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Anharmonic Forces in the GaP Crystal
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Bell Telephone Laboratories, Murray Hill, Xenr Jersey

(Received October 29, 1959)

The infrared properties and the thermal expansion of gallium phosphide are treated on the basis of a
simple model of the anharmonic forces. In this model the anharmonic forces are nearest neighbor central
forces characterized by a single parameter. The value of this parameter for GaP is obtained from the inte-
grated absorption recently measured for certain infrared combination bands. It is shown that the observed
width of the fundamental resonance (reststrahl) and the observed shift with temperature of the combination
bands are consistent with the absorption. This is presented as evidence that the anharmonic mechanism is
predominantly responsible for the infrared absorption in the combination bands. It is also shown that the
observed thermal expansion is consistent with the same anharmonic model.

1. INTRODUCTION

'N the preceding paper, ' hereafter referred to as (I),
- ~ data is presented on the infrared absorption bands
of GaP. The bands in the region 12—24 p are interpreted
as two-phonon combination bands, and a scheme based
on Ave lattice frequencies is given which accounts very
well for the frequencies observed. From a consideration
of the integrated absorption it is concluded that these
bands are due primarily to the anharmonic forces in
the crystal lattice. The role of anharmonic forces in
infrared absorption was first pointed out by Born and
Blackman, ' who showed on the basis of a one dimen-
sional model that the absorption spectrum of a polar
crystal should contain combination frequencies of the
form co~&co2 as well as the fundamental infrared fre-
quency, the frequency of long wavelength transverse
optical vibrations. More elaborate discussions for three
dimensional crystals have been given by Blackman'
and by Barnes, Brattain, and Seitz.'

It has been pointed out by Born, 5 Burstein et al. ,'
and Lax and Burstein~ that combination bands can
also be caused by second order and higher order terms
in the electric dipole moment of the crystal as a function
of the ionic displacements. The detailed theory for the
two phonon processes arising from the second order
moment has been given by Lax and Burstein. ~ On the
basis of this theory and a theoretical' vibration spec-
trum for diamond Stephen' has calculated the shape of
the absorption spectrum of diamond. In crystals like
diamond which have no ionic charge and no 6rst order
moment' the interaction of the lattice with the radia-
tion must come (in a perfect crystal) through higher

'D. Kleinman and W. Spitzer, preceding paper )Phys. Rev.
118, 110 (1960)g.' M. Horn and M. Blackman, Z. Physik 82, 551 (1933).' M. Blackman, Z. Physik 86, 421 (1933).

4 L. L. Barnes, R. R. Brattain, and F. Seitz, Phys. Rev. 48,
582 (1935).' M. Born, Revs. Modern Phys. 17, 245 (1945).' E. Burstein, J.J.Oberly, and E. K. Plyler, Proc. Indian Acad.
Sci. 28, 388 (1948}.

7 M. Lax and E. Burstein, Phys. Rev. 97, 39 (1955}.
Helen Smith, Trans. Roy. Soc. (London) A241, 105 (1948—9).

~ M. Stephen, Proc. Phys. Soc. (I.ondon) 71, 485 (1958).
"M. Lax, Phys. Rev. Letters 1) 131 (1958).

order terms in the electric moment. In ionic crystals
and heteropolar valence crystals like GaP both anhar-
monic forces and the second order moments could cause
two phonon. combination bands. Furthermore, both
mechanisms predict the same temperature dependence
for the absorption (see Sec. 2), and essentially the same
shape for the absorption, which is determined primarily
by the frequency distribution of the lattice vibrations.
Lax and Burstein~ have suggested that even in ionic
crystals the second order moment mechanism may be
important. The question as to the mechanism of the
combination bands, except for the homopolar crystals,
has therefore not been resolved.

In general neither the anharmonic forces nor the
second order electric moments of crystals are quanti-
tatively known. It is not surprising therefore that no
quantitative estimates have been published for the ab-
sorption coeKcient or the integrated absorption of
combination bands for either mechanism. And yet it
seems probable that only by such quantitative con-
siderations can the question of the mechanism be re-
solved. The subject was re-opened in (I) by pointing
out that the integrated absorption in GaP should only
be about twice as great as in silicon if the second order
moment mechanism is responsible. In support of this
argument it may be mentioned that the lattice con-
stants are about equal, the high-frequency dielectric
constants are similar, and the structures are similar if
obvious allowance is made for the heteropolar character
of GaP. Actually the integrated absorption is about 20

times larger in GaP than in silicon, which suggests that
anharmonic forces are the dominant mechanism. In the
present paper the argument is carried further by show-

ing that the width of the fundamental resonance and

the shift with temperature of the combination bands

observed in (I) are consistent with the integrated
absorption, on the assumption that all three sects are
due to a simple kind of anharmonic force described by
a single parameter. An expression is also obtained for
the thermal expansion. Unfortunately the velocity of

sound which occurs in this expression has not yet been

measured. However, by equating the expression to the
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measured thermal expansion a reasonable estimate is
obtained for the velocity of sound.

As a material on which to carry out such an analysis
GaP presents both advantages and disadvantages. The
mechanical and thermal properties are relatively un-
known due to the difhculty in obtaining large single
crystals. Presumably these disadvantages are only
temporary. The advantages are that the fundamental
resonance can be accurately described by a single reso-
nance dispersion formula, the combination bands can
be accounted for by a simple assignment scheme, and
the optical-optical combination bands are separated
suSciently from the other bands (optical-acoustical) to
permit the integrated absorption for these bands to be
determined. It is especially this last advantage which
makes possible a quantitative test of the anharmonic
theory of infrared absorption.

