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Theory of Superconducting Contacts
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The BCS theory of superconductivity is generalized to the case of a position-dependent energy gap (at
the absolute zero of temperature and in the absence of magnetic fields). The BCS integral equation for the
energy gap goes over into an integro-differential equation. The latter has nontrivial solutions (i.e., finite
energy gap) even for the case of normal material (V=0). Expressions are obtained for the energy gap, for
the volume energy density, and for the surface energy density at an interface, for both normal and super-
conducting material. These results are applied to a number of problems involving superconducting contacts.
When a thin slice of normal material is sandwiched between bulk superconductors, it is found that the
slice acts superconducting for thicknesses less than about 10 ~ cm. When a thin slice of superconductor is
sandwiched between bulk normal material, the slice acts like normal material for thicknesses less than
about 10 5 cm. The energy gap at the free surface of a bulk superconductor may differ by as much as thirty
percent from its constant value deep inside the material, the former being either larger or smaller than the
latter, depending on the value of N(0) V, where N(0) is the density of one-electron states of a given spin
at the Fermi level in the normal metal.

I. INTRODUCTION in Sec. III and to superconductive material in Sec. IV.
In Sec. III we will see that a superconducting energy
gap can indeed exist in a material such as copper which
is usually thought to be never superconducting. In Sec.
V we will calculate the volume energy density of a
superconductor and in Sec. VI the surface energy
density of both a superconductor and a normal metal.
Section VII will furnish a discussion of boundary con-
ditions. The final four sections will be devoted to the
superconductor-vacuum contact, the superconductor-
superconductor contact, the superconductor-normal-
superconductor contact, and the normal-supercon-
ductor-normal contact, respectively.

Throughout the paper we shall assume that no mag-
netic field is present. In order to keep the analysis as
simple as possible, we restrict ourselves to the absolute
zero of temperature. Nevertheless, we will be able to
draw certain conclusions concerning the supercon-

ducting transition temperature of the superconducting-
normal-superconducting contact and of the normal-

superconducting-normal contact. With regard to such

contacts, it will be seen that theory and experiment are
in good agreement, both in the size of the supercon-
ducting transition temperature T„and in the depen-
dence of T, on the thickness of the middle layer.

The theory predicts that the energy gap near the
free surface of a bulk superconductor may dier
somewhat from its value in the interior of the metal.
The gap at the surface may be either larger or smaller
than the gap in the interior, depending upon the
strength of the eBective electron-electron interaction.
This effect is a manifestation of the presence of a surface

energy density.

'EISSNKR' has recently carried out a series of
- ~ remarkable experiments on super conducting

contacts. By measuring the contact resistance between
plated superconducting wires, he has shown'that a layer
of metal like copper, ordinarily not a superconductor at
any temperature, can be made superconducting by
being sandwiched between bulk superconducting ma-
terial such as tin. This can occur with layers as thick
as 10 ' cm. In addition, Meissner has verified older work
of Misener and others' by showing that a layer of tin
sandwiched between or plated on the surface of bulk
copper has 6nite electrical resistance at temperatures
well below the superconducting transition temperature
of bulk tin, here again for thicknesses as great as 10 5

cm. This is in sharp contrast with well-annealed tin
films plated on an electrical insulator, since such films

display the bulk transition temperature even when as
thin as 5)&10 ' cm. ' Meissner has pointed out that
these results are somewhat less startling when one
remembers that electrons in a superconductor can be
correlated with one another over distances as great as
ps= 10 ' cm, the Pippard coherence distance. '

In the present paper we shall develop the quanti-
tative theory of these effects. In order to do this, it is
first necessary to generalize the Bardeen-Cooper-
SchrieGer theory of superconductivity' to include spa-
tial dependence of the energy gap of the superconductor.
The general formulation will be developed in the fol-

lowing section. This will be applied to normal material

~ H. Meissner, Phys. Rev. 109, 686 (1958); Phys. Rev. Letters
2, 458 (1959);Phys. Rev. 117, 672 (1960).

2 E. F. Burton, J. O. Wilhelm, and A. D. Misener, Trans. Roy.
Soc. Can. 28, 111,65 (1934);A. D. Misener and J. O. Wilhelm 29,
1 (1935);A. D. Misener, H. Grayson Smith, and J.O. Wilhelm 29,
13 (1935); A. D. Misener, Can. J. of Research 14, 25 (1936).' A. I. Shalnikov, Nature 142, 74 (1938).

4 A. B. Pippard, Proc. Roy. Soc. (London) A216, 547 (1953).' J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Re
108, 1175 (1957); henceforth this will be denoted BCS.

II. GENERAL FORMULATION

Consider the BCS theory of superconductivity' at the
V.

absolute zero of temperature. The superconducting
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ground-state wave function is

@o——II L(1—hI )»+hz,.»cz,t*c z»~]C'o.

C'p is the vacuum-state wave function. The t,"k's are the
usual electron creation and destruction operators. The
parameters hk lie in the range 0 &~hk ~& j.. The normal-
state wave function is

hz;). Considering the pair of states kg and —kg, the
total addi' onul contribution is

(h'/4m) (vhg»)'.

This may be looked upon as the center-of-mass kinetic
energy density of a Cooper pair of mass 2m.

Similarly, for h(hr, the terzn
l e&l (1—h&) is replaced

by

II ckt c k» c'0-
k&kJ

Thus
I

&~
I (1—h~)+ (52/8m) LV (1—h~)»7'

The energy density 8'p associated with the ground state
is composed of the two terms Wz (interaction energy
density) and WEE (kinetic energy density).

