
COLLOI DS IN ADD ITIVELY COLORED NaCl

suggested that the ionized Oq center or this center in
combination with a lattice defect is responsible for the
growth of the 6 band.

The formation of the 6 band in the natural NaCl
occurs only in localized areas. The portions of the
crystal in which this colloid will appear can be pre-
dicted by close examination of the crystal after additive
coloration. Faint dots of blue can be seen, and under a
100X microscope each blue dot has within it one or
xnore bubbles. By reRected light the dot area shows
Tyndall scattering. Since the natural crystals are
grown from solution, it is reasonable to expect that
the bubbles contain some water. During additive
coloration the water reacts with the sodium, and now
in these localized areas the initial conditions for
promoting the growth of an absorbing type colloid are
present. Optical absorption measurements in the
immediate area of the bubble indicate the presence of
a U band, and a trace of O~ band. The behavior, then,
of the area immediately surrounding the bubbles in
natural NaC1 is identical with that of the bulk of the
synthetic NaCl containing hydroxyl ion impurities.

Scattering type colloids which decorate grain
boundaries form in all sodium chloride crystals which
are slowly cooled from the additive coloring temper-

ature. It appears reasonable to conclude from the
present work that the formation of an absorbing type
colloid band in additively colored sodium chloride is
due to the presence of impurities acting as nucleation
centers. The formation of absorbing type colloid bands'
observed in other alkali halides after additive coloration
may be due to the presence of hydroxyl ions' "in these
melt grown crystals.

Since the natural crystal contains no hydroxyl ions,
the areas in the crystal free of bubbles contain F
centers after additive coloration. These F centers are
present whether the crystal is slowly cooled or quenched
from the additive coloring temperature; the only
optical difference is that the slowly cooled crystal will

also be decorated.
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An approximately self-consistent crystal potential is constructed for Si from a superposition of free-atom

core and a sampling of crystal valence band charge densities. Valence-core exchange is calculated directly
from core wave functions while valence-valence exchange is included using momentum-independent and
momentum-dependent approximations taken from the results for a free-electron gas. The resulting crystal
potential is surprisingly similar to one previously obtained by Woodruff from a superposition of free-atom

charge densities. The calculated valence wave functions in the core region diRer substantially from those of
WoodruR because of the variational method used by him to calculate wave functions in that region. As a
result the calculated energy gap is changed from WoodruR's value of 4 ev to about 1.5 ev, in substantially

better agreement with the experimental value (1.1 ev). The various uncertainties in the calculation are listed;
it is concluded that the relative position of levels near the band gap should be correct to within about 1 ev.
ERective masses are also calculated and compared with experiment; the agreement is quite good.

I. INTRODUCTION

HIS is the third paper of a series' ' whose object is
to present a careful study of the crystal potential

seen by electrons in the covalently bonded semicon-
ductors and to calculate the energy bands resulting
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' L. Kleinman and J. C. Phillips, Phys. Rev. 116, 880 (1959),
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therefrom. The problem —rewarding in that experi-
mental veri6cation of the results is possible —is diKcult
on two counts. First there is the mathematical difhculty
of obtaining good wave functions; this was solved for
diamond by Herman'using the method of orthogonalized
plane waves' (OPW) and by us in I using the repulsive

potential method. '
s F. Herman, Ph.D. thesis, Columbia University, 1955 (un-

published).
e C. Herring, Phys. Rev. 57, 1169 (1940).
s J. C. Phillips and L. Kleinman, Phys. Rev. 116, 287 (1959),

hereafter called PK.
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We regard the repulsive potential method as an ap-
proximation to the OPW method which has as its chief
virtues its ease of calculation and the physical insight it
lends to the problem. It is particularly well suited for
demonstrating the error incurred by orthogonalization
to incorrect core wave functions. In the next section we
briefiy review the repulsive potential method and dis-
cuss the best choice of core wave functions and the effect
of incorrect functions on the repulsive potential.

Because of the second difficulty, obtaining the correct
crystal and repulsive potential, none of the other valence
semiconductors have previously been treated satis-
factorily. In I we studied the valence electron contribu-
tion to the potential and showed that, at least for
diamond, a simple superposition of atomic charge
densities leads to a nearly self-consistent valence po-
tential. This fact, together with the simplicity of the
core, led to Herman's satisfactory results. There is no
a priori reason to expect the same thing to be true for
silicon. We therefore form our crystal charge density
from an assembly of free atomic core charge densities
arranged in the form of a diamond lattice plus a self-
consistent crystal valence charge density. The self-
consistent valence potential is discussed in Sec. IV where
two choices for the exchange contribution are presented.

It is generally conceded that the most accurate crystal
potential calculation for a polyvalent element beyond
the second period was done by Heine6 for aluminum.
Because he could assume the valence wave functions to
be single orthogonalized plane waves, he was able to
aim for and probably achieve a relative accuracy of
0.02 ry in the energy levels. In doing silicon which lies
next to aluminum in the periodic table, we shall be able
to take advantage of some of Heine's work as the cores
of the two atoms are to within a scaling factor almost
identical. The core and repulsive potentials are calcu-
lated in Sec. III with an accuracy approaching Heine's.
However, in going from aluminum to silicon, one goes
from a case of nearly free valence electrons to the case of
covalently bonded electrons. Because there exists no
satisfactory treatment of exchange and correlation for
this more general case, the relative accuracy of our final
eigenvalues is limited to about 0.05 ry.

In the past few years two calculations of the energy
bands of silicon have appeared. WoodruG' and Bassani, s

who manufactured their crystal potential from a super-
position of neutral atomic charge densities formed from
analytic Slater' "wave functions, would have obtained,
had they carried their calculations to convergence, an
indirect energy gap about 0.25 ry too large. Jenkins, "
who manufactured his Hartree crystal potential from a
superposition of singly charged silicon ion charge den-
sities and used a cellular method of calculation, found

s V. Heine, Proc. Roy. Soc. (London) A240, 340 (1957).
r T. O. Woodruff, Phys. Rev. 103, 1159 (1956).
s F. Bassini, Phys. Rev. 108, 263 (1957).' J. C. Slater, Phys. Rev. 36, 57 (1930).
+ J. C. Slater, Phys. Rev. 42, 33 (1932).
n D. P. Jenkins, Proc. Phys. Soc. (London) A69, 548 (1956).

silicon to be a conductor. Because of the similarity in
both method and results, we 6nd it easy and instructive
to compare our results with WoodruG's. The conclusions
drawn from this comparison are that the crystal po-
tential is insensitive to any reasonable approximation in
either core or valence charge densities (a superposition
of atomic valence wave functions is even closer to being
self-consistent for silicon than for diamond) while the
repulsive potential is very sensitive to approximations.

In Sec. V the energy bands are presented and because
of our improvement over WoodruG's repulsive potential,
agreement with the experimental energy gap and valence
band width is obtained to within the uncertainties due
to the valence-valence exchange.

In Sec. VI the eGective masses of holes at the top of
the valence band and electrons at the bottom of the
conduction band are computed including the effect of
the rapid oscillation of the wave functions in the atomic
core region. Agreement with experiment is found to be
quite good.

Thus
Kp +Q„a„(E E)f "=Ey . —

If we now introduce

(2.4)

(2.5)

we obtain

If we now expand q in a series of symmetrized plane
waves transforming according to the irreducible repre-
sentation F,

(2 7)

then applying the variational principle we obtain the

II. ORTHOGONALIZATION TO CORE LEVELS

We here give a short derivation of the repulsive po-
tential method in order to obtain a simple means of
displaying the physical signi6cance of orthogonalization
and the eGects of small errors in the core wave functions
upon orthogonalization.