La, u+$ = 2m. fic/kes&. (2)

We denote the positions of atoms of type 0 by r and
the displacements of atoms by u(r.), which can be
written"

u(r)=X—'*p (b gn e'q "+b.,g*n +e 'q") (3)

Here X is the number of unit cells, qt denotes the wave
vector and branch of the phonon, n«and n«+ are
destruction and creation operators normalized to unit
commutator, and the polarization vectors b„~ satisfy
the orthonormality relations

2- (& ~) (& Q~).~ = (&/2~9~)&«
(4)

P~ (b„~),(b;,~), ~,~
——(A/2m )6„8„,

where m, is the mass of the atoms of type 0. and co« is
the angular frequency of phonons qt. The momentum
conjugate to u(r ) is

y(r.) =E—i P,g m.s) q(i(b. qg*nq)"c
—' "

&iq r~) (5)

The interaction of the crystal with the electromagnetic
Geld is"

B'=P„, (e,/m. c)A(r.) .y(r.)
= U—&E& p. Q, (e~k(/C)ip (b.„g nk,+a.

+b. k~*n k~+c+—b.k«k~~+ —b.-k~—k«), (6)
"F.Seitz, The Modern Theory of Sohds (McGraw-Hill Book

Company, New York, 1940), Secs. 21, 22.
"Reference 11, Sec. 42.

2. THE INFRARED ABSORPTION

We consider a single mode of the electromagnetic
Geld in a medium of volume V and dielectric constant eo

which is the high-frequency dielectric constant of the
crystal. The vector potential may be written

A(r) —U——*'tq(gcik r t-g+c ~k r) (1)

where p is a unit vector, k is a wave vector, and the
destruction and creation operators u and a+ have the
commutator

where e, is an effective charge so deGned" that the
electric moment produced in the crystal by displace-
ment of an ion is e,u(r, ). In a crystal with two kinds
of atoms the effective charges must be equal in magni-
tude and opposite in sign, so that we may write

~
e,

~

=e.
The wave vector k of the radiation is very small so

that we may use II' in the limit k —& 0. In this limit the
three acoustical branches satisfy'4

lim (b.k, —b..k,) ~ 0.

where m=m. m. /(rN. +m..) is the reduced mass. Thus
the interaction of the crystal with the radiation re-
duces to

H'= U lE&(he'cu /2mc')&

Xs(nr+~ ny~++—nr+~+ nrem)
—(9)

For a crystal ot the zincblende structure (like Gap)
the anharmonic forces can be introduced into an ideal
harmonic model by connecting purely anharmonic
springs between each atom and its four nearest neigh-
bors of the opposite type. The potential energy of the
purely anharmonic spring is —Gx', where x is the
extension and G is a parameter whose value we hope
to determine from a comparison of theory and experi-
ment. The anharmonic potential energy of the crystal
in this model is

8"=—G p, ,{jLu(r;) —u(r))}', (10)

where r is the position of one kind of atom and j is a
unit vector in the direction r, —r, and the sum is over
the four neighbors of atom r and over all atoms r.
Combining (3) and (10) gives

e"= GX :P;,$E «(&;—«n«'-q'
+p. 0 +c iq r) js (11)—

«H. Callen, Phys. Rev. 76, 1394 (t949l.
'4 M. Born and K. Huang, Dynamica/ Theory of Crystal Lattices

(Oxford University Press, New York, 1954), Sec. 26.
"Reference 14, Secs. 7, 34.

The acoustical branches therefore do not contribute
to H', because (6) contains the factor P, e,=0 when

(7) is satisfied. We now limit the discussion to cubic
crystals with two kinds of atoms. In such crystals
there are three optical branches which for very small
wave vectors may be considered to be one longitudinal
and two mutually perpendicular transverse branches.
The longitudinal branch cannot interact with the trans-
verse radiation Geld, and one of the transverse branches
may be chosen perpendicular to the Geld. We shall refer
to the transverse optical vibration of zero wave vector
polarized in the direction tl as the fumdamental vibra-
tion designated by "f"The p. olarization vectors for
the f vibration satisfy"

b.f—b. g
——(5/2euor) -'*p,
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where

tp& 3
' (bi p&e ~p&)~ (12)

where p=
I rt —rI is the interionic distance and o refers

to the atoms r. It is convenient to define the operators
p;p~t' where s takes on one of two values (&) and

Qj qt ~' j qt&qty pj qt ~' j qt &qta. (—) p. a. (+) K .

The anharmonic potential can then be written

(13)

H"= 6GlV
—lQ. Q. .. „Qi@p. , i'&p. „,t"lp. „,„t "&

X6(sq+ s'q'+ s"q"), (14)
where

5 (q) = 1 if q = zero or any reciprocal lattice vector,
15=0 otherwise.

(&I'IH" lg&&glH'Il&

g~", E„—Eg

The triple summation over phonons has been written
6 P&sl, where 6 is the redundancy factor, and pi'& is a
nonredundant summation over the phonons qt, q't', q"t"
in which each combination without regard to order
occurs once. The validity of (14) depends upon E
being very large so that terms with repeated indices
can be neglected.

The matrix element 3f„„for a process involving
several phonons and one photon is

q/l

q t. (e)

FIG. 1. Diagrams
for infrared ab-
sorption. (a) Dis-
connected diagram
which cancels. (b),
(c) Photon absorp-
tion. (d), (e) Photon
emission Lsee Eq.
(16)j.