Wz =-Z ~» Lh. (1—h.)h'(1-h')]», (2.1)

W«=2 2 &th~+2 2 I&I l(1—h~) (2.2)

kp being the wave vector at the Fermi level. Thus we

may write

+o= II L(1—4)»+4»c~t'c ~»*]
k&kg

WEE= Q l 2ephz, +-,'h'm —z(vhp»)']
k&ky

+ p (2 l "l (1—h.)+-'zz'm-zl v(1—h, )»]2) (2.3)

The terms involving (Vh~»)' and LV (1—hz)»]' give the
modification of the BCS value of t/t"p when hk varies
with position. These terms are reminiscent to those
introduced by Ginzburg and Landau' in a generalization
of the London theory of superconductivity. The Ginz-
burg-Landau theory suGers from the fact that it
predates the BCS theory.

BCS obtained an equation for hk by minimizing Q"p

with respect to h~, i.e., setting c)WO/cjhz, =O. Because of
the presence of the gradient terms, we must use the
Euler-Lagrange equation,

t/ kk is the effective electron-electron interaction poten-
tial. The one-electron energy ek is measured relative to
that of the Fermi level, i.e., on an eGective-mass ap-
proximation

e„=(h2/2m) (h2 —hrz)

$(8/8hz, ) v(—c)/c)Vhg)]Wp ——O.

For k)kp, we get

2Leghz, —(A'/8m)hz»Phl, »]

(2 4)

nz being the eGective mass. 8'p is the energy density
measured relative to that of the normal state.

We wish to generalize the theory to consider a
spatially varying energy gap. This implies a spatial
variation of the parameters hk. Specifically, we assume
that hk is some function of the position of the center of
mass of the two electrons occupying states kg and
—kg when h) hr, and that (1—hz, ) is some function of
the center of mass of the two holes occupying states
kg and —kg when h(hr. We designate by Vhz» the
gradient of hz» with respect to its argemerzt. Thus the
momentum operator of the ith electron acting on hk&

will give 2ihvhk—l when the ith electron occupies ki
or —kg, and will give zero otherwise. (Note the factor
of one-half, which results from the argument of hk

being the center of znass of the electron pair. ) We shall
assume that hk is essentially constant over distances of
the order of the Fermi wavelength. (This assumption
will later be corroborated. ) Thus, for h)hr, the term
~khk must be replaced by

(h'/2m) [l (k ,'iv)hg»l—' —hr'hl]—
= eghl, + (h'/8m) (Vhg»)'

This represents the contribution of state kg to the
kinetic energy density at x (x being the argument of

= (1—2hg)(1 —hy) z Q V» Lhz, (1—hz, )hz, (1—hz, )]»,

(2.5a)

as the integro-diGerential equation which hk must
satisfy. Similarly, for k(kp, we get

2t l e~ l (1—h~) —(zzz'/8m) (1—hz, )»V'(1 —hz, )»]

=(2hz, —1)hj, 'Q V» l hz(1 —hz, )

Xh. (1-h& )]». (2.5b)

In the expression for 8'p, we are free to replace the
term

+(h'/4m) Q (vhz, l)' by —(h'/4m) P hz,.»V2h„»

k&kJ

and the term

+(h'/4m) Q LV(1—hz)»]'

by —(zzz'/4m) Q (1—hz, )»P(1—hg)»,

V. L. Ginzburg and L. D. Landau, J. Exptl. Theoret. Phys.
U. S. S. R. 20, 1064 (1950); V. L. Ginzburg, Nuovo cimcnto 2,
1234 (1955).
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1 ( oo q t
cosh(x/A)(Smoo)» &

'

2 ( [ooo+oooo(X)]») &cosh(X/A) (Smoo) «)Wso=o', A'm-'n [Q ho«Vho«+ P (1 h—,)«V(1 A—„)«)

provided that at the same time we introduce the h&(x)=-,'{1—o&[o&'+Boo'(x)] «)
surface energy density

=(A'/Sm)n [p Vho+ p p'(1 —A&)), (2.6) eA, &0,'
(3 4)

2 E [oo'+ooo'(X)] i
f'cosh(x/A) (Sm l 6J, l )«) '

xl oo&0.
(cosh(X/A)(Sml oi, l)«)

nbeing the unit vector normal to the surface. 8 Bp will con-
tribute to the total energy only at surfaces where there
is a discontinuity in &h&. Thus if Vh& is everywhere
continuous, there is no surface energy. Replacing
(Vho«)' by —h&«Voh&«and [V(1—A&)«]' by —(1—A&)«

XV'(1—ho)«in Wo, and making use of the integro-
1 ~ PP ~ ~ 1 ~ l 1 Solving for 6pgjxj, we6nd, in thelimit of small

~
Eg) thatdsrrerentiai equation for h~, we get

Wo= —Z boo[ho(1 —ho)] «Q Vox [ho (1—ho)]«
1 Sm

+ (X'-x')
ooo(x) ooo(X) A'

(1—ho)'[ho(1 —ho)) «

XQ Voo [Ao (1—ho ))«. (2.7)

1 Sm

ooo(0) A'
g2. (3.5)

Equation (2.7) is formally identical with the corre-
sponding expression in the BCS theory, i.e., (2.7)
contains no term involving V'h~.