Let us assume we know the crystal wave function f
which transforms according to F, an irreducible repre-
sentation of the cubic point group which has s or p
atomic symmetry. Since P must be orthogonal to the
core states of similar symmetry, f ", we can write

(2.1)

(2.2)

We 6nd the Schrodinger equation satis6ed by p, the
"smooth" part of P by substituting (2.1) in the
Schrodinger equation for P,

(2.3)
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usual secular determinant

detL Vr(E;,E;)+(k,s—E)8;;)=0, (2.8)

where Vr(E;,E;) represents the matrix element of
V+ Vst between the ith and jth symmetrized combina-
tion of plane waves and consists of one or more Fourier
transforms of V+ Vtt. Our secular equation (2.8) is like
that obtained in the method of orthogonalized plane
waves4 but does not contain the complicated direc-
tionally dependent terms present there. Convergence of
Eq. (2.8) is just as rapid as is obtained using OPW
because Eq. (2.8) is the secular equation for the smooth

part of the wave function. An examination of Eq. (2.5)
shows the repulsive potential to be very nearly inde-
pendent of angle because in the core region (where lb

"
is large) y may for most irreducible representations, cr,

be approximated to very great accuracy by a radial
furiction times the same spherical harmonic contained
in/ ".

For those irreducible representations transforming
with both s and p atomic symmetry (i.e., rto =a+ '
+bp ") the repulsive potential may still be written in
an angularly independent form:

Vtt(r) =A Vtt'(r)+BVIt" (r), (2.9)

where Vtt' and Vtt" are pure s and p repulsive potentials
obtained using separately the s and p parts of &p in
Eq. (2.5). In PK we showed how A and B may be
obtained from a and b.

In the core region the radial part of p may be ap-
proximated by a function of the form r'e &"where I is the
azimuthal quantum number. The determination of P
(as well as E) in a self-consistent manner is discussed in
the next section. There it is also shown that this ap-
proximation causes only a small error which we almost
completely eliminate by calculating the perturbation of
the error on the energy levels. In return for this incon-
venience we obtain not only a much easier method of
calculation than OPW gives us, but also a means for
displaying the physical significance of the orthogo-
nalization terms.

Consider, for instance, the Fourier transforms of the
effective potential listed in Table XI. One sees that all
the Fourier transforms of the Coulomb potential but the
(111) are very nearly cancelled by the repulsive po-
tential seen by the s valence electrons while for p valence
electrons the cancellation is not nearly so good. As we
have pointed out in PK this is due to the fact that we
have eliminated all the radial nodes in the wave func-
tions but the p wave function contains an angular node
that cannot be eliminated. If one adds the kinetic energy
of the angular node D.e., the centrifugal potential
l(l +1)/r') to the p repulsive potential the sum is very
nearly equal to the s repulsive potential. This explains
the slow convergence of p wave functions in OPW
calculations which has been a puzzle for some time. Ke
might further note that it is the electrons' response to
the lack of cancellation of V~~~ that causes the formation

of covalent bonds. In metals all the Fourier transforms
(except Vooo) are very nearly cancelled out by the re-
pulsive potential; thus the electrons are nearly free.

Herring, in his original paper' discussed the errors
which result from orthogonalizing to incorrect core wave
functions. These errors are often of two types. The 6rst
results if the valence wave functions are orthogonalized
to eigenfunctions of an incorrect Hamiltonian such as
free atomic core wave functions rather than to core
eigenfunctions of the crystal valence one electron
Hamiltonian. Even if the core functions are eigenfunc-
tions of the valence Hamiltonian, a second kind of error
may occur if they are determined by a variational tech-
nique which leads to first-order errors in the wave
functions. Woodruff~ calculated the core eigenfunctions
of silicon variationally while Heine' avoided the problem
by calculation of the core eigenfunctions of aluminum
numerically.

The repulsive potential method is particularly well
suited for displaying these effects and a detailed dis-
cussion for silicon is given at the end of the next section.

III. CALCULATION OF CORE AND
REPULSIVE POTENTIALS

There are no self-consistent calculations of the wave
functions of the neutral silicon atom available in the
literature; however, there exist both Hartree" and
Hartree-Fock" calculations for the Si4+ ion. We wish to
approximate the neutral silicon atom core with the Si'+
ion. As was pointed out by Heine, ' neglecting the
shielding of the valence electrons on the core causes only
small variations in the core charge density. The
Coulomb potential seen by the valence electrons is ex-
tremely insensitive to these small core variations. Fur-
thermore, these small variations will be reduced if one
approximates the neutral silicon atom by the Hartree
Si4+ ion rather than the Hartree-Pock ion. For the effect
of exchange is to increase the attractive potential seen
by the core electrons and hence tends to cancel the
shielding of the core electrons by the valence electrons.
It can be seen that the neglect of exchange in the
Hartree calculation does not overcompensate the neglect
of valence electron shielding on the atomic cores since
Table III shows that the Hartree ion eigenvalues calcu-
lated by McDougall" actually still lie below the experi-
mental x-ray term values of the silicon atom. ' We
therefore took our core Coulomb potential from
McDougall's Hartree calculation. It is listed in the
second column of Table I as a function of r. The core-
valence exchange potential is obtained from" '

4' (rr)
V,core-val ex(r&) —p f (r&) lb, (r&)drs (3 1)

rrs 4 '(rr)
's J. McDougall, Proc. Roy. Soc. (London) A138, 550 (1932).
~3 W. Hartree, D. R. Hartree, and M. F. Manning, Phys. Rev.

60, 857 (1941).
'4 Americal INstitute of Physics Handbook (McGraw-Hill Book

Company, New York, 1957).
's J. C. Slater, Phys. Rev. 81, 385 (1951).
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TABLE I. Contributions to Z(r) = rV—(r) as seen by valence electrons in the spherical approximation. Column 2 lists the Coulomb
contribution of the core. Columns 3 and 4 list the exchange contribution of the core with s and P valence electrons. Columns 5 and 6
list the exchange and Coulomb contributions of the valence electrons. Columns 7 and 8 are the sums of columns 2, 3, 5, 6, and 2, 4, 5, 6,
respectively.

0.0050
0.0247
0.0451
0.0672
0,0907
0.1165
0.1572
0.2019
0.2725
0.3679
0.4966
0.6703
0.9048
1.221
1.649
2.014
2.460
3.004

core
ZCoul

13.767
12.883
12.080
11.335
10.668
10.042
9.204
8.413
7.349
6.225
5.213
4.502
4.140
4.024
4.0015
4.0000
4.0000
4.0000

core-val
Zs exch

0.039
0.217
0.352
0.458
0.547
0.669
0,429
0.340
0.512
0.634
0.743
1.132—0.093
0.041
0.016
0.006
0.002
0.000

core-val
Zp exch

0.036
0.192
0.285
0.337
0.359
0.368
0.380
0,412
0.498
0.623
0.765
1.083—0.215
0.014
0.008
0.002
0.000
0.000

val-val
Zexch

0.006
0.028
0.051
0.076
0.103
0.132
0.179
0.229
0.309
0.418
0.564
0.761
1.027
1.597
2.027
2.186
2.218
2.126

val
ZCoul

—0.026—0.115—0.188—0.252
—0.309—0.362—0.434—0.507—0.618—0.775—0.993—1.298—1.716—2.248—2,832—3.200—3.503—3.728

Z(s)

13.786
13.013
12.295
11.617
11.009
10.481
9.378
8.475
7.552
6,502
5.527
5.097
3.358
3.414
3.212
2.992
2 717
2.398

Z(p)

13.783
12.989
12.229
11.496
10.821
10.181
9.328
8.547
7.538
6.491
5.549
5.048
3.236
3.387
3.204
2.988
2.715
2.398

ol
Z core-val ex(0 95r) Z core-val ex( ) (3.3b)

where Z= —rV.
The exchange potential (3.1) has been smoothed out

over the region where it becomes infinite but this makes
little error because of the node in lt;(rr). The valence
wave functions used are the free atom wave functions
wb. ich do not change appreciably in the core region on

going to the crystal except for their normalization of
which Eq. (3.1) is independent. Columns 3 and 4 of
Table I list Z'"' ""(r)for s and p valence wave func-
tions. Table II compares the Fourier transforms of
V"" '"'(r) and V"" "'"(r) with those of Woodruff.
Because Woodruff used the Slater free-electron gas
approximation"

for his total exchange potential, lumping both core and
valence charge densities together, the separation of his
exchange potential into core and valence terms is some-

"D.R. Hartree, Proc. Cambridge Phil. Soc. 51, 684 (1955).

where the summation is over the core states. The scaling
of atomic wave functions has proved useful in extrapo-
lating Hartree potentials" due to the insensitivity of
valence electrons to small errors in core charge density;
for the same reason it is possible to extrapolate Heine's
a,luminum core-valence exchange potential to silicon.