&~'IH'I a&&g IH"
I ~&~

)' (16)

where E„is the energy of the initial state, E, the energy
of the intermediate state. The transition rate is

n„„=(2~/I)
I
M„.I sc(Z„.—Z„).

The conservation of energy may be written

&ha&&4)r+Q sku=0,

where the sum is over the three phonons generated by
H", and in the other terms (+) refers to emission and

(—) to absorption of the respective quanta. In the
general process the three H" phonons are distinct from
the f-phonon, so that the general process is a four
phonon process. A process of this kind is diagrammed
in Fig. 1(a) for the case in which a photon k is absorbed
with creation of phonon f (the H' vertex) followed by
the creation of three more phonons (H" vertex). We
shall use the convention that diagrams are to be read
from right to left, and arrows pointing into a vertex
represent destruction while arrows pointing away repre-
sent creation of a particle. The diagram shown corre-
sponds to the left term on the right side of (16);
a similar diagram with H" preceding (to the right of)
B' corresponds to the right term. Disconnected dia-
grams such as Fig. 1(a) do not represent physical

e6ects."In this case the diagram shown is cancelled by
its counterpart with H" preceding H' for processes
obeying the conservation of energy (18). This comes
about because the matrix elements in the two terms of
(16) are the same unless H" destroys the phonon created

by H' or creates the phonon destroyed by H'. Therefore
the third order anharmonic potential H" produces only
two-phonon processes in which the fundamental phonon
is an intermediate state.

In Figs. 1(b), (c), (d), and (e) are shown diagrams
for the two-phonon processes in which both phonons are
created or both destroyed. These are the processes
which cause the combination bands observed in GaP.
Not shown are the counterpart diagrams with II"
preceding H'. As an example consider (b) representing
photon absorption through ptp«+p p~+ in H" and n~+u

in B'. For an initial state with Ã„photons and mtq

phonons (prescribed for all qt) and a fina state in
which a photon is destroyed and phonons qt, —qt' are
created the value of the diagram is

6ZX„i(est+1)Xpgg *(e,(+1)1

X (I-pv+1)1/(htp —filet), (19)
where

Z= iGV lE~Itse'—/2m'a —
spy& (20)

contains the constant factors from (2), (8), (9), and
(10).The quantity App —Sort is the energy denominator.

"J.Goldstone, Proc. Roy. Soc. (London) A239, 267 (1957).
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The sum over j in (10) is contained in the quantity

Xa« =Z~ (j t)pf«Pf p~"- (21)

The counterpart diagram to (b) has a similar expression
except that (If+1) is replaced by Nf and Ap) —A(of by
Ao)f —k(p; the result of adding this to (19) is to cancel the
number of fundamental phonons nf. Diagram (c) repre-
senting absorption of radiation through pf+p«+)8 p(+
in H" and —o.fu in II' has the value

is then given by

288 .,i[Z(
Q(s) [X,[s

(~2 ~ 2)2

&& (I„+ri,(+1)5(A —A~, i
—A~, & ). (28)

The thermal average over initial states can now be
carried out simply by giving e,~ the value"

6Z—N„'nfX«~.*(fs,~+1)'(ri p~ +1)'*/(App+A(df) (22)
( osru p(/kT ])—1 (29)

and its counterpart is obtained by replacing ey by
(nf+1) and Ap)+Ao)f by —A(o Ao)f —The .total matrix
element for absorption is

6Z 2M

M.(qtt') =—— X«( N+1)-**
A I Mg

from diagrams (d) and (e).
The total rate of photon absorption is Q=Q —0,

where 0 and 0, are the rates for absorption and emission
processes, respectively. Combining (17), (23) and (24)
gives

Q = 288pr(( Z
(
'/A') f(o'/((ps —p)f')'jQ (')

(
Xp«) '

)&LN„(n,i+1)(fs,(+1)—(N~+1)fs, ~n pg j
)(5(A(p —AM qi A(o pi ),—(25)

where p(s) is a nonredundant summation over two
phonons qt and —qt'. We obtain the real conductivity
by equating the classical expression for Joule heating
to the quantum mechanical expression for the absorp-
tion of energy

o E'=QV 'A(o. (26)

The electric field E can be eliminated by equating the
classical and quantum expressions for the energy density

(ep/47r) E'= N V—
'App (27)

Use of the correspondence principle in this way is valid
if / o«(p1 and if the polarizability due to the interaction
is much less than ep/4'. These conditions are satisfied
in the wavelength regions where combination bands are
usually observed, i.e., far out on the wings of the funda-
mental resonance. As pointed out by Schmidt" the
transition rate Q in (26) should not contain spontaneous
processes, so that in (25) we retain only the part pro-
portional to N„.The absorption coefficient is n=47ro/esp&.

'7 H. Schmidt, Z. Physik 139, 433 (1954).
'8 Reference 12, Sec. 247.

6Z 2'
M.(qtt') =— X,(( *N„&(fp„+1)&

GO Mf
X (fs-, ~ +1)'*. (23)

Similarly we find the total matrix element for photon
emission

We now restrict ourselves to processes involving two
optical phonons. A simple and reasonable approxima-
tion is to set

(X,(;~' (A/2r)r4p, g)(A/2nuop(), (30)

where fN is the reduced mass appearing in (8). In this
way we obtain

Xp6'A'e'
36m'

pp 1 (Ip[+spg'+ 1)
Q(&)

frt4cepg (pps (pfs)s N GO &~07 &~f

X& (Ao) Ap) « Ap—)«), —(31)
S

where Eo is the number of unit cells per unit volume.
A dimensionless integrated absorption may be defined
as follows

P„= n«dX=(2ac/pp ) I n«C(p, (32)

cof=6.90X10"sec '

op= 8.457,

e= 2.01e,

m=3.56X10-»

Ep =2.49X10",
Eop=vX10 '.