III. ENERGY GAP IN NORMAL METALS

Throughout this paper, we make the assumption that
a normal metal such as copper can be characterized by
Voo ——0 for all k, k'. This implies that Wo vanishes for
a normal metal irrespective of whether or not h~ varies
with position. For a normal metal, the position-inde-
pendent solutions of Eq. (2.5) are trivial, namely ho ——0
for e~&0 and h~ ——1 for el, &0; the position-dependent
solutions, however, are not trivial, there being two
possible types. The 6rst of these is

ci cosh[(x/A)(Sm
I
o&l)«]= [ho(x)]«,

= [1—ho(x)]«, oo&0,

c& being some constant. The second type is

co slnh[(x/A) (Sm ! oo ! )«)= [ho(x))«oo) 0,
= [1—hg, (x))«, oo&0.

In general, we de6ne the k-dependent energy gap spy

by means of the equation

This implies

&a=-', [1—oo(ooo+ ooP) ']. (3 1)

1—2ho= oo(oP+ ooo')
—

«,

2[Ao(1—4))'*=ooo(oo'+ooo') '.
(3 2)

(3.3)

We imagine a slice of normal metal lying in the range—X &~x &&+X, with ooo(x) assuming the value ooo(x)
QO at x=&X.Thus the 6rst of the above solutions for

hI, becomes

Thus we have the remarkable situation of a finite
energy gap at the Fermi level in a slice of normal
material. As a result, the slice will have the electrical
properties of a superconductor.

On the other hand, let us take the second type of
solution for hl, where

1( oo ) (sinh(x/A)(Smoo)«) '

2 E [o& +ooo (X)]«) ( sinh(X/A) (Smoo)«J

eg&0,
(3.6)

1 ( &a

=1—-l 1+
2 ( [o.'+ oo,'(X)]»

(sinh(x/A) (Sml oo I)' ) '
xl .,&o.

I siW(X/A)(sml o, 1)«&
'

Solving for ooo (x), we And, in the limit of small
l oo l, that

ooo(x) = l oo
l [1—(x/X)'] ', x'&X'. (3.7)

Thus the gap vanishes at the Fermi level where ey=0,
i.e., there is no gap separating the ground state of the
system from excited states. The electrical properties
will be essentially the same as in a bulk normal metal.

IV. ENERGY GAP IN SUPERCONDUCTORS

In general

ho«V'ho«=-' ,V'ho ——,'ho —'(Vho)',

(1—ho) «V'(1 —ho) «= ——,"Vobis —-', (1—ho)-'(Who)'.

Equation (3.1) gives

VAo= ooo(ooo—+oooo') «V (1/ooo)&
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so that

hm ~hp ————',pp~ (1/«),

—lim (1—hp) &'P (1—hp) &= lim hp&Phpl

=—-' ~'(1/ o),
where we have defined

(4.2)

(4.3)

sp being the arbitrary value of s at @=0.The constant
pp(pp ) is just the constant value of « to be found in the
interior of a bulk superconductor [i.e., pp(~) is the
BCS value of pp7. Thus in such a bulk superconductor
we want s —+1 as x~ . At the same time we want
(ds/dx) —+ 0. This means that for a bulk superconductor
we must take

Gp= llm Cps. (4.4)

As in BCS, we now approximate GpA, by 6p inside the
summation over k', we replace the summation by the
equivalent integration; and we we set V» equal to
the constant V for

I ppI, I pp I
(b~ (the mean phonon

energy) and equal to zero otherwise. We get

E(0)V arcsinh

(happ/

pp) —(A'/16m) V'(1/«) = 1,

E(0) being the density of one-electron states (of a
single spin) per unit energy at the Fermi level in the
metal in the normal state. Since under all conditions
Gp+QAor, we may approximate

In this limit, Eq. (2.5), the integro-differential equation
for hp, becomes (for both positive and negative values
of pp)

2 p(«p/«)Vpa (pp'+«p') '

—(A'/16m) V'(1/«) = 1 (4 5)

J|:=1. (4.13)

For this case, a plot of 1/s versus &x/8 can assume the
two possible forms diagrammed in Fig. 1. The constant
8 can be written in terms of the Fermi wavelength

Xp= 2~/kp (4.14)

V. VOLUME ENERGY DENSITY

and the SCS form of the Pippard coherence distance

$p= P~z/«p(~)7, (4.15)

ep being the velocity of electrons at the Fermi level.
We have

~= sL6&~/&(0) V7'. (4.16)

Taking as representative values $p
——10 ' cm, X~——4

X10 P cm, E(0)V= p, we get 8=-,'X10 ' cm, smaller
than $p by a factor of two hundred. The energy gap in
a superconductor can thus change appreciably over
distances of the order of 10 ' cm.

Thus,
arcsin(hpp/«) by ln(2fia&/pp).

1V(0)V 1n(25(u/pp) —(fP/16m) V'(1/pp) = 1. (4.6)

Let us return to Eq. (2.7), the expression for Wp.
Expressing h& in terms of 6p and making the same
approximation we made in the last section in solving
the integro-differential equation, we get

«(~) =2fuoe ""~p'v, (4 7)

In case V=O, we immediately get the solution

L1/.,(*)7= L1l.,(0)7—(s~/& )*,
obtained previously for a slice of normal material.