By matching the nodes and maxima of the wave func-
tions, one finds to a very good approximation in the core
region

1|'s (r) = (1/0.95'*)ltg~(r/0. 95). (3.2)

By substituting Eq. (3.2) into Eq. (3.1) one immedi-

ately finds

V core-val ex(r) (1/Q 95)V core-val ex(r/Q 95) (3 3a)

(p =Q (3.5a)

(3.5b)

a, and e„were chosen to give approximate agreement
with p»& obtained self consistently. These smooth wave
functions must be orthogonalized to the core eigen-
functions of the valence Hamiltonian which for this
purpose we approximate by the analytic 1s, 2s, and 2p
Slater' "wave functions, obtaining for the radial part of

what arbitrary. The separation was obtained by ex-
trapolating his higher Fourier transforms, which result
almost entirely from the core, down to the (111)
transform. This procedure yields well-defined results
because p, & is so extended that only the (111) transform
is large (see Sec. IV).

We note that the difference between our s and p
exchange potentials is small; hence small errors in s —p
character of the irreducible representations will lead
only to small errors in the exchange potential. The
similarity between Woodruff's V""' '"'(E) and ours
even though he used Slater wave functions for his core
charge density confirms our earlier remarks about the
insensitivity of the valence electrons to small changes in
core charge density.

We now turn our attention to the calculation of the
core eigenfunctions needed to calculate the repulsive
potential. The contribution of the valence electrons to
the crystal potential is calculated self-consistently in
the next section; however, we need a spherical ap-
proximation to the valence electrons in the core region
of an atom in the crystal in order to simplify the
calculation of the core eigenfunctions.

It is assumed that the valence wave functions in the
crystal can be approximated by a superposition of
atomic-like wave functions on the crystal lattice sites
whose smooth radial part has the form
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TAaLz II. Comparison of Fourier coeKcients of core contribution to potential with those of WoodrufF. Column 2 lists WoodruG s core
Coulomb term. Column 3 lists our core Coulomb term. Column 4 lists the exchange potential due to the core seen by WoodruG's valence
electrons. Columns 5 and 6 list the exchange potential due to the core seen by our s and p valence electrons. Column 7 is the sum of
columns 2 and 4. Column 8 is the sum of the average of columns 5 and 6 with column 3. The coeKcients have not been multiplied by
the form factor cos(x/4) (Er+Ea+Ea).

/a

) p'~core Coul(+) p'core Cou1(E) l'~core-val ex(E) p,core-val ex(E) p'„core-vaI ex(E) P' ~core (E:) +core(E)

3
8

11
16
27
40
64

—0.737—0.328—0.258—0.191—0.131—0.103—0.075

—0.754—0.334—0.263—0.201—0.141—0.108—0.077

—0.050—0.044—0.042—0.039—0.029—0.019—0.008

—0.041—0.035—0.032—0.028—0.023—0.016—0.009

—0.037—0.033—0.031—0.027—0.022—0.017—0.009

—0.787—0.371—0.300—0.230—0.160—0.122—0.083

—0.793—0.368—0.294—0.229—0.163—0.124—0.086

the wave functions

Ps, ——0.9104Le """—26.79re ' ""+6.625e "'"],(3.6a)

sr=1 636rt e '»r —11.39e '»'"$ (3.6b)

We choose our atom to have (17/8) p electrons and
(15/8) s electrons as this is approximately the number of
each in the valence band averaged over the Brillouin
Zone (see Table V) ~ The potential due to these valence
electrons is computed from Poisson's equation

v'V= —Sm p, (3.7)

TAsx,z III. Eigenvalues of 1s, 2s, and 2P core functions in ry
determined in four diGerent ways.

Hartree
WoodruG's variational
Present calculation
Atomic x-ray term values

1s

—141.20—134.597—131.4208—135.4

2$

—14.135—11.1237—12.00415—11.0

—11.230—8.17697—8.72145
7v3

' See reference 12.
b See reference 14.

and Slater's" free electron exchange approxima, tion
LEq. (3.4)$.

Due to the nonlocal nature of the exchange potential
the rapid oscillations of the valence charge density in
the core will not be seen by the valence electrons and.

following Heine' we have therefore averaged the charge
density over the core before inserting it in Eq. (3.4).

It should be mentioned that the spherical approxima-
tion neglects the overlap of charge density from other
crystal sites. Hence there is an unavoidable error in the
Hamiltonian for which we are calculating the eigen-
functions. In the core region this overlapping charge
density should be small and approximately constant.
Neglecting this overlap is therefore equivalent to making
E„slightly too negative. On the other hand, we found
after calculating p~~~ self-consistently. that 0, and n~ and
hence the shielding due to the valence electrons were too
large. As these errors are in opposite directions and each
causes an error in the repulsive potential of less than
0.01 ry, no attempt was made to correct them. Columns
5 and 6 of Table I list Z ""'"(r)and Z'" '"'(r) ~ We

This gives

p= lnr,

P'=Pr **=fr**.

(3.8a)

(3.8b)

(d'P'/dp')+fEe'~+2Ze~ (l+-,')'jP'=0 —(3.9)

in atomic units (8 in ry, r in Bohr radii) which was
integrated with the boundary condition (dp/dr), ,=0,
where Z= —r V(r) and r, is the radius of the equivalent
volume sphere (r, =3.18).Table III lists the eigenvalues
for the 1s, 2s, and 2p eigenfunctions and compares them
with those of Woodruff and the Hartree core wave
functions. We note that WoodruG's variational eigen-
values lie above ours with the exception of the 1s. This
is because he did not average the charge density over the
core before computing the exchange potential and so his
exchange potential is much too great in the 1s region of
the core.

The repulsive potentials are obtained from Eqs. (2.5)
and (2.2) by inserting these calculated 1s, 2s, and 2p
eigenfunctions and eigenvalues into Eq. (2.5) and ap-
proximating q by q, and q „ofEq. (3.5a, b). Table IV
gives the is and 2s repulsive potential as a function of r
for Fs and the 2p repulsive potential for Fts and the
total spherical potential (including repulsive) for I's and
r». Figure 1 is a graph of the total spherical potential
for F2..

The percentage of s and p repulsive potential to be
used in each irreducible representation was determined
by a preliminary expansion of its symmetrized combi-
nations of plane waves into products of spherical
harmonics and radial functions. These were then inte-
grated over the core eigenfunctions yieMing essentially
weighted sums of the orthogonalization contribution to

'r D. R. Hartree, Phys. Rev. 46, 738 (1934).

repeat that these spherical valence potentials are used
only to compute the lower eigenvalues and eigen-
functions of the valence Hamiltonian. Columns 7 and 8
of Table I list the total spherical potential for s and p
electrons, respectively.

To facilitate the numerical integration of the radial
part of the Schrodinger equation the following substi-
tutions are made":
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TAnr. E IV. Charge Z(r)= rU—(r) due to repulsive (orthogo-
nalization) potential in spherical approximation. Columns 2 and 3
list the 1s and 2s repulsive contributions to F~ which are totaled in
column 4. Column 5 is the repulsive charge seen by F» levels.
Columns 6 and 7 list the total effective charge seen by F2 and F»
levels which is obtained by adding the repulsive charge to Z(s) for
F2 and to Z(P) for F~q. Z(s) and Z(P) are listed in Table I.

r z~»(r& ) z~»(r2. ) z~(r2 ) zg(r») z«f(r2. ) z«f(r»)

0,0050
0.0247
0.0451
0.0672
0.0907
0.1165
0.1572
0.2019
0.2725
0.3679
0.4966
0.6703
0.9048
1.221
1.649
2.014
2.460
3.004

-5.088—17.612—24.811—28.080—28.347
-26.537—21.776—16.264-9.662-4.170-1.275—0.259-0.070-0.017—0.005—0.001

0
0

0,692
2.379
3.225
3.399
2.992
2.104—0.223—2.006—4.937—8.012-9.580—9.117-6.618—3.739—1.546—0.683—0.250—0.127