"Reference 11, Sec. 18.
~ B. Szigetti, Trans. Faraday Sop. 45, 155 (1949).

(34)

where 0.« is the absorption coefGcient for processes
involving a phonon of branch t and one of branch t'.
This quantity is of experimental interest in Gap, be-
cause it was shown in (I) that the two-optical-phonon
combination bands are well separated from the optical-
acoustical combination bands permitting their inte-
grated absorption to be measured directly. We may
assume that the six possible optical-optical processes
have approximately equal integrated absorptions, so
that the quantity of experimental interest is P„6P«.
From (31) and (32)

Ppp~24rr'G'(Nphe/m'ppf'op&) (1+2s), (33)

where'for the phonon frequencies we have put co,~ co, ~

(of (IJ/2, which is a good approximation in GaP.
The eGective charge e is greater than the ionic charge e*
defined by Szigeti" by the factor (ep+2)/3. The relevant
experimental quantities' are
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3. WIDTH OF THE FUNDAMENTAL RESONANCE

In (I) the parameter y describing the width of the
fundamental resonance in GaP was determined from
an accurate dispersion analysis of the reQectivity. In
terms of p the relaxation time r for the decay of energy
is ~= (ya&~) '. We shall assume that the principal
relaxation mechanism is the anharmonic perturba-
tion H". A typical decay process is the destruction of
an f phonon and the creation of a pa, ir of phonons
having frequencies of sum co~ and wave vectors of sum
zero. For simplicity we shall restrict ourselves to
absolute zero temperature, so that no other decay
process is possible. The relaxation time may be written

1/r= (2s./k)+is& IH, i( "I'8(keir hei„—h(o«—), (36)

where H q$$ is the matrix element of H" for de-
stroying f and creating qt and —gt,

' when the initial
state has a single f phonon present.

II„i"—— 6GX '(k/—2m')r)'X, (g (37)

By equating the experimental value of P p to the
expression (33) we obtain the estimate

G=3)&10"g cm ' sec '
for the anharmonic parameter. It may be noted that G
is of the order of magnitude of an elastic constant,
which is what one would expect, since the harmonic
and anharmonic energies should be comparable for a
displacement of one lattice constant. We shall now use
this value to compute theoretical estimates of the width
of the fundamental resonance and of the temperature
shift of the combinations bands.

by considering the sum over j in (21) for several typical
directions of q. The relaxation time can now be written

1/r~9n (G I'i/nzM (or )D(a&r/2), (41)

where D(e~) is the normalized frequency distribution
for the LA branch defined by

D(ai) =X 'P-; 8(cu' —e~). (42)

The numerical coefficient in (41) takes account of the
fact that the nonredundant summation in (38) is over
only half of q-space for the case t=]'.

It is dificult to estimate the value of D(e~r/2).
In the absence of more accurate information we may
suppose that the dispersion relation is of the form
co ei,„sin(—,ques l) and identify er, with the critical
point frequency esL&, which gives D(e~~/2) 1.6/eiL&.
Therefore we obtain 6nally the simple formula

1/r 45 (G'5/mM'e'er'e&Lg) (for GaP). (43)

Using M=1.7&&10 " g, the constants given in (34),
the critical point frequency 197 cm ', and G given by
(35) we obtain (1/r) 3.7)&10" sec ', which corre-
sponds to the width parameter y 5)&10 4. This is to
be compared with the experimental value 3)&10 '. This
is satisfactory agreement in view of the uncertainty of
estimating D(er).

4. TEMPERATURE SHIFT OF THE
COMBINATION BANDS

The contribution of the anharmonic potential to the
energy of the crystal according to ordinary second order
perturbation theo is

Thus we find ~(si = Q
g~n p„—pg

(44)

1/r =36~(G'/~~~) (I/&) &"'
I
X«~ I

'
&&5(Pictor

—fin)„—he~«). (38)

b.„-iql pl
—

'(5/2M~q&) ', (39)

where M=M, +M, . is the mass of the unit cell. We
then obtain

(40)
I x„il '- (5/M~g)'

s' J. Phi11ips, Phys. Rev. 104, 1263 (1956).

The analysis in (I) of the combination bands in GaP
shows that critical points" in the vibration spectrum
occur a,t five frequencies, which in terms of wave
numbers (cm ") are 66, 115, 197, 361, and 378. The
fundamental resonance is 366. If we imagine simple
shapes for the dispersion curves co(q), in which the
critical points occur at the zone boundary, we conclude
that the only decay process is the decay into two
longitudinal acoustic phonons of frequency 183. This
frequency is far enough from the critical point fre-
quency 197 that the perturbation treatment leading to
(38) should be valid. The wave vector q may also be
assumed to be not too near the zone boundary, which
permits us to make the approximation

I f, l

—2 sin-,'gp,
(47)

where p is the interparticle distance. The anharmonic
potential can be written in the form (14) except that

where an average is to be taken over the thermal dis-
tribution of initial states e. We shall define the fre-
quency shift Ro, of a phonon q as follows

55es, =W&'& (e,+1)—W&'& (e,),
where all phonon occupation numbers except for q are
the same in W'& (e,+1) and W&" (e,). We shall obtain
an expression for bee, on the basis of a one dimensional
model, since the three dimensional treatment leads to
formidable diS.culty.