For the case V finite, it pays to define the constants

Wp= —IVY L( 'p+«')'
I ppl7-'

kk'

XL(pp'+pp')(«'+«')7 '

( ply=—Pr(0)7PvI (pP+, P)-~de
I)

1(
—el/2v (p) v

g (gf(0)Vygy j (4.8) ( t'sM

x
I

L2("+")'—'—"("+o')-:7d
I

and the variable
s(x) = pp(~)/«(x), (4.9)

=—LN (0)7'Vh(o(L(duo)'+ ppP7-: —Ace)

Xarcsinh(A~/pp)
so that Eq. (4.6) becomes

26'V's = Ins. (4.10)
———',VLX(0)pp7' ln(2hco/pp). (5.1)

b(ds/Ch)=at E+s(lns —1)7-:,

E being an integration constant. Thus

(4.11)

In the one-dimensional case (which we consider ex-
clusively henceforth), this can be immediately inte-
grated once

and
Wo(")= —p&(0)L«(~)7, (5.2)

We designate by Wp(~ ) the value of Wp when pp= pp(&p ).
Thus Wp(~) is the energy density in the interior of a
bulk superconductor (i.e., the value computed by
BCS). We have

p Z

& zp

$E+s'(lns' —1)7-&ds',
Wp Wp(pp) =s Ls Q(0) V in' 17 I

Wp(pp) I
~ (5.3)

(4.12)
As a result of the smallness of X(0)V in practice, Wp
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E, (x).(-) !
characterized by a bulk gap op(~), bulk energy density
Wo(~), and in addition having the same E(0) as does
t e normal material under consideration. Then (6.3)
may be written

Wso=4 Wo(p()) Xs ' (6.4)

where z=op(()o)/op(X). (It will later be convenient to
specify that the effective mass m of our hypothetical
superconducting material is the same as that of the
normal material. )

The above expression holds only when the quantity

e=XA—'[Smop(X)]'*=-', [1V(0)Vs]—'(X/8), (6.5)

is suKciently small. The error at large u results from
assuming op is independent of k in the normal metal.
To see this, we note that Ako(k)k~) and V(1—k),)
)& (k(k) are both

I I ) ( I I I ( )

2 5 4 5 6 7
+-(p)

Frc. 1. Energy gap versus position for a bulk superconductor.
) given by

becomes larger (more positive) than Wo(p()) whenever
op becomes smaller than oo(~).

w enever

x ('-[,~,(x)].&!!,„(8 l'l)'!
VI. SURFACE ENERGY DENSITY

I.et us return to Eq. (2.6), the expression for Wso.
Expressing hj, in terms of ep, and making the same
approximations we made in solving the integro-diGer-
ential equation, we get

at x=X. Thus 8'gp is,

pX
Xtanhl —(Sm fool)'*!,

Wso = —(Ao/16m) [(d/d*) op-)] opo & I
o.

I (o"+opo)-'

=—()))'/16m)[(d/dx) o '] o'1V(0)

4p
2o(oo+o ')—)do

= —(A'/Sm) [(d/dx) oo ']opoX(0)

X (op
—'—[(I))(o)'+o ']-*')

——(A'/Sm) [(d/dx) op
—']opoE(0). (6.1)

For superconductive material (V 40)

(d/dx) op
' [1/op (~ )](d—s/—d—x)

= &[Sop(~)] )[E+s(lns —1)]&,
so that

Wso= &I 1—
SmXo ( [o"+oo'(X)]:&

(X ) (X
&& !

—(Sml o I)'! t»hl —
(Sml "I)' I

Ea

p
pro

1V(0) l
1—

4mX ~ p E [o'+op'(X) ]&&

)X y ~X
X

l

—(Smo)* ! tanhl —(Smo)'* !do. (6.6)
Ee

0 gap i.e.
q A,

" isFor a s ice of normal material with no g
a yperbolic sine rather than a hyperbolic cosine), the

Wso= ~k'oo(()o )E(0)(Sm()s') '[E+s(lnz —1)]'*
= WSX(0) V!Wp(~) l()z '[I(.+s(lnz —1)]'*. (6.2)

The sign of Wsp is the same as the sign of (doo/dx) at
t e surface. Thus lf tp decreases as the surface is
approached, then 8'Bp will be negative.

For a slice of normal material (V=0) 'th fi
'=

z wi a nitegap

(d/dx) oo '= —16m'—'X (boundary at x=X)

so that
Wsp ——21V(0)Xop'(X). (6.3)

Let us imagine a hypothetical superconducting material

X(0)
l

1—
4mX [o'+o '(X)]'*&

t)'X y (X
X l

—(Sm.)*'
I cothl —(Smo)' Id'

&a

Comparing Eqs. (6.6) and (6.7), we see that they
become equal in the limit of large I where both tanh
and coth can be replaced by unity. In this limit 5"zp
is independent of I or X. Still considering the case of
no gap, when u is sufFiciently small we m l

e yperbolic cotangent times its argument b unit
so that
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so=PP(~X) '~(0) (1—
ol o'+ oo'(X)j ')do

=A'(4') '1V(0) {o (X)+&co L(~)'+ooo(X)fl)

—A'(4eoX) 'E(0)oo(X). (6 8)

VII. BOUNDARY CONDITIONS

It is appropriate at this point to summarize brieQy
the rather formal developments of the past Ave sections.
If the parameters hj, of the BCS theory of supercon-
ductivity are allowed to vary with position, then the
BCS expression for the kinetic-energy density is
modified to that given by Kq. (2.3). This converts the
BCS integral equation for hI, into an integro-differential
equation, Eq. (2.5). Its solutions for a superconductor
are given implicitly by Kq. (4.12). For a slice of normal
metal (V=o) there are two possible solutions, given by
Eqs. (3.4) and (3.6), respectively. For the first of these
solutions, there is an energy gap at the Fermi level, so
that the slice has the electrical properties of a bulk
superconductor. For the second solution, there is no

gap, and the electrical properties are "normal. " The
volume energy density 8'0 of a superconductor is given
by Eq. (5.1); Wo vanishes for a normal metal, irre-
spective of whether or not there is a gap. The surface
energy density 8"80 of a superconductor is given by
Kq. (6.2). For a slice of normal metal characterized by
the parameter n of Kq. (6.4), the surface energy density
is given by Eq. (6.10) for N&~1, and by either (6.4)
(gap) or (6.9) (no gap) for +&1.