—4.396—15.323—21.586
-24.681—25.355
-24.433—21.553
-18.270-14.599—12.182
-10.855—9.376-6.688—3.756—1.551-0.684—0.250-0.127

—0.661—2.847—4.662—6.213—7.469—8.481—9.495—10.022—10.077—9.375—7.954—6.023-3.849—2.143—1.004-0.528—0.256-0.117

9.390—2.310—9.291-13.064—14.346-13.952—12.175—9.797—7.047—5.680—5.328—4.279-3.330—0.342
1.661
2.308
2.467
2.271

13.122
10.142
7.567
5.283
3.352
1.700—0.167-1.475-2.539—2.884-2.405—0.975-0.613
1.244
2.200
2.460
2.460
2.281

the diagonal matrix elements in the OPW method (see
Eqs. (3.10) and (3.11)j. The percentage of s and p
repulsive potential was then taken equal to be the
percentage of the s and p contributions to these sums.
Although in principle the percentage of s and p repulsive
potential can be calculated exactly, it is extremely
dificult in practice and of not much advantage as our
spherical approximation for p has already introduced
some error into the repulsive potential. In Table V is
listed the percentage of s and p repulsive potential used
in each irreducible representation. We estimate it to be
accurate to within about 3%.

The error introduced in the repulsive potential is cor-
rected as follows. The contribution of the orthogonaliza-
tion terms to the matrix element in the OPW method is
given by

P (E—E„i)A„i (k;)A„i(k;) P Pi(cos8, ,)

where P&(cose;;) is the 1th Legendre polynomial of the
angle between k; and k, , the sum over n, I is over core
functions, the sum over k,—k; is over all k, —k; ap-
pearing in the product of the ith and jth symmetrized
combination of plane waves, R. is a vector to each atom
in the unit cell, Qp is the normalization constant for the
plane waves, and j&(kr) is the /th spherical I)essel
function. The difference between the contribution ob-
tained from the repulsive potential, plr, . lr,. Va(k;—k;),
and by OPW is listed in Table VI for certain matrix
elements and all solutions of all irreducible representa-
tions of interest.

We shift all diagonal elements of a matrix so as to
make the error in the diagonal element of interest zero

TABLE V. Percentage of s and p repulsive potential used in
computing various crystal eigenstates.

~12'
r,
~25
~»
p2r

L 1

L3
L3
L1(2)

x,(»
X4
X1('&

0
1.00

0
0

1.00
1.00
0.95
0.95

0
0

0.95
0.95

0
0.95

0
0

1.00
1.00

0
0

0.05
0.05
1.00
1.00
0.05
0.05
1.00
0.05

A „((k)=
~ P„((r)e"'dr

Qp& ~„

4'(21+1) &

r'f„&(r)j &(kr)dr, (3.11)
p "o

nl

where

ssi
2t-

kj—ks

cell

)( Q ei(kj Rj}'Rp (3 ]0)

8Es= Q;; bV;;u, a;, (3.12)

Li.e., the (11) element if we want the lowest solution or
the (22) element if we want the next lowest]. The
correction which must be made when the matrix is now
diagonalized is given by 6rst-order perturbation theory
as

IS-

l4

I0

-Z
-2—

-IO

1 f I l t 1 I I t I
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F

FIG. 1. Graph of —Z(r) =rU(r). The lower curve is the Coulomb
and exchange charge. The upper curve is the repulsive or orthogo-
nalization charge for the F2 level. The middle curve is their sum,
the total effective charge for the F2 level.

where a; is the amplitude of the jth symmetrized com-
bination of plane waves appearing in the kth eigen-
function transforming according to some particular
irreducible representation and 8V;; is the error in the
(ij)th matrix element (8Vs~ is now zero). HEI, was calcu-
lated cutting the sum over i and j ofF at k —1~i,
j~k+1 and is listed in the last column of Table VI. We
can make several interesting observations about these
corrections. We note that the largest correction com-
puted is less than 0.015 ry and estimate the largest error
made by cutting off the sum (3.12) to be of order 0.005
ry. The signs of the corrections for X~, L,2 and 1-1 indi-
cate that we chose Xt&n, Lt&" and Ls to have too much p
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character and Xt&'& and I.i&'& to have too little p charac-
ter. We note that in general the errors in the matrix
elements of p-like irreducible representations are larger
than those in s-like. There are two reasons for this.
Firstly, even at the center of the Brillouin Zone the
eigenfunctions of these irreducible representations are
not pure s or p but have small amounts of higher angular
symmetry mixed in; p eigenfunctions have small
amounts of d and higher symmetry mixed in, while s
eigenfunctions tend to have smaller amounts of g and
higher symmetry mixed in. Secondly, the p repulsive
potential is much more sensitive to errors in the ap-
proximation of &p by q, and q~. From Eqs. (2.5) and
(2.2) we see that Vz depends only on the shape of ts

and not its normalization. p, is fairly Qat in the core
region and hence not sensitive to small errors in the
exponential by which it is approximated, while p„ is an
increasing function in the core region and hence sensi-
tive to errors in its shape.

The repulsive potential is most sensitive to the core
orbitals ip ". To illustrate the way in which different
choices of lt

" affect the repulsive potential, Table VII
lists Fourier transforms of repulsive potentials obtained
from three different 2p wave functions: (1) our 2p wave
function which is obtained by direct integration of the
Schrodinger equation using the valence one electron
Hamiltonian; (2) the Hartree 2p wave function which
is also obtained by direct integration but which uses the
core Hamiltonian; (3) WoodruiPs 2p wave function
which is an eigenfunction of a valence Hamiltonian very
nearly the same as ours but which is subject to first-
order errors because it was obtained variationally. The
Hartree core functions are seen to yield too large and
WoodruG's too small a repulsive potential.

The main reason for the Hartree wave functions
yielding too large a repulsive potential is that their
eigenvalues, E„,are much lower than those of the core
eigenfunctions of the valence Hamiltonian. The core
electrons see a larger nuclear charge than the valence
electrons due to the valence electrons being screened by
all the core electrons while each core electron is screened
only by the other core electrons. Thus the core wave
functions are pulled in tighter and have lower energy
than the eigenfunctions of the valence Hamiltonian. On

TmLz VI. Errors in ry in various matrix elements incurred by
using the repulsive potential rather than OPW. The last column
lists the error in the various eigenvalues due to these errors after a
constant has been added to the diagonal matrix elements.

(22) (33) (21) (32)

i g(1)

p» O)
r»(»
PgrO)I ~(1)

J prO)
L,er0)I 30)
Xi~)
X40)
xi(»
J„g(&)
i'g(2)

0.04866
0.08728
0.09068
0.03346
0.07254
0.04512
0.07886
0.08669
0.07275
0.05932
0.07693
0.08757
0.05485

0.02972
0.06111
0.05081
0.04466
0.00238
0.03587
0.15849
0.08732
0.04396
0.09902
0.04910
0.00736
0.03345

0.19005
0.35307
0.36266

—0.00177
0.02086
0.00727
0.01356—0.00744
0.00744-0.01426—0.01481—0.01358
0.01959—0.01304—0.00723—0.00119

—0.02018
0.04074
0.007275

0.00019-0.01097—0.00085—0.00508
0.00895
0.00255—0.00583—0.00826
0.01355—0.01422-0.00749—0.00755—0.00110

the other hand, Woodruff's core eigenfunctions yield too
weak a repulsive potential because the tail of a wave
function does not acct the energy very strongly; it
therefore is poorly determined by a variational calcula-
tion. However, the tail of the core function makes a
large contribution to the repulsive 2p potential because
the product of the core and smooth valence p functions
is large in the tail of the core function. The three 2p
functions are compared in Fig. 2. The differences are
seen to be small, emphasizing the importance of a very
accurate calculation of the core eigenfunctions of the
valence Hamiltonian.

Table VII also lists the s repulsive potential Fourier
transforms calculated by Woodruff and by us. The 2s
potentials are seen to be much more nearly alike than
are the 2p. This is because although the 2s repulsive
potential is equally as sensitive to errors in eigenvalue as
is the 2p, it is less sensitive to the shape of the eigen-

functions. The relatively large error in Woodruff's 1s
repulsive potential is due to his use of the Slater wave
function rather than a variational wave function for ipt, .