The frequencies of the longitudinal vibrations of a
linear chain" are given by the so-called "normal dis-
persion" relation

(46)

where M is the mass of the particles and E the con-
stant of the connecting springs, and
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The sum of the first two terms in (49) is then found to
be —(ss'+ss") (a&'+co") while the third term reduces to
—(rs" —I')(co"—co'). Therefore we obtain for the fre-

quency shift

Bc«,/co«= —9(G'fi/E')X ' Q a n;to; (50)

(b)

(c)

FIG. 2. Diagrams for the shift of phonon frequencies
)see Ecl. (49)g.

the sum over j is omitted, and

P,&
—

& = (I's/2M«e, )'f~„
P«&+&= (I's/2M(e, ) *'f«*n,+

(48)

The intermediate states ~g) which contribute to b~«

are those in which a q phonon is created or destroyed.
From (14), (44), (45), (46), (47), and (48) we obtain

t~«+'(1+&« +I«+a )
3M «

=— —P « ~ co «r
~

4 E 1V ( co«co«' ce«ya'

co, , (1+as, +as, , ) 2(o,+,.(e,+,.—ss, ))+ ~, (49)
to«os«'+os«+a' ~

where the summation is over all q' (first Brillouin
Zone), and the redundancy of this summation has been
taken into account in the numerical coefficient. We may
regard (49) as the sum of the diagrams of Fig. 2. The
two diagrams of Fig. 2 (a) give the first term in brackets;
the diagrams on the right and left diGer only in the
order of creation and destruction of phonons. Likewise
Figs. 2(b) and (c) show the processes of the second and
third terms, respectively, in (49). Henceforth the tem-
perature independent part of Roq will be dropped, since
it would not be observable in the experiments described
in (I).

The combination bands in GaP exhibit maxima which
can be related as shown in (I) to five frequencies corre-
sponding to critical points. We may presume that these
critical points occur at or near the boundary of the
Brillouin Zone. Therefore we consider the case q= g,
=«r/p for which (49) may be readily reduced to a
simpler form. For q on the boundary of the Brillouin
Zone the wave vectors q+q' and q' —q are equivalent,
so that Go q+ q Q) q q Go q [

cos2pg'
~

. We denote co q
= cv',1

GD q+ q Go y s q m', e q~ q
=m" and note the identity

(co +to ) «ca = +2M (o

Ro/co = 3Gi)/E, — (53)

which is constant for all q. To relate 8 to thermal
expansion we compute the free energy of the distorted
crystal. The free energy to the lowest order in 8 and 6 is

P=Q«$-,'Sco«+AT ln(1 —e ""«'r)g+-', EIQs (54)

where the summation is the free energy of the crystal
oscillators with the anharmonic interaction neglected
except for the frequency shift (53), and the second term
is the energy of stretching the springs. The equilibrium
condition c)P/88 Oreduce=s to the formula

8= (3G/E') (1/X)Q «(ss«+-,') Stoa (55)
2'E. Gruneisen, Ann. Physik 39, 257 (1912); Handbuch der

Physik, edited by S. Flugge (Verlag Julius Springer, Berlin, 1926),
Vol. 10, p. 1; M. Born, Atomtheorie des festen ZNstandes (B. G.
Teubner, Leipzig, 1923); J. C. Slater, Introdlction to Chemical
Physics (McGraw-Hill Book Company, Inc. , New York, 1939);
R. Peierls, QssarltNra Theory of Solids (Oxford University Press,
New York, 1954); J. S. Dugdale and D. K. C. MacDonald, Phys.
Rev. 96, 57 (1954); 89, 832 (1953).

There is no difficulty in this case with the convergence
of the sum (49). The method breaks down, however,
when one tries to calculate bc«a/co« in the limit coa —+ 0.
The difficulty arises because of the presence of inter-
mediate states which conserve energy and cause (49) to
diverge. Since the combination bands are due to
phonons at or near the boundary of the Brillouin Zone,
the present treatment is adequate.

The frequency shifts are closely related to the
phenomenon of thermal expansion. "The Hamiltonian
of the linear chain is

H= (E/2)Q;(x; —x; i)'+Q, (p;s/2M)
—G Q, (x,—a;,)s, (51)

where x; is the displacement, p, the momentum of the
ith particle. H we now displace the equilibrium positions
by adding 6 to the interparticle spacing, the new Hamil-
tonian is

II(5) =-', (E—6G5)Q, (x,—x, i)'+Q (P '/2M)
—G Q (x —x i)'+X(-'E5' —GP), (52)

where now x; is the displacement from the new equi-
librium positions. Periodic boundary conditions x;=x;+~
are assumed in (52), which cause the terms in 3'x; to
cancel out; in any case we would not want linear terms
in x; in the Hamiltonian if x; represents a displacement
from equilibrium. The first three terms of (52) represent
a set of oscillators with anharmonic coupling similar to
the undistorted crystal (51) except for a modified

spring constant. The frequency shift resulting from the
modified spring constant is
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(57)

where a denotes the lattice constant and o, the coeK-
cient of linear thermal expansion. Using the same M
snd oiL~ as in (43), G from (35), and the values"
~=5.3X1o "C ' and" a=5.4X10 ' cm we obtain

&u '(h&u/A—T) 4X 10 "C '. This is in agreement with
the experimental value' (5+2)&(10 "C '. Therefore
the anharmonic mechanism for the infrared absorption
seems to be in agreement with the temperature shift
of the combination bands. This conclusion, however, is
based upon the simple model of a linear crystal with
nearest neighbor interactions.