Before we can apply these results to specific physical
problems, we must discuss the boundary conditions
which hA, must satisfy. This is the topic of the present
section. We consider a plane interface between two
metals. The electron trajectories making contact with
the interface can be divided into two classes: pene-
trating trajectories which pass through the interface;
nonpenetrating trajectories which do not pass through
the interface. The latter represent reQection at the
interface; the former in general represent a certain
amount of refraction at the interface resulting from
the simultaneous conservation of energy and of mo-

In terms of a hypothetical superconducting material
having the same E(0) and m as does the normal ma-
terial under consideration, Eq. (6.8) may be rewritten
as

W„=(4B)X(0)VIIVo(") I(Xs) ' (69)
We note that Eqs. (6.4) and (6.9) assume the common

value,
IVso=8BPV(0)Vj:IWo( ) l~&, (6.1O)

when 1=1;while (6.4) is smaller than (6.9) for 1&1.
We shall henceforth make the assumption that Eqs.
(6.4) and (6.9) hold for the gap and no-gap solutions,
respectively, whenever 1&1,while Eq. (6.10) holds for
both solutions when I~&1.

sineo &~ (kp, /k~o), (7.1)

eo being the angle between ko and the normal to the
interface.

We shall assume the two following boundary con-
ditions for the ho associated with a peeetratieg tra-
jectory.

I. hl, is a continuous function of position along a
penetrating trajectory; i.e.,

k~1= k~2 at the interface. (7.2)

II. A penetrating trajectory makes no contribution
to the surface energy density 8'&0, i.e.,

(5'/8m ') (Bhl„/Be)
= (5'/8mo) (Bhoo/Be) at the interface. (73)

We shall assume the following boundary condition for
the hl, eever associated with a penetrating trajectory
Le.g., boo when ko is such that (7.1) is eot satis6edf.

III. The boundary value of an h& never associated
with penetrating trajectories is chosen to minimize the
total energy of the system. It might be thought that
condition III is already automatically satisfied by the
integro-differential equation for hi, . Such is not the case,
since Eq. (2.4) represents a minimization of Wo subject
to arbitrary, specified boundary values of h&.

Although the above boundary conditions appear
eminently reasonable to the writer, it is by no means
obvious to him that they can be rigorously justified.
They should best be considered plausible assumptions.
As a practical matter, these boundary conditions are in
general too dificult to apply. The reason is easy to see.
The boundary value of hI, is determined by conditions
I and II for some orientations of k Lthose orientations
which satisfy Eq. (7.1)) and by condition III for other
orientations

I
those which fail to satisfy Eq. (7.1)).

This implies an orientation dependence of h~ at the
boundary. However, in the past five sections we have
assumed that ho is independent of the orientation of k,
an assumption which is necessary in order to make Eq.

mentum parallel to the interface. Let one of the metals
be characterized by eGective mass m&, and Fermi wave
vector k&1, the other metal by ns2 and k&2. We assume
k») kp& (i.e., the conduction-electron density is greater
in metal No. 2). Let kq and ko be the wave vectors
associated with a penetrating trajectory, k&, charac-
terizing that part of the trajectory lying in metal No. 1
and ko that part lying in metal No. 2. Given either k~
or ko, the other member of the pair is speci&ed by the
conservation conditions

Pi'/2teg) (kP kp P)—= (5'/2mo) (boo kp—oo)

~1l I —~2 I lq

the subscript II denoting the component parallel to the
interface. When k~ and ko lie at the Fermi level, the
orientation by k& is arbitrary, but the orientation of ko
is limited by the restriction
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(2.S), the integro-differential equation, practicable to
solve. In order to avoid this difhculty, we will make the
drastic simplification of considering only interfaces
where the trajectories are either all penetrating or all
nonpenetrating. This implies either that the metals on
both sides of the interface have identical values of ns,
kF, and E(0) (all penetrating trajectories) or that the
interface is one separating a metal from an insulator or
vacuum (all nonpenetrating trajectories). We will make
the additional simplification of assuming Sco is the
same on both sides of a metal-metal interface. This is
necessary in order to satisfy condition I between two
superconductors. The difFiculty arises from the ap-
proximation made in solving the integro-differential
equation that ep&

——ep for
( e&

~
&Alp and coo=0 otherwise.

This last approximation also makes it impossible to
satisfy condition II between a superconductor and a
normal metal even when Lr is the same for both. Thus
we shall replace condition II by the weaker condition:

II'. The sum of the contributions of all penetrating
trajectories to the surface energy must vanish. There-
fore at the interface between two metals the net surface
energy vanishes; i.e.,

Wsoi+ Wsop =0, (7.4)

VIII. SUPERCONDUCTOR-VACUUM CONTACT

For our purpose, a metal-insulator contact is no dif-
ferent from a metal-vacuum contact. Furthermore, a
normal metal-vacuum contact is not of interest. We
therefore restrict the discussion of the present section
to superconductor-vacuum contacts. For simplicity, we
consider the interface between vacuum and a bulk
superconductor (as contrasted with a superconducting

8 80~ and 8'802 being the surface energy densities asso-
ciated with each of the two metals forming the interface.
Note that because of the simpli6cations already made,
conditions II and II' are equivalent for an interface
separating two superconductors.

