified appreciably by
the presence of a particular matrix element; presumably
these elements could be determined neglecting the shift
in the Fermi energy. The remaining elements could
then be adjusted to fit the remaining measured seg-
ments. In both cases there exist enough data to deter-
mine the necessary parameters. Again there is the
difficulty that a shift in the Fermi energy must be
calculated in order that the correct number of con-
duction electrons are included within the surface; if
the Fermi energy were suKciently sensitive to uncertain
details of the surface, it might be preferable to regard
it also as an adjustable parameter.

The determination of the parameters in this way
leaves an energy scale factor undetermined. One would
like to adjust this to fit cyclotron-resonance masses,
but the experience with the masses studied in Sec. III
of this paper wouM raise some question as to the
meaning of this.

In any case, the band structure determined in this
way could be readily compared with a full bared calcu-
lation from which one obtains the splitting of levels at
symmetry points directly, thus bridging the gap
between experiments which see the Fermi surface and
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calculations which see only symmetry points in the
Brillouin zone.

V. ALLOYS

We wish only to make a cursory treatment of alloys.
If we consider substitutional alloys and neglect any
effects of loca/ lattice distortion, we may proceed as in
a pure metal. As starting states we take plane waves
orthogonalized to the core states (different core states
in the regions of different cores). We may then evaluate
the diagonal elements T(k) of the Hamiltonian in this
representation. If the cores do not overlap, T(k) will

be spherically symmetric and will be the weighted
average of the T(k) for the constituent metals, each
taken for the lattice structure appropriate to the alloy.
We again make a Fourier expansion of the pseudo-
potential and now obtain two types of terms: first,
those associated with reciprocal lattice vectors; and
second, those which arise from deviations from the
periodicity and which may occur for arbitrary wave
number. The former are the weighted average of the
corresponding Fourier components in the constituent
metals. Thus, before we introduce the components of
arbitrary wave number, we have a well-de6ned "average
band structure" for the alloy, and we may expect it to
describe the alloy in the same sense that the ideal band
structure of a metal describes a pure metal at finite
temperature. This is the point of view which we took
in Sec. III when discussing the alloys of zinc, and is the
point of view which seems appropriate when discussing
macroscopic properties such as the de Haas-van Alphen
eGect. If the constituent metals of the alloy may be
approximated with a single-OPW approximation, we

may also treat the alloy with a single-OP%
approximation.

Finally we must consider the eGects of the deviations
from periodicity. This part of the problem must be done
self-consistently since the simple pseudopotential
envisaged above may tend to redistribute the con-
duction electrons in the alloy giving rise to screening
fields. These nonperiodic terms will cause scattering
between the average-band states and a consequent.
life-time broadening of the levels. For most problems
it would seem more appropriate to include this as a
scattering effect rather than as a "fuzzing" or broad-
ening of the bands. In addition to causing scattering,
the nonperiodic terms will redistribute the electrons to
the regions of particular atomic sites. Although it is
plausible to assume that an electron undergoing a
helical orbit in magnetic field will behave according to
an average band structure, a particular nucleus being
observed in a Knight-shift experiment will see a local
electronic structure which may diGer significantly from
the average band structure. Such diS.culties are out
of the realm of the problems under consideration here
and must be studied individually for each problem for
which a redistribution of the electrons is of consequence.

VI. CONCLUSIONS

The single-OPW approximation is defined to be the
result of an orthogonalized-plane-wave calculation in
the limiting case as the matrix elements between
individual orthogonalized plane waves become small.
It should be emphasized that such an approximation
provides a strictly geometrical theory; the energetics
of the bands enter only as a scale factor in the various
effective mass determinations. Some justification of
such a model is made, but it is insufficient to allow us
to know just how large our errors will be in a particular
metal. Comparison with the results of a band calculation
for aluminum in the preceding paper have indicated
that it is sufficiently good in that case to give a complete
qualitative picture of the Fermi surface and semi-
quantitative estimates of the parameters which enter
many of the electronic properties. The primary purpose
of the present work was to determine as well as possible
experimentally the applicability of the scheme to
polyvalent metals in general.

To this purpose the method was applied to a series
of polyvalent metals and compared in some detail with
the de Haas-van Alphen data in lead, aluminum, zinc,
and cadmium; these being the only metals in the series
treated for which sufFicient data exist to allow a com-
parison. In addition, comparison was made with
observed cyclotron and specific-heat masses where
possible. The apparent validity of the description
provided by the simple approach is remarkable in these
cases, particularly since the features of the structure
which are seen by these effects are the fine details. In
the single-OPW approximation, the dimensions of the
small segments of the Fermi surface are the diRerences
between nearly equal large numbers; thus this com-
parison may be regarded as a very sensitive test of the
method for these metals. The agreement is particularly
close with respect to the areas of segments of the Fermi
surface, but is semiquantitative with respect to cyclo-
tron masses as determined either from the de Haas-van
Alphen effect or directly (which is remarkable in itself).
Even in a particular section of the Fermi surface in
zinc for which there appears to be a marked deviation
from single-OPW behavior, there was no ambiguity in
the interpretation of the de Haas-van Alphen data.