It will be recognized that (53) is equivalent to the
relation

for the one dimensional Gruneisen constants"
= —d(logo&)/d(loga) of the linear chain. When the
Gruneisen constants of a system are all equal to a
single constant y the thermal expansion coeKcient is
given by the Gruneisen relation"

n=yC„p/V, (58)

where C, is the specific heat of the crystal at constant
volume and P is the isothermal compressibility. This
relation holds in one, two, or three dimensions with
appropriate definitions of y and p. In three dimensions y
is defined

y= —d log&ad/d log V. (59)

From the observed frequency shift and the coefficient
of linear thermal expansion we obtain y 3+1 for the
Gruneisen constant. This is a reasonable result, but
data are lacking to compare (58) with experiment. The

2'H. Welker and H. Weiss, Solid State Physics, edited by
F. Seitz and D. Turnbull (Academic Press, Inc. , New York, 1956),
Vol. 3, p. 51.

24 G. Geiscke and H. PGster, Acta Cryst. 11, 369 (1958).

giving the expansion of the unit cell in the linear chain.
When 8 is substituted back into (53) the frequency
shift becomes

8oi/oi= —9(G'h/E')X —' Q, (ev+ ;)-h o~, . (56)

In obtaining the perturbation result (50) we neglected
the temperature independent terms, so that (50) and
(56) are in agreement. The derivation of (50), however,
applies only to the zone boundary, whereas (56) applies
to all phonons.

The analysis presented shows that (50) is equivalent
to (53) when h represents the thermal expansion. For
comparison with experiment we therefore use (53)
since the thermal expansion coeKcient of GaP is known.
The spring constant E may be eliminated by the rela-
tion co, =2(E/M)' and u,„ identified with coL~

reported in (I), which gives the result Lhowever, see
comments above (60)]

thermal expansions of germanium, silicon, and indium
antimonide have recently been measured by Gibbons"
from 4.2' to 300 K. Silicon has a very pronounced
negative thermal expansion in the neighborhood of 80'K,
with normal behavior setting in above 120'K, although
the expansion coefficient is quite small. The Gruneisen
parameter y defined by (58) is found to be negative for
silicon below 120'K. These results are a dramatic
demonstration of the limitations and short comings of
the linear chain model for anharmonic eGects in real
crystals. It is quite clear that the linear chain model can
only account for normal thermal expansion and positive
Gruneisen parameters. Blackman" has observed that
reasonable choices for the interatomic forces in ionic
crystals can give negative p for the low-frequency
transverse waves. Barron" has carried out detailed
analyses of cubic lattices and shown that the resultant p
which should appear in (58) can be negative at tem-
peratures below 0.30D (8&=Debye temperature). We
may conclude that qualitative features can come into
the thermal expansion which are essentially three
dimensional. We may still expect that the linear chain
model is applicable to well behaved cases in which the
thermal expansion is positive, normal in magnitude,
and the Gruneisen parameter is approximately con-
stant. One might anticipate just from the abnormally
small thermal expansion of silicon at room temperature
that it is an abnormal material. But in general the
abnormal materials cannot be recognized so easily,
because InSb has a normal expansion coefficient at
room temperature and negative expansion below 50'K.
Therefore we can only hope at this writing that GaP is
a normal material to which the linear chain model may
be applied. The fact that (57) agrees with experiment
using a G obtained from infrared absorption may be
used as an argument in favor of the anharmonic
mechanism for the absorption, which is the position
taken here, or as an argument in favor of the linear
chain model.

The very close agreement obtained is apparently
fortuitous, however, because the quantities G, 8, E
appearing in (53) refer to a linear chain whereas in
(57) G, a, 3f, coL~ refer to GaP. Somewhat poorer
agreement is obtained if one proceeds in the following
way which actually seems more plausible. We see that
(53) is proportional to the ratio of the anharmonic
potential energy to the harmonic potential energy
stored in the restoring springs. The same expression
will apply to GaP if 5 is the extension of the nearest
neighbor distance, G is given by (35), and E is the
spring constant for the nearest neighbor forces assumed
to be the predominant restoring forces. It is true that
a crystal of the GaP structure with only nearest
neighbor springs would be unstable with respect to
shear along (111) type planes, but we may still imagine

s' D. r. Gibbons, Phys. Rev. 112, 136 l1958l.' M. Blackman, Proc. Phys. Soc. (London) B70, 827 (1957)."T.H. K. Barron, Ann. Physik 1, 77 (1957).
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longitudinal waves in the
I 111j direction in such a

structure. Accordingly we regard the particles of the
linear chain as the planes of Ga atoms and planes of P
atoms. One can show that the spring constant between
neighboring planes is then just E and the masses are
MG, and JIIIp. The frequency at the zone boundary for
such a chain of two kinds of atoms is" o&Lx= (2E/Mo, )».
In this way one obtains

1 Do& 3%3 Gan

GO AT 2 MG~GOL~

which has the value 1.4X10 "C (experimental' 5
)&10 "C).The conclusion already reached on the basis
of (57) that the anharmonic mechanism for the infra-
red absorption is consistent with the temperature shift
of the combination bands still holds, at least insofar as
a one dimensional model can be used to discuss the
problem.