Summing up, we may say that only two types of
interfaces will be considered:

(1) Metal-vacuum (or metal-insulator) interfaces.
(2) Metal-metal interfaces where the two metals

differ only in the interaction potential V. Condition
III specifies the boundary conditions for (1);Conditions
I and II' specify them for (2).

Before concluding this section, it should be pointed
out that we are assuming that bulk properties of a
metal like nz, fild, X(0), and V are constants independent
of position inside a given metal. Any position depend-
ence of these quantities is probably restricted to
regions within a few lattice spacings of the interface,
i.e., distances small compared to 8, so that it is a good
approximation to ignore their position dependence
within a given metal; ergo we assume they change dis-
continuously at an interface.

film). We assume the superconductor occupies the half-
space characterized by x(0; i.e., the interface lies at
@=0, with superconductor to the left and vacuum to
the right.

We dedne 8'&0, the boundary surface energy density,
as the difference (per unit surface area) between the
total energy of the superconductor and its energy if
ep(x) were equal to ep( op ) throughout the supercon-
ductor. Thus

0

Wsp= I [Wp(x) —Wp(~)]Ch+Wso. (8.1)

—8X(0)Vs '[1+s(lns —1)1& ~, (8.2)

where s is the value of s'=op(oo)/ep(x) at the surface
of the superconductor, and sgn(s —1) is the signature
of (s—1). When pp at the surface divers only slightly
from ep( oo ), i.e.,

ep(0) = ep(oo) (1+«)& («i((1& (8.3)
we have

Wsp=V28
~
Wp(m ) ( f —«[2—Sled(0) Vj

+-'«'[4+29N(0) Vg). (8.4)

Condition III of the previous section is equivalent to
the requirement that 8'~0 be minimized with respect
to s (or «). If we set l9Wsp/8«=0, we find

«=3[2—SX(0)V)[4+29%(0)Vj ', (8.5)

Wsp= ——,'%2Bj Wll(~) (

X[2—SE(0)V$'[4+29%(0)V) '. (8.6)

According to the work of Pines, i E(0)V lies in the
range 0.2—0.5 for most superconductors. Thus, from
(8.5), «ranges from +0.3 to —0.08. This suggests that
(8.3) is not too bad an approximation. We see that the
energy gap on the surface of a bulk superconductor will
be either smaller or larger than the gap in the interior
when X(0)V is either larger or smaller, respectively,
than 0.4.

IX. SUPERCONDUCTOR-SUPERCONDUCTOR
CONTACT

Consider an interface at @=0 between bulk super-
conductors No. 1 and No. 2. The two superconductors
have differing values of V [and thus of ep(oo) and bf

' D. Pines, Phys. Roy. , ],l}9, 280 (1958).

Making use of Eqs. (4.11), (4.13), (5.3), and (6.2), we

get,

Wso= [sgn(s —1)]b ( Wp( ) (

( t" [s"—E(0)Vins' —1j
Xi

s"[1+s'(lns' —1)1&
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Let 00(0) be the common value of pp(x) at the interface,
and let s1 and s2 be the values of s for the two super-
conductors at the interface. Condition I of Sec. VII
implies that

SE(0)V
I Wp(~) I5z

—'[1+z(lnz —1)]l
=(48)'1v(0)UIwp(00) Ix 'z ' u&1
=85[1V(0)V]iI Wp(~) Iz-&, u & 1.

(10.6)

The case I ~&1 corresponds to X ~&X, and s=2'„just
as before. In contrast to the previous situation, how-
ever, the case I&1 does rot correspond to X&X„but
rather to X&X,. This can be seen as follows. For u(1,
we have

we have
002(~)/001(~ ) = 1+x, (9.3)

00(0) = 001(~ )[1+V151(V181+U262) '1~]

= 002(~ )[1 Vpti2(U1~1+ V2~2) K]. (9.4)

X. SUPERCONDUCTOR-NORMAL-SUPER-
CONDUCTOR CONTACT

Consider a slice of normal metal of thickness 2X
sandwiched between bulk superconductor (of the same
type on both sides). We recall that there are two solu-
tions to the integro-differential equation for the slice
of normal metal, one where there is a gap at the Fermi
level, the other where there is none. For the former
solution, a vanishing net surface energy density at
either normal-superconductor interface requires that

sx(0) U
I
wp(~)

I
R '[1+z(lnz —1)]i

=4Iwp(~) Ixz ', u&1, (10.1)
=85[iV(0)V]:IWp( ) Iz

—l, u&1,

where u is given by Eq. (6.5). The case u~& 1 corre-
sponds to X ~&X, and s=s„where X, and s, are con-
stants which will be determined momentarily. The case
N(1 corresponds to X(X, and s&s'„where s is the
solution to the equation

(X/25) =X(0)V[1+z(lnz —1)]'*. (10.2)

The constant s, is given by

z,=N (0)U[1+z,(lnz, —1)], (10.3)

which, to an excellent approximation, may be rewritten

z, =E(0)Vz, (lnz, —1),
or —~1+1/N (0) V

Combining (10.2), (10.3), and (10.4), we get

X,=25[%(0)Ve'+U i'& ]&.