That the p repulsive potential is more sensitive to any
source of error in the shape of the core wave functions
than is the s can be shown analytically, by considering
the factor a„appearing in the repulsive potential LEqs.
(2.5) and (2.2)$. In the core region to a first approxima-
tion the smooth part of the 3s wave function. is a con-
stant and the smooth part of the 3p wave function

TABLE VII. Comparison of Fourier coefficients of repulsive potential. Columns 2, 3, and 4 list the repulsive potential for the eigenstate
1'yg as computed from the 2p eigenfunction and eigenvalue of Woodruff, of a Hartree core calculation, and of us. Columns 5 and 6 list
the 2s and 1s contribution to Woodruff s F2 repulsive potential listed in column 7. Columns 8 and 9 list the 2s and 1s contribution to
our Fs repulsive potential listed in column 10. The coeiiicients have not been multiplied by the form factor cos(s /4) (Ei+Es+Es).

3

11
16
27

Vn~(&is)

0.2974
0.2240
0.1934
0.1558
0.1061
0.0748
0.0463

0 495
0.350
0.294
0.232
0.155
0.108
0.067

Vn(«s)

0.3909
0.2653
0.2213
0.1734
0.1151
0.0787
0.0476

Unir(2s)

0.5153
0.3380
0.2671
0.1847
0.0879
0.0386
0.0063

Vs~(is)

0.0766
0.0750
0.0740
0.0725
0.0693
0.0657
0.0598

Va~(1's)

0.5919
0.4130
0.3411
0.2572
0.1572
0.1043
0.0661

Vg(2s)

0.5178
0.3322
0.2623
0.1834
0.0899
0.0398
0.0061

V@(1s)

0.1003
0.0970
0.0952
0.0924
0.0868
0.0812
0.0724

Vs(1's )
0.6181
0.4292
0.3575
0.2758
0.1768
0.1209
0.0784
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pro. 2. Logarithmic graph of the 2p wave function determined
as Hartree solution to core Hamiltonian (solid line), eigenfunction
of valence Hamiltonian (long-dashed line), variational eigen-
function of Woodruff's valence Hamiltonian (short-dashed line).

the digeremce between two such integrals and hence are
susceptible to much larger errors This is demonstrated
for A „L(2m/a) (111)j in Table VIII, using both
WoodruG's core wave functions and ours.

IV. SELF-CONSISTENT VALENCE POTENTIAL

The nonzero Fourier transforms of the Coulomb
potential due to the smooth part of the valence charge
density are given by

6'
Vx —— " pK(k)dr p,E G 7-p

where pic(k) is the amplitude of the Kth Fourier com-
ponent of the smooth part of the charge density of all
electrons with wave vector k in the first Brillouin zone
and rp is the volume of the Brillouin zone. We have
pointed out in I that the integration over the Brillouin
zone may be replaced by a summation of pK(k) over
points k determined as follows. Reciprocal space is

increases as s; hence

icosa
J

ass~&, (3.13a)

TABLE Ix. The contribution of charge densities representing
different sub-zones in the valence band to the Fourier coefBcients
of the crystal potential using both exchange potentials described in
the text. The last line lists the total= {P)+IX)+(L).Each of the
latter represents the contribution of each term multiplied by the
degeneracy and weighting factors listed in columns 2 and 3.

But

Gs& J lgsrrlr.

~ygPZr =0
J

(3.13b)

(3.14)

TABLE VIII. Comparison of OPW orthogonalization coefBcients.
A» is equal to the difference between A» "n and A»
therefore is much more sensitive to errors then. A2, which consists
of a single integral.

~nd~cates that g, the error in lt, tends to be positive
about as much as it is negative. Therefore Sa2, is small
but gg, „(which is weighted by an extra factor of r) may
be quite large if (as is usually the case) the sign of 8$»
changes only once (see Fig. 2). Hence Woodruff's
variational determination of the core functions was
satisfactory for the s repulsive potential but not the p.

The qualitative argument we have just given in terms
of the repulsive potential can also be given an QPW
interpretation. With the de6nitions

js(X)=sinX/X and ji(X)= sinX/X' —cosX/X,

we see from Eq. (3.11) that the s orthogonalization
terms of the OPW method consist of a single integral
involving the core functions while the p terms consist of

Degen-
Term eraey Weight Vxu V220 V~&&)s deP V220k QeP

FI
F25~
~r
XI
X4
(xl
LII 2~I gl

81
Total

0.004514
0.007852
0.02807
0.005975
0.005132
0.06664
0.002354
0.005992
0.005902
0.08060
0.22456
0.17531

0.0000785-0.0000770—0.000152
0.0000469-0.0005175-0.002824-0.0001169
0.0002402-0.0004657-0.003233-0.00122-0.0062 1

0.005410
0.007559
0.02809
0.006634
0.004638
0.06763
0.003756
0.006556
0.005860
0.08813
0.22472
0.18385

—0.0001799-0.0001236—0.000551
0.0001218-0.0005305-0.002452-0.0000094
0.0003374—0.000482 1—0.002544-0.00441—0.00555

divided into similar volumes resembling the first
Brillouin zone. The first division used the B.z. about
each reciprocal lattice point; the second division refines
the erst by introducing new subreciprocal lattice points
midway between the lattice points of the first division.
New subzones are now drawn about each of the points
of the new lattice (which includes all the points of the
previous lattice). The subzones are similar to the original
zone, but have 2 ' the volume. This mesh process can be
used to obtain an arbitrarily 6ne covering of reciprocal
space and pK(k) is summed over the subreciprocal lattice
points. Thus the first approximation to (1/r) J'pK(k)drs
is

Woodruff
Present

calculation

Sin

0.34712
0.35795

A 2
cos A 2 f(2/sr a) (111)] A ~(~ ~tz) (&11)]

0.27665 0.07047 0.1388
0.26647 0.09148 0.1377

(4.2)

+Q(2{Xi}+2{X4})j, (4.3)

{I't}+3{1'2s},
and the second approximation js

4

sL{ i}+ {»}+K({li}+{I., }+2{v,,})



CRYSTAL POTENTIAL AN D ENERGY BANDS OF Si

TAsLz X. Comparison of Fourier coeKcients of valence contribution to potential with those of Woodruff. Columns 2 and 3 list
WoodruG's valence Coulomb and valence exchange contributions. Because of the form of his exchange potential it is not possible to
separate out the small valence contributions to the higher Fourier coefBcients. Columns 4 and 5 list our self-consistent valence Coulomb
Fourier coefficients for the momentum independent and dependent valence-valence exchange potentials, the Fourier coef5cients of which
are listed in columns 6 and 7. The coeKcients have not been multiplied by the form factor cos(s/4) (Xq+X2+IC3).

(g )2

&2~ )

3

8
11
16
27
40
64

U~val Coul

0.1468
—0.0074—0.0078—0.0038—0.0029

0.0003
0.0002

U~val-val ex

—0.0778

val Coul
Uk-indep

0.1451

val Coul val-val ex
Uk-dep Uk-inde p

—0.06690.1518
—0.021—0.010—0.005—0.002

0.013
0.007
0.004
0.002

val-val ex
Uk-dep

—0.0467~—0.0933b

a For all other states.
b For states 1.1&'&, L2&&», Fl(» XJ(».

where ( ) denotes P*f for a nondegenerate level and the
average of lt *if for degenerate levels and the summations
are over the four (111)directions and three (100) direc-
tions. Higher approximations require wave functions for
general points in k space making the calculation feasible
only with the largest digital computers. Inspection of
Table IX will indicate that V»& is probably given quite
well by the second approximation. Columns 4 and 6 list
the self-consistent (in the second approximation) smooth
valence Coulomb V»~ for two diGerent valence exchange
potentials. In the extended zone scheme the first ap-
proximation consists of the charge density at the bottom
of the zone plus thrice the charge density at the top of
the zone —a very poor sampling indeed. In the second
approximation we sample at 28 additional points spaced
throughout the zone. Hence since the charge density
varies slowly throughout the zone, " one expects the
change in going from the erst to the second approxima-
tion to be much larger than any change in going to
higher approximations. Table IX shows this first change
to be less than 0.05 ry; hence we estimate the error in
the second approximation to be 0.01 or at most 0.02 ry.
V»p is seen from Table IX to be 0.006 ry and all higher
Fourier transforms will be even smaller; hence the error
in the (220) and higher Fourier transforms is of order
0.003 ry.