S. THE THERMAL EXPANSION

We have already made use of both the theory and
the observed magnitude of the thermal expansion in the
preceding section. Although there we were concerned
with the temperature shift of frequencies rather than
the thermal expansion itself, it is clear that there is no
violent disagreement between the observed thermal
expansion and theoretical predictions based on (35).
For we would expect that if such a disagreement exists
it would show up in (57) or (60). In this section we
shall calculate the thermal expansion on the basis of
the three dimensional GaP anharmonic model described
in Sec. 2.

We shall use a direct perturbation method which
does not require explicit knowledge of the dependence
of phonon frequencies on volume. Consider a simple
anharmonic oscillator with the potential energy ~~Ex'
—Gx', and de6ne the expansion 8 by the relation

~ = (0 '" l*lk '") (61)

where P &» is the wave function to first order in the
perturbation —Gx' corresponding to the eth quantum
state of the harmonic oscillator. A simple calculation
gives

8„=(3GjE') (I+-,') ho&. (62)

When 8„is averaged over the thermal equilibrium distri-
bution of quantum states it may be called the thermal
expansion of the oscillator. According to this view an
expansion can be de6ned for each quantum state; if the
perturbation could be turned on adiabatically one
would expect to observe the expansion 8„ for any
initial state n. This approach can be readily applied to
the linear chain by de6ning

s.=x-'P;(»t J»l~;—x;,ly.&»), (63)

where the sum is over the S atoms of the chain.
A simple calculation gives the result (55) for an arbi-

trary assignment of occupation number n, The thermal
expansion is obtained by assigning the equilibrium
values (29) to qsq.

For the GaP structure the expansion of the cube
edge is

where the notation is that of Sec. 2, and j' may be any
one of the four nearest neighbor directions. In terms of
unperturbed states this becomes

(~l (P '«+P j ot+) la)(g I
&"IN)

~ =—&»ZiZq~
v3 jV„jV

(n I
II"

I g)(gl (pj'o&+p 'o&+)
I js)

(65)

where H" is given by (10). For each branch t there are
two intermediate states corresponding to creation and
destruction of a phonon of zero wave vector.

Diagrams for the processes responsible for expansion
are shown in Fig. 3, with (a) representing the first
term in (65) and (b) the second. The intermediate
states are single phonon states (i.e., differ by one
phonon from the initial state), so that two of the B"
phonons must be the same phonon created and de-
stroyed at the H" vertex as indicated by the closed

loops. The single phonon vertices are labelled 8 to
represent the "expansion operator" (po+ps+). The
relevant part of H" which contributes to 5 is

Zj Zss' Eq't' Pjo& Pj q'&' Pjq'&' (66)

It may be noted that (14) is not valid for repeated
indices such as occur in this case.

A simple calculation involving (13), (65) and (66)
gives

P' 'oP' 'oq*+F 'oi*F 'oij

%3m AGop~

XP'i IFj'i I'(2~'i+1). (67)

Fio. 3. Diagrams for thermal expansion Lace Eq. (65)g.
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g't' 2

(j s)(j «)&
Xlim —,'( P;g (, (69)

)q~O

where j has been summed and a compensating factor ~~

supplied. In (69) the unit polarization vectors p are
functions of qt. A simple formula can be obtained if it
be assumed that the acoustic branches can be repre-
sented by a single velocity of sound c,

co ~~~c,g. (70)

This is the simplest Debye approximation. The summa-
tion over phonons then reduces to

(j v)'(3 «')'

3c
(71)

where c, is related to the longitudinal and transverse
velocities by the formula

1 2

3c,4 5c1,2 3cp2 c1,2
(72)

The summation over j is carried out by means of the
identity

»(j I)(j «)=41 «,

From (7), (8), and (12) we have

F,q~= (j tq) (A/2nmq~) l optical branches

= (j p) (Ii/2M'&vq~)*ip«j acoustic branches. (68)

This shows that the optical branches make no contribu-
tion to the sum P„ in (67) because the sum Pq ~ is
independent of j while P(j p)=0 for any phonon
polarization p. The optical branches still contribute to
Pq ~, but the occupation numbers n, ~ strongly favor
the acoustical branches at ordinary temperatures. In
order to obtain the linear thermal expansion we neglect
the optical branches entirely and make the high-tem-
perature approximation nq~ kT/h~„ for the acoustic
branches. The thermal expansion then becomes

for the coeKcient of linear thermal expansion, which
must be compared with the observed value" 5.3
X10 "C '-

In making the comparison between theory and experi-
ment it is necessary to estimate the effective velocity
of sound c.„which comes into (75) as the inverse fourth
power. In the absence of experimental information on
the velocities of sound or the elastic constants we can
only make rough estimates of c& and c& from the
critical point frequencies' ~T~ and cur~ (we shall ignore
cqT~q). If the critical points are at (111)qr/a on the
Brillouin Zone and the normal dispersion relation (46)
holds we have cr=3.4X10', c1,=5.8X10' cm/sec, and
(72) gives

c, 5.0X10' cm/sec. (76)

The use of the normal dispersion approximation prob-
ably" underestimates cz and overestimates c&, although
this is not certain and little can be said about the error
made in ignoring coTA2. If the theoretical expansion
coefficient (75) is to agree with experiment the required
value of c, is 6.1X10' cm/sec which is probably not in
disagreement with (76). As best we can tell at present,
therefore, the thermal expansion is consistent with the
infrared absorption on the basis of the same anharmonic
model.

TABLE I. Summary of results.