(10.4)

(10.5)

For the no-gap solution, a vanishing net surface
energy density requires that

00(0) 001(~)/zl 002(~)/z2 (9 1)

Condition II implies, with the aid of Eq. (6.2), that

V181[1+zi (lnzi —1)]:= V252[1+ z2(lnz2 —1)]'*. (9.2)

For the metal with the larger 00(pp), we must take
z) 1;for the other metal, z& 1;so that pp(0) is bracketed
between 001(~) and 002(~). This is necessary in order
that t/I/'gp for the two metals be opposite in sign so that
the net surface energy density can vanish. These two
equations serve to determine zi and z2, and thus 00(0).
For example, when

or
(X/25) =z[1+z(lnz —1)] && [1V(0)Vz]'* (10.7)

1+1/1V(0)V(z '+lnz~lnz,

2X,= 2r(e/2)'*gp(fipi/Ep) l. (10.8)

Taking E~——400Aco and ~~p
——10 ' cm, we get 2X,=1.8

so that z)z, while X—2li[z/(1nz —1)]l)X,. We con-
clude that there is no solution to Eq. (10.6) for X(X„.
while there are two solutions for X&X„namely s=s,
and z given by Eq. (10.7). Of these two solutions, z=z,
is the stable solution since it corresponds to the lower
energy of the system.

For X larger than X„ the total energy of the system
is independent of whether we use the gap or the no-gap
solution in the slice of normal metal (since in either
case z=z,). However, at any finite temperature the
no-gap solution will have the greater entropy and thus
the lower free energy. This means that the no-gap
solution is the stable one for X&X,. In contrast, for
X&X„the gap solution is the only one which satisfies
boundary conditions, so that the slice has the electrical
properties of a superconductor. The slice will exhibit
normal resistivity only when the bulk superconductor
on either side of the slice reverts to the normal phase.
This implies that the superconducting transition tem-
perature of the slice is the same as that of the bulk
superconductor for X&X,, Since the transition tem-
perature of the slice is zero for X&X„we see that the
transition temperature is a discontinuous function of
thickness (at the critical thickness 2X,). This discon-
tinuity is probably an artifact of the approximation
embodied in assuming that Eqs. (6.4), (6.9), and (6.10)
are correct in the intermediate range of I=1.A more
accurate expression for W gp in this range would
undoubtedly lead to the conclusion that, for X in the
vicinity of X„both the gap and the no-gap solutions
can satisfy boundary conditions with, at the same
time, the former having the lower energy. This would
probably remove the discontinuity in transition tem-
perature as a function of thickness. The essential
results would remain unchanged, however, these being
that for X appreciably greater than X, the transition
temperature vanishes, while for X appreciably less than
X, it is equal to the bulk transition temperature. The
critical thickness 2X, can be written in terms of the
Fermi energy Ep, the phonon energy Ace, and the
Pippard coherence distance $0, i.e.,
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X10 ' cm= —
oPp, in good agreement with the experi-

mental work of Meissner.
At the critical thickness, the gap at either interface

is smaller than the bulk gap by a factor of z„while the
gap at the center of the slice is still smaller by a factor
of two. Thus the gap in the slice of metal is a couple
oders of magnitude smaller than the bulk gap. However,
the gap in the slice rises quite rapidly as X becomes
smaller than X,. To see this, take

22
l

20

IS

16

i4

t 2

s= s, (1—~), ~&&1,

and substitute into Eq. (10.2). We find

(10.9)

s= [1++(0)V] '[1—(X/X,)']. (10.10)

Although (10.10) applies only when X=X„it indicates
that ep(X) may be considerably greater than ep(X )
when X is appreciably smaller than X,.

In concluding this section, we point out that in the
limit X= ~ we get the behavior of an interface between
bulk normal and bulk superconducting materials, the
gap at the interface being smaller than the bulk gap
by a factor of z, .

4 5
I/N(0) V

FIG. 2. Critical half thickness X, of superconducting slice (and
corresponding values of s& and so&) as a function of 1/ft'(0) V.

XI. NORMAL-SUPERCONDUCTOR-NORMAL
CONTACT

Consider a slice of superconducting metal of thickness
2X sandwiched between bulk normal metal (of the
sa,me type on both sides). A vanishing net surface
energy density at either normal-superconducting inter-
face requires that

81V(0)V~ Wo(~) (8s '[s(lns —1)—so(lnso —1)]'
= 86[%(0)V]'*~ Wp(oo ) ~s ', (11.1)

where s is the value of ep(oo)/ep(x) at either interface,
and sp is the value at the center of the slice (where
deo/dx vanishes). Since the normal metal is assumed to
be infinitely thick, we have used Eq. (6.10) for deter-
mining the contribution of the normal metal to the net
surface energy density. Equation (11.1) becomes

1/X(0) V=lns —1—(sp/s) (lnsp —1). (11.2)

This, when combined with

z

X=8
l

I [s'(lns' —1)—sp (lnsp —1)]—'ds', (11.3)
ZO

serves to determine zp and z for a given value of X.
Numerical solution of these two equations leads to

the following results. For all values of X, there is the
solution zp=z= ~, corresponding to the slice being in
the normal phase. For X smaller than a critical length
X„ there are no other solutions. For X larger than X„
there are two additional solutions. If X is appreciably
larger than X„ then these two solutions are zp=1,
z= e'+'I (') and zp= z= large number, the latter having
the higher total energy of the two, In the limit as X

approaches inanity, this latter solution coalesces with
the normal-phase solution zp

——z= ~.For X appreciably
greater than X„ the lower-energy solution is charac-
terized by ep(x) =op(oo) over most of the volume of the
superconducting slice, so that the superconducting
transition temperature of the slice is presumably nearly
that of a bulk superconductor of the same material. As
X approaches X, from above, the two superconducting
solutions coalesce and disappear. A plot of X, (and of s
and sp at X=X,) as a function of 1/X(0) V is given in
Fig. 2. Over the range of values of 1/1V(0) V of interest
(i.e., 2—5), this X, is quite comparable with the critical
distance computed in the previous section for the super-
conductor-normal-superconductor contact, as can be
seen by comparing Fig. 2 with Eq. (10.5). This is in
agreement with the experimental results of Meissner.