The large negative value of V»~ is due to valence
electrons from all over the Brillouin zone responding to
the large (111) component of potential Ldue to the
atomic cores lying along (111) directions); while the
contributions to V22p from diGerent points in the B.z.
are seen to add with random sign.

The total valence Coulomb potential is determined by
writing the wave functions in the form of Eq. (3.5a, b)
with the parameters chosen so V»~ computed from the
leading terms agrees with V»~ in Table IX. Then the
renormalization of the smooth part of the wave function

' There is a sudden change in charge density in going across the
gap separating Lj and L2 due to the large mixing of these levels. If
Li and L2 are averaged and considered as a single double de-
generate level, our statement is true.

(due to the addition of the nodes) and the contribution
of the nodes to the potential can be calculated straight-
forwardly. The fourth and fifth columns in Table X list
Fourier transforms of the total valence Coulomb po-
tential for the two diGerent exchange potentials dis-
cussed below. A remarkable similarity is seen to exist in
Table X between the self-consistent valence Coulomb
potential and the valence Coulomb potential constructed
by WoodruG from a superposition of spherical free-atom
Slater wave functions for all Fourier transforms except
the zeroth.

The zeroth Fourier transform of the Coulomb po-
tential is given for a spherical charge density, p(r), by"

16m'
"p (r) r4dr.lim-

3np &

r9 J. L. Birman, Phys. Rev. 98, 1863 (1955).

One would not expect a superposition of spherical charge
densities to yield Vsse correctly because it weights p(r)
strongly for large values of r—just where the spherical
approximation is worst. We therefore estimated the
total Coulomb and exchange contribution to Vppp as
follows. The energy required to remove the four valence
electrons from a free atom of silicon is /. 58 ry; the
cohesive energy of silicon is 0.27 ry per atom; the aver-
age valence electron energy per silicon atom in the
crystal is therefore —7.85 ry. The only effect of V&ss on
the relative positions of the energy bands is through its
eGect on the absolute position of the levels which enter
the repulsive potential through the factor (E E„).We-
therefore determine the Vppp which will lead to absolute
values of the energy bands which when averaged over
the Brillouin zone (in the same manner as we averaged
the charge density) yield the correct average valence
electron energy.

The "cohesive energy" argument of the last para-

graph is inaccurate because the repulsive valence-

valence terms which enter the cohesive energy should be
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Tmxm XI.Fourier coeScients of total potential. Column 2 lists the sum of the core Coulomb and core-valence exchange contributions
of Table II. Columns 3 and 4 list the sum of the valence Coulomb and valence-valence exchange contributions of Table X for the
momentum independent and dependent exchange potentials. Columns 5 and 6 list the sum of column 2 with 3 and 4, respectively. The
last three columns list Fourier coeKcients of the repulsive potential for I'15('), j. 2 ('), and I'1(') states which must be added to the coeK-
cients in columns 5 or 6 to obtain the total eifective potential for one of these states. The differences between Va(ps. ) and Va(rq) are
due solely to the differences in energy of the two levels.

Vcore
va1

Vk-inde p
val

Vk-dep
tota1

Vk-indep
total

Vk-dep v (r„) &a(&s ) v, (r, )

3

8
11
16
27
40
64

—0.793
—0.368—0.294—0.229—0.163—0.124—0.086

0.078 0.105
0.059—0.008—0.003—0.001

0
0
0

—2.9

—0.715
—0.376—0.297—0.230—0.163—0.124—0.086

—2.695'
3 305b—0.688'

—0 764b

0.523

0.391

0.265
0.221
0.173
0.115
0.079
0.048

0.801

0.618

0.429
0.358
0.276
0.177
0.121
0.078

0.720

0.558

0.390
0.327
0.254
0.166
0.116
0.077

For all other states. b For states L&&», Lgs(», Px(~&, Xx&».

included twice in calculating one-electron energies. "
This effect can be estimated as follows. According to
Slater's rules' "in calculating one-electron energies the
valence electrons screen the core by about 0.3e. The
value of Vppp discussed above may therefore be too nega-
tive by an amount

( Vppp
~

0.15/0.85—0.3 ry. This
quantity is of the order of correlation energies in the
solid and it is not certain that such terms can be repre-
sented as a one-electron potential. We have therefore
neglected this correction in our calculations; it will be
seen later that uncertainties in Vppp of order 0.3 ry have
a small eGect on the relative positions of the bands.

We used Vppp= —2.90 ry for our k-independent po-
tential and Vppp= —3.00 ry for our k-dependent ex-
change potential. The correct values can be determined
self-consistently to be —3.00 and —3.03 ry; as the
differences are small and in the direction of the correc-
tion discussed in the preceding paragraph, we did not
improve our self consistency. These values of Vppp are
to be compared with the —2.00 ry obtained by Woodruff
using the spherical approximation.

In the Appendix of I we discussed various approxima-
tions to the valence-valence exchange potential of
diamond-type crystals. We concluded that two physi-
cally reasonable approximations to this potential yielded
satisfactory results for diamond. These were the Slater
free-electron approximation LEq. (3.4)j and a mo-
mentum-dependent free-electron approximation. In the
case of diamond only the (111)coeflicient of the valence-
valence exchange potential was large. In Si, because the
core is larger the Slater approximation yields significant
higher Fourier coeKcients for this potential. In this
case it is important to include the nonlocal nature of the
exchange potential. This can be done by using Brooks'
"exchange-correlation hole" formula,

Var»kex —2.97Vsisterx{L1+0.3(Er,)sj '
—ss L1+0.3(Er,)sj-s} (4 5)

"'F. Seitz, The Modern Theory of Solids (McGraw-Hill Book
Company, New York, 1940).

which was also discussed in the Appendix of I )Eq.
(A.9)). The effect of this refinement is to leave
Vyy]

"'" practically unchanged but to reduce higher
Fourier coeKcients quite substantially.

The various approximations just discussed were com-
bined to yield two valence-valence exchange potentials.
The 6rst is the momentum-independent potential given
by Eq. (4.5). The second is based on the observation
that in a free electron gas the exchange potential is mo-
mentum dependent with the strength of the potential at
the Fermi surface 3 and at k =0, 3 its average value. We
probably make a small overestimation of the momentum
dependence when we arbitrarily assume that the s part
of L~&'&, L2('&, X~"&, and F~&" all experience an exchange
potential appropriate to k=p and the remaining states
listed in Table XII except I'~2 experience the potential
appropriate to kp. 7~2 which contains no plane waves
below (200) in a free electron gas picture experiences an
exchange potential only 62'Po as strong as those states on
the Fermi surface. We have used both these potentials
to calculate this level. In semiconductors p is nearly
constant and may be written

p= (32/a) {1+2K pK&'*'} (4 6)

where a is the lattice constant= i0.263. For silicon the
calculation of the exchange potential is greatly simpli-
fied by making the approximation (which is well justified
here)

p'=(32/a)'{ I+ s ZK pxe*K'} (4 7)

In a free electron gas of the density of silicon the
average Vppp'"'"= —0.9i4 ry. Hence since our average
V " '= —3.00 ry, we have V ""=—3.305 and
—2.695 ry at the bottom and top of the Fermi sea, re-
spectively. From Eqs. (4.7) and (3.4) we compute
V va1-vai ex 0 7PP ry. hence V v'a1-val ex 0 0933 and
—0.0467 ry at the bottom and top of the Fermi sea.
Table X lists the Fourier transforms of both exchange
potentials; the momentum dependence of the higher
Fourier transforms which are quite sma11 is neglected.
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Table X also compares the nonmomentum dependent
valence-valence exchange with WoodruG's. It is inter-
esting to note that the two are quite similar; this is
because WoodruG's valence charge distribution is quite
similar to ours.