We conclude that the single-OPW approximation
provides a good semiquantitative theory of the elec-
tronic structure of the polyvalent metals for which an
experimental check has been made. Such a method is
extremely useful for studying metals. Not only is the
application of the method simple, but it requires no
knowledge of the metal in question other than its
crystal structure and its valence. The Fermi surface
constructed in this way provides a simple picture of
the electronic structure and one that makes it easy to
isolate the features of the surface relevant to particular
phenomena and provides a rather reliable framework

upon which to base an interpretation of experimental



1208 %ALTER A. HARRISON

studies. It also allows at least semiquantitative esti-
mates of the parameters which enter many electronic
properties. Finally, it provides a basis for experimentally
determining a more precise band structure in terms of
the observed deviations from single-OPW behavior.
In this last regard, it is worth remarking that for most
purposes one does rot desire a precise description of the
band structure. One more generally wishes to have a
parameterized model of the structure which is simple
enough to allow the calculation of a particular property,
but reliable enough to include the important features
of that effect.

In connection with the detailed studies of zinc and
cadmium, rather explicit descriptions of the Fermi
surfaces of these metals emerged. The surfaces resemble
those shown in Fig. 3 for valence two. The surfaces in
the combined first and second bands are distorted
qualitatively in the manner indicated on the right-hand
side of Fig. 4, but not to the extent that the lateral
ridges on the surface meet the lateral edges of the zone.

The ridges are everywhere rounded oG somewhat such
that the cross sections of the diagonal arms are reduced
by a few percent. In zinc the cross section of the
horizontal ring is narrowed down by a factor of ten
midway between the lateral edges of the zone; in
cadmium the ring is pinched off completely in these
regions. In the combined third and fourth bands the
needle-like segments along the lateral edges of the zone
are narrowed down greatly in zinc and disappear in
cadmium. In both cases the horizontal central disk is
reduced appreciably in size, while the V-shaped seg-
ments at the lateral zone faces are rounded off, but
presumably not greatly reduced in size.

In addition to the applications mentioned above, a
study of the anomalous skin effect in aluminum was
made, although there were no suitable data on single-
crystal specimens to allow for comparison. The oscil-
latory magnetoacoustic eGect was also discussed brieRy
in terms of the method. Finally, the generalization of
the scheme to a study of alloys was outlined.
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Surface Magnetostatic Modes and Surface Spin Waves
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Examination of the spatial configuration of the magnetostatic modes of a ferromagnetic body shows that
those modes whose frequency lies between a&=p(B;H, )& and co=&(K+2sM) are surface modes. It is also
found that the complete spin-wave spectrum consists of a set of surface spin waves in addition to the spin-
wave band usually considered. The magnetostatic mode spectrum thus merges smoothly into the spin-wave
spectrum.

The characteristic equation for the surface modes on a plane surface at an arbitrary angle to the applied
dc field is given. The properties of the surface modes on plane surfaces and on spheroidal bodies are discussed.

'HE characteristic magnetostatic modes of a ferro-
magnetic slab, magnetized parallel to its surface,

were recently examined by the authors. ' It was found
that the mode spectrum extends over the same fre-

quency range as the magnetostatic mode spectrum of a
spheroid ' namely from to=&H; to &o=p(He+27rjtrI). It
was also found that the spectrum of a slab clearly divides
into two regions, one region extending from m=yII; to
to=y(B;Hr)& (coincident with the spin-wave band at
long wavelengths') in which the modes are spatially
harmonic plane waves, and the other region from
to=y(B;H, )& to o&=y(H+27rM) in which the modes are
surface waves with exponentially decaying amplitude
as one goes from the surface towards the interior of the
ferromagnetic medium. The purpose of the present note

'R. W. Damon and J. R. Eshbach, Ftfth Comferenee ow Mttg
netism and Magnetic Materials, Detroit, Michigan, November 16—19,
1959 [J'. Appl. Phys. (to be published)g.

2 L. R. Walker, Phys. Rev. 105, 390 (1957).' C. Herring and C. Kittel, Phys. Rev. 81, 869 (1951).

is to show the general existence of surface modes in this
frequency region immediately above the spin-wave band
for uniformly magnetized samples of rather arbitrary
shape and to discuss some of their properties. We find
that not only may the magnetostatic mode spectrum in
general be regarded as divided into volume and surface
modes, but that the complete spin-wave spectrum simi-
larly consists of a set of surface spin waves in addition
to the usual spin-wave spectrum of an infinite medium. '
Therefore, if one includes the surface spin waves, the
magnetostatic mode spectrum merges smoothly into the
total spin-wave spectrum. 4'

The general features of the surface modes may be
derived by considering a semi-infinite ferromagnetic
medium whose surface is at an angle, e, to the internal
dc magnetic 6eld, H;, as shown in Fig. 1. (In the limit

4 L. R. Walker, J. Appl. Phys. 29, 318 (1958).
e C. R. Bufner, Suppl. J. Appl. Phys. 30, 172S (1959); Robert

L White, Suppl. J. Appl. Phys. 30, 182S (1959).