6. SUMMARY

A summary of results is shown in Table I. The erst
column lists in order the infrared absorption (I.A.), the
width y of the fundamental resonance, the temperature
shift of frequencies o& '(A~/hT), the coefficient n of
linear thermal expansion, and the effective velocity of
sound c, defined by (72). The second and third columns

give, respectively, the experimental and theoretical
values. When these two agree it means a parameter in
the theory listed in the fourth column has been de-
termined. The parameters so determined are the anhar-
monic parameter G determined from (I.A.) and the
effective sound velocity c, determined from n. The
experimental c, is not a direct measurement, and
represents only a guess based on an assumed dispersion
relation. This investigation has been carried out to

which shows that only the longitudinal branch con-
tributes to this summation. The Anal formula is

3v3 GaqkT

Exp.

7X10-
3X10 '

The or.

&X10 '
5x 1o-4 (O'K)

Parameter fitted

G=3X10'2 cgs

16 3Pc,4
(74)

is+ 2l X 10 ' 1.4X10 '

where u=4p/V3 is the cube edge or lattice constant.
This gives &s

5.3X�1-'
-05X�'

5.3X10 '
6X10'

c,=6X10' cm/sec

16 3f2c,4
(75)

28 M. Lax, Phys. Rev. Letters 1, 133 (1958).



AN HARMONIC FORCES IN Gap CRYSTAL

ascertain whether or not a single anharmonic model
could account for the infrared absorption and a number
of other anharmonic eGects. On the basis of the results
summarized in Table I we reach an afErmative con-
clusion. A consequent conclusion is that in the case of
GaP it is not necessary to invoke the second order

electric moment mechanism (charge deformation) to
explain the observed infrared combination bands.
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Critical Field Curve of Suyerconducting Mercury*
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The critical field curve of mercury has been precisely measured in a range of reduced temperature,
t = T/T„ from 1 to 0.27. The observed H, values show an appreciable deviation from a parabolic tempera-
ture dependence, lying above the parabola which passes through the experimental values of IIO and T,.
The general behavior is similar to that previously observed in the case of lead. Values of the temperature
coefficient of the normal electronic specific heat, y, are derived, but are somewhat uncertain since the H,
data indicate an appreciable entropy contribution from the superconducting electrons at the lowest tem-
perature of measurement. The qualitative behavior of H, (T) for lead and mercury is in accord with recent
infrared measurements which give direct indication that the energy gap value for these elements is anoma-
lously large.

~ NE of the best known regularities of supercon-
ductivity is the fact that the critical field curves

of all superconducting elements can be approximately
represented by the "parabolic law"

H, (T)= IIs(1 t') t= T/—T„ (1)

where Lto and T, are, respectively, the critical field at
T=O'K and the critical temperature. Precise measure-
ments of H, (T) for a particular element generally
exhibit small deviations from (1) which may be de-
scribed by the function

D(T) =LH. (T)—H."(T)]/Ho (2)

where H, (T) is the experimentally observed critical
field and H,v(T) is the value computed for the same
temperature from (1) using the experimental constants,
Hs and T,. The maximum value of D(T) is never
greater than a few percent and, until recently, D(T)
also seemed to be negative for all superconducting
elements —a circumstance attributed to the fact that
the superconducting electronic specific heat, C.„had
an exponential dependence on T )rather than the well

known T' dependence which follows thermodynamically
from (1)].'

Recent measurements of Pb show this element to be
exceptional in exhibiting a positive D(T) s From this

~This work partially supported by the Office of Ordnance
Research, U. S. Army.

t Alfred P. Sloan Foundation Fellow.
~ W. S. Corak and C. B. Satterthwaite, Phys. Rev. 1D2, 662

(1956);also M. A. Biondi, A. T. Forrester, M. P. Garfunkel, and
C. B. Satterthwaite, Revs. Modern Phys. 30, 1109 (1958).' D. L. Decker, D. E. Mapother, and R. W. Shaw, Phys. Rev.
112, 1888 (1958).

behavior it follows that C„for Pb cannot be exponential
above a reduced temperature t= T/T, 0.3. It was also
noted that the maximum value of D(T) for various
elements shows a correlation with the ratio T./eo,
where 8~ is the limiting value of the Debye temperature
as T~O'K. The same correlation indicated that Hg,
hitherto considered to be the one true "parabolic"
superconductor, ' should also show a positive D(T). We
have measured D(T) for Hg and find it to be not only
positive but of greater maximum amplitude than
expected from the empirical correlation with T,/OD.

Specimens of reagent grade Hg4 were cast in graphite
molds as nearly single crystals in the form of cylinders
(0.160 cm diam&&3. 05 cm long). After removal from

the mold, the specimens were annealed for 8 hours

about 20'K below the melting point of Hg. The speci-
mens were freely suspended in a liquid helium bath
and the critical field measured by a ballistic induction

method. ~ Values were obtained down to a temperature
of about 1.1'K (t~0.27) by pumping over the helium

bath. The specimen temperature was determined from

a vapor pressure thermometer bulb with large copper
fins which sampled the temperature of the helium bath
immediately adjacent to the specimen. This procedure
eliminates some of the uncertainty due to the hydro-

static head correction required when the vapor pressure

s K. Maxwell and O. S. Lutes, Phys. Rev. 95, 333 (1954).
4 Obtained from Goldsmith Brothers Smelting 8z Refining

Company, of Chicago, Illinois. Stated purity: Au, Ag, less than
0.0005%, other base metals less than 0.0001%.' J.F. Cochran, D. E. Mapother, and R. E. Mould, Phys. Rev.
103, 1657 (1956).