It is our feeling that either of our exchange approxi-
mations may be in error by as much as 40% causing
errors in V»& of up to 0.03 ry. These are the largest
uncer'tainties appearing in this calculation. The reader
is referred to the Appendix of I where we give a thorough
discussion of the uncertainties inherent in all approxi-
mations to exchange and correlation.

The Fourier transforms of the various contributions
to the total potential are summed in Table XI for both
exchange potentials.

V. ENERGY BANDS

The energy levels are computed by diagonalizing the
secular determinant [Eq. (2.8)] and adding the correc-
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Fro. 3. Convergence of various valence term levels (k-inde-
pendent potential) as a function of the number of plane waves
used in the expansion.

r,
J2s
XI
L,
X4
L3
~25'x (»

FIg
L3
L (2)

~12'
~2'
PI(2)

k-indep. exch.

—2.316 ry—2.113—2.011—1.964—1.768—1.701—1.560—1.383—1.348—1.283—1.184—1.002—0.931—0.869

k-dep. exch.

—2.787 ry—2.588—2.464—2.396—1.523—1.429—1.297—1.178—1.115—1.066—0.933—0.782 (—0.512')
—0.659—0.652

a Assuming F12~ sees only 62% of the exchange potential seen by states
on the Fermi surface.

tions of Table VI which is equivalent to diagonalizing
the OPW secular determinant. The secular determinant
of F25 contained 469 plane waves; the others contained
about 65 except for I ~2 which we carried out to a 3X3
matrix (89 pw). Table XII lists the estimated converged
energy levels for both exchange potentials. As we re-
marked in I, beyond 65 plane waves the p levels con-
verge quite similarly and the s levels drop less than the

p; as I'&s drops only 0.009 ry after 65 pw, the estimated
converged levels should be in error by no more than
0.004 ry. In Fig. 3 the convergence of various levels
(nonmomentum dependent potential) is shown out to
65 pw.

Orthogonalization to incorrect core functions causes
the valence wave functions to converge slowly and with
incorrect eigenvalues. In Fig. 4 we compare the con-
vergence of the F25 level using our nonmomentum de-
pendent potential and using WoodruG's. For the sake of

TABLE XII. Energy levels of various irreducible representations
for momentum independent exchange potential (column 2) and
assuming XI('), L1('), L2 ('), and F1(') see valence-valence exchange
potential appropriate to k =0 and remaining levels appropriate to
Fermi surface in a free electron gas (column 3).

Fro. 4. Compari-
son of the conver-
gence of I'25 ob-
tained by us (upper
curve) and obtained
by Woodruff (lower
curve) as a function
of dimensionality of
reduced matrix.
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comparison we took V«s ———2.9 ry and E—8„=7.18 ry
for Woodruff's I'95 (hereafter called I'ss. w) as well as
ours. (Using V«s ———2.9 ry, 8 E„is actuall—y 6.4 ry for
I'25 ~ making his repulsive potential even weaker'; on
the other hand, using his value of Vooo= —2.0 ry,
E E.=7.3 ry.)—

Figure 4 gives an indication of how much of the poor
convergence found in other semiconductor calculations
throughout the literature may be attributed to the
valence bond and how much is due to errors in orthogo-
nalization. Even when the correct core wave functions
are used, I'25 drops about 0.3 ry on going from a 1)&1
reduced matrix (9 plane waves) to a 6&&6 matrix (65
pw); it drops only another 0.009 ry on going to a 34X34
matrix (469 pw). On the other hand, I"ss ~ drops 0.023 ry
on going from a 6)&6 to a 34&(34 matrix and converges
to a level 0.22 ry below I'» . (This absolute difference is
meaningful as the same V«s was used in both cases. ) It
should be pointed out that most of this diGerence is not
due to F25 ~ collapsing into the core region. F25 ~ falls
below I'ss because the tail of Woodruff's 2p eigenfunc-
tion is too small, making the eGective potential in the
bonding region between atoms too attractive. Had
WoodrufPs 2p tail been too big, I'ss ~ would have ap-
peared to lie above our F25 . Only after a large number of
plane waves (perhaps 100 000) would it collapse into the
core region and drop below F25 .
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FIG. 5. Sketch of the energy bands of silicon along (100)
and (111) axes of the Brillouin zone for the k-independent
potential.

"J.C. Phillips, Phys. Rev. 112, 685 (1958).
~ D. H. Tomboulian and D. E. Bedo, Phys. Rev. 104, 590

(&956).
~ W. Paul, J. Phys. Chem. Solids 8, 196 (1959).

The energy bands are sketched for both potentials in
Figs. 5 and 6. The shape of the bands was determined
from a knowledge of the slopes at points of high sym-
metry, the location of the conduction band minimum,
and the interpolation scheme of one of us."The differ-
ences between Figs. 5 and 6 are an indication of the
uncertainties in the energy bands due to uncertainties in
valence exchange and correlation.

The indirect energy gap, which is about 0.01 ry less
than the F» —X&('& diGerence, is known experimentally
to be 0.09 ry; we obtain a F» —X&&2) diGerence of
0.18 ry for the momentum independent exchange calcu-
lation and 0.12 ry for the momentum dependent ex-
change calculation. In the case of diamond both exchange
potentials gave good agreement with experiment on the
energy gap; this is qualitatively the case here also.

We obtain for the momentum independent and de-
pendent exchange calculations of the valence band width
values of 10.3 and 20.3 ev, bracketing the value of
16.7&0.1 ev obtained from soft x-ray emission spectra"
and indicating that our simple approximation to the
momentum dependence of the exchange is qualitatively
correct but tends to overestimate the eGect. This may
be due to our neglect of the effects of correlation on the
momentum dependence of Vooo or simply to the nonfree-
electron nature of the problem.

Because F» is not a point of minimum energy but
rather a saddle point, the onset of direct optical transi-
tions in silicon has not been observed. "We can, how-
ever, make a very good estimate of the direct gap, as the
magnitudes of both the direct and indirect gaps are due
primarily to the large drop in F» .We assume the direct
and indirect gaps to vary consistently as we go from our
momentum independent potential to our momentum
dependent potential to the true crystal potential;
knowing the experimental value for the indirect gap, we
estimate the direct gap to be 0.17 ry. This direct energy
gap plays an important role in the determination of the

hole eGective masses which are calculated in the next
section.

Some of the results of our calculation are rather sur-
prising at fjrst sight; F2 is about 0.44 ry above F» and
even lies about 0.1 ry above Fr& (when I'» is assumed
to see the same exchange potential as I'rs). It is known
for germanium that F2 lies below both F» and F~2 and
with so much similarity between the two crystals a
relative change of —,

' ry between two energy levels is
unexpected. With the aid of the repulsive potential we
can see qualitatively how this comes about. F» contains
a term —Vsse and I'rs contains —2Vsso in the (11)
matrix element. Fs contains a term +3Vsse in the (11)
matrix element making the F2 —F» and F2 —F~~ diGer-
ences very sensitive to V»0 and raising F2 here con-
siderably above I"r& LV»e is positive here for s states
because the s repulsive potential has a larger (2,2,0)
Fourier transform than the true crystal potential7. In
Fig. 1, we show a plot of the total effective charge Z(r)
=rV(r) for I's. Now

We note that sinEr is much larger in the core for
K= (2z/a) (2,2,0) than for K= (2z/u) (1,1,1) and is near
its maximum where Z(r) changes sign. In germanium
the attractive potential is much stronger in the core
region than in silicon; furthermore the repulsive s and p
potentials should drop oG faster in the outer core region
than the shielding of the d electrons builds up. Hence,
V»o, which is most strongly aGected by these changes
which occur in the region where sinL(2z/a) (2,2,0)7= 1,
very likely is sufficiently more negative in germanium
for both F2 and F» to cause the required eGect.

-0.6

L5
- I.2—

-I 4

Xl

Xp

-2.0

-2.2

Lp
-2.6—

-2.8
k= g (I,I, I) k=0 k=2—,"(l,o,o)

Fro. 6. Sketch of the energy bands of silicon along (100) and
(111) axes of the Brillouin zone where the valence-valence ex-
change potential of the states LI&'&, L2 &'), F~&'), and XI&') is taken
to correspond to that of free electrons at k=0 and the remaining
states to that of free electrons at the Fermi surface.