Although it appears impossible to get an analytic
expression for X, as a function of X(0)V, it is possible
to show analytically that there is an X„ i.e., to show
that no superconducting solution exists if X is suf-
ficiently small. I et us assume for the moment that
s=sp+p where p«sp. Thus

[s(lns —1)—sp(lnsp —1)]&—[p lnsp]', (11.4)

(X/S)= [p' lnsp]-~dp'= 2[p/lns, ]-:, (11.5)

(p/so) =(X/28)'(lnso)/so,

1/X (0)V—(X/25)'(lnsp)'/so.

(11.6)

(11.7)

Equation (11.6) shows that our assumption p«sp is
indeed correct in the limits zp ~ 1 and zp —+ ~. Equa-
tion (11.7) shows that 1/E(0) V increases from zero as
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so increases from one or decreases from infinity. This
strongly suggests that there is some maximum value
of 1/E(0) V as a function of sp. This maximum repre-
sents the value of 1/Z(0) V for which X is the critical
length X,. For any value of 1/X(0) V smaller than the
maximum, there will be two corresponding values of so,
representing the two possible superconducting solu-
tions. For any value of 1/1V(0)V greater than the
maximum, there corresponds no value of so, indicating
that no superconducting solution exists.

Let us assume that Eq. (11.7) holds for all values of
so. Then we clearly see that there is a maximum value

of 1/JV (0)V equal to (X/e5)', occurring at sp ——e'. This
gives

and
X,=e5[$(0)V] 1,

p/sp ——1/21V (0)V.

(11.8)

(11.9)

Equation (11.9) shows that when 1/1V(0) V«-'„ it is
indeed true that p«sp (so that Eq. (11.7) holds true)
for all values of so. Figure 2 shows that X, varies as
[X(0)Vj: and s —& sp~ e' as 1/N(0)V —+0. How-
ever, over the range of interest of 1/E(0) V (i.e., 2—5),
Eq. (11.8) is not a good approximation to X,.
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Calculations of the band energies at symmetry points in aluminum by Heine are extended into the zone
using the pseudopotential interpolation scheme in order to obtain constant-energy curves in the neighbor-
hood of the Fermi surface. In conjunction with this calculation, the lines of contact between various bands
are found in detail. The de Hass-van Alphen effect, cyclotron-resonance effect, anomalous skin eGect, and
low-temperature speci6c heat are discussed in terms of these constant-energy curves and the results compared
with experiment. It appears from this comparison that the geometry of the Fermi surface is given quite well

by the band calculations, but that there is a discrepancy of a factor of order two between the derived and
measured effective masses. A "single orthogonalized-plane-wave approximation" is compared with the
more exact treatment and found to be a good starting approximation, suitable for semiquantitative treatment
of the electronic structure.

I. INTRODUCTION

OLLOWING the remarkable success of Gold' in
understanding extensive de Haas-van Alphen

data on lead in terms of a "nearly-free-electron approxi-
mation", the author' applied the same method to
existing data on aluminum. Again, the data seemed
to fit quite closely that to be expected on the basis of
this very simple model. In view of the success of this
model in understanding the de Haas-van Alphen
eGect, it is desirable to consider the band structure of
one of these metals in detail in order to see to what
extent the simple model describes the actual band
structure.

In the following sections the orthogonalized-plane-
wave (OPW) calculations for aluminum by Heine' are
extended to obtain constant-energy curves in wave-
number space. These are compared with a "single-QPW
approximation, " the latter being equivalent to the
"nearly-free-electron approximation" in its application.
Finally, the descriptions of the de Haas-van Alphen
eGect, cyclotron-resonance effect, anomalous skin

r A. V. Gold, Phil. Trans. Roy. Soc. (London) A251, 85 (1958).
2 Vil. A. Harrison, Phys. Rev. 116, 555 (1959).' V. Heine, Proc. Roy. Soc. (London) A240, 361 (1957).

(Heine III).

eGect, and low-temperature specific heat derived from
the two points of view are compared with each other
and with experiment.

II. ENERGY-BAND CALCULATIONS

Heine' has calculated the energies of the bands at
several points of high symmetry in the band using the
orthogonalized-plane-wave method. In order to con-
sider the behavior of the electron gas in aluminum,
we require knowledge of the energy bands at more
general points in the zone, and in particular near the
Fermi surface. Heine4 has indicated that in the first
two bands the energy is quite close to the free-electron
value except near the zone faces. This suggests' that
in most of the band the wave functions may be fairly
well described by a single OPW. This further suggests
that near a zone face only two are necessary; near a
zone edge, three; and near a zone corner, four. Finally,
consideration of the zones in aluminum indicates that
the mixing of OP%'s in the region of interest should
be describable in terms of only two independent o8-
diagonal matrix elements of the Hamiltonian. Thus

4 U. Heine, Proc. Roy. Soc. (London) A240, 340 (195'?).
(Heine I).' M. H. Cohen and V. Heine, Suppl. Phil. Mag. 7, 395 {1958).