V(K) =— V(r) e'x'r' sinedrded y
n&

4'
Z(r) sinKrdr. (5.1)

nz~
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According to Herman's calculation, in diamond I'»
lies above I'& by about 0.8 ry (about 0.35 ry when scaled
to the silicon lattice). This is because the lowest plane
wave appearing in the 7~2 irreducible representation is a
(200) plane wave. This adds (for silicon) to the lowest
I'» solution a kinetic energy 0.375 ry above that of the
lowest F2 solution. However, because silicon has 2s and
2p core functions, the repulsive potential seen by s and

p states is about 0.4 ry stronger than in diamond. I'»
having d symmetry about the atoms does not see this
repulsive potential and hence its relative position in
silicon is lower than in diamond by the amount of this
additional repulsive potential.

Throughout this paper we have estimated errors in
the potential wherever they were committed. We shall
here estimate the eGect of these errors on I'25 and hence
on the direct a,nd indirect gaps. Like all p levels, the
matrix elements of F» contain only differences of
Fourier transforms; in particular, the (21) matrix
element is 2(Vzzz —Vszz). For small changes in the po-
tential the change in this quantity is very nearly equal
to the change in F25 . Hence the uncertainties in Vying of
0.03 and 0.015 ry due to uncertainties in valence-valence
exchange and the self-consistent valence Coulomb po-
tential cause errors of 0.06 and 0.03 ry in V&5. The
uncertainty of 0.3 ry in Vppp causes uncertainties
through the repulsive potential in V~~~ and Ua~i of 0.013
and 0.0087 ry, giving an error in F» of less than 0.01 ry.

We have neglected several very small contributions to
the potential. From Heine's' aluminum calculation and
Eq. (5.1), we estimate an error in I'&s of about 0.001 ry
from our omission of core polarization (valence-core
correlation). Spin-orbit coupling is an omission of about'4

0.003 ry in F25. The effect of the overlap of the core
eigenfunctions on the repulsive potential can be esti-
mated by adding an exponential tail to the core func-
tions. A straightforward computation shows this leads
to a change in F» of less than 10 4 ry.

We conclude this section by remarking that near the
energy gap the band structure shown in Figs. 5 and 6 is
approximately the same as that discussed by Phillips. "
Phillips showed that such a structure was in good
agreement with all that can, at present, be inferred
experimentally about the positions of various levels; he
also estimated effective masses, neglecting orthogo-
nalization corrections. All such corrections are included
in the calculations of the following section.

VI. EFFECTIVE MASSES OF HOLES
AND ELECTRONS

The results of the last section suggest that the wave
functions obtained in this paper are sufficiently accurate
to justify a detailed calculation of the effective masses of
electrons and holes in Si which have been measured by
cyclotron resonance; these quantities provide a most
severe test of the correctness of the calculation. For this

"R.J. Elliott, Phys. Rev. 96, 266 (1954).

TABLE XIII. Symmetry about point midway between atoms
and atomic character of basis functions of irreducible representa-
tions appearing in effective mass parameters of holes at the top of
the valence band.

I. R. Basis Sym. Atomic character

~25r
P2r
I 12r

~15
~25

zr

61
pf

zz

Pl
83

yZ
XyZ

(*'+u y'+w's') 'Is

xyIb

bonding p, (3)

antibonding s(')
antibondjng d~'~~&~+~'z'(2)
antibonding p, (3)

antibonding d, „(3)

a ~3 —j,
b Odd under inversion.

purpose it is again convenient to divide the crystal
functions into their smooth and oscillatory parts:

where, according to Dresselhaus, "
A = ~s(F+2G+2Hz+2Hs)+1,

8= s (F+2G—Hz —Hs),

(6.3a)

(6.3b)

C'= '[(F G+Hz -Hs)' —(F+2G—Hz —Hs)'] (6.3—c)—
in units of zzi'/2rrz, and where

l&e'l~/@I5 )I'
Hz=4+

i 15 Ep —Eg
(6.4a)

r25 Ep —EE
(6.4b)

(6.4c)

Ep—Eg
(6.4d)

"G. Dresselhaus, A. I'. Kip, and C. Kittel, Phys. Rev. 98, 368
(1955).

"G. Dresselhaus, Ph.D. thesis, University of California, 1955
(unpublished).

where C is chosen to normalize zP„. This division is con-
venient because the interband matrix elements of p
which determine the eGective masses are derived largely
from the p terms, the oscillatory terms making only a
small contribution. Because y has been expanded in
plane waves, matrix elements of p for it are easily
calculated; the oscillatory terms, being small, are then
treated using analytic approximations.

We consider first the holes at I'25. It is well known
that under the spin-orbit perturbation the I'25 level at
the top of the valence band splits into two levels. By
second-order degenerate perturbation theory the p; level
which lies about 0.003 ry above the p; level can be shown
to split into two doubly degenerate levels as one moves
away from the center of the Brillouin zone."~'

E(k) =Ak'&LB'k'+C'(k 'k '+k 'k '+k 'k ')$' (6 2)
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. TABLE XIV. The energy denominator of the Grst term, the erst
term of the sum and the total H1, H2, F and G (neglecting orthogo-
nalization effects) together with the effective mass parameters A,
B, and C calculated therefrom. The experimental values of H1, F,
and G are computed from the experimental values of A, B, and
C assuming H2=0.

Fo—E» First term Sum Experiment

HI
H2
F
G
A
B
C

0.170
2.10
0.638
0.785

—6.19—0.01—1.65—0.78

—6.21—0.01—2.14—0.78
4.38
0.84

&4.11

—6.1
~0
—2.1—0.35

-4.0aO. i
1.1a0.4

~4.1&0.4

with E measured in ry. Table XIII lists the basis func-
tions appearing in Eqs. (6.3) together with their sym-
metry and their atomic character.

The calculation of the four matrix sums of Eqs. (6.4)
is straightforward and simple when only y is retained
in (6.1).The second column of Table XIV lists the value
of Ep —EJ used in computing the four sums. With the
exception of E(I'») —E(I'95 ) which was discussed at the
end of Sec. V, they are all taken directly from the mo-
mentum dependent valence-valence exchange calcula-
tion as are the basis functions. Column 3 lists the first
term in the sum and column 4 lists the four matrix sums
as computed from the smooth part of the wave func-
tions (i.e., the basis functions composed only of plane
waves).

The three parameters A, 8, and C may be experi-
mentally determined by Gtting the cyclotron resonance
hole effective mass curves (see reference 26). The most
accurate values are probably those given by Lax'7:
a= —4.0aO. I, [@[=1.1a0.4, [C~ =4.1~0.4. Tal ing
H2 ——0 and neglecting the experimental uncertainties,
Eqs. (6.3) may be solved for P, G, and Hr. There are two
sets of solutions; the physically reasonable set is listed
in column 5 of Table XIV. Agreement of theory with
experiment is seen to be excellent for Ii, H~, and II2 but
the theoretical value of G is seen to be too large by a
factor of two. Because of the experimental uncertainties
and the small value of G, little significance should be
attached to this point.

An exact but extremely cumbersome calculation of
the effective masses can be made using orthogonalized
plane waves. We here approximate the eGect on the
effective masses of the oscillations in the wave functions
in the core region using the spherical approximation for
the core region. Because the resulting corrections turn
out to be small we may approximate the core orbitals by
Woodruff's analytic functions. ' The valence wave func-
tions in the core region then have the form,

0 2568(e—.s's~ 26.79re 4""
+6.625e "'") (6.5a)

fs„(s)=0.7995z(e ' ""—11.39e-4'""), (6.5b)

"B.Lax, Rev. Modern Phys. 30, 122 (1958).

ps&(xy) = 1.262xye ", (6.5c)

TABLE XV. Column 2 lists the values of H1, H2, F and G com-
puted from the smooth part of the wave function. When it is
orthogonalized to the core the smooth part must be renormalized
leading to the changes listed in column 3. Column 4 lists the direct
contribution from the orthogonalization terms and column 5 lists
the sum of columns 2, 3, and 4 together with the recalculated
effective mass parameters A, B, and C.

H1
H2
F
G
A
8
C

Smooth

—6.21
0.01—2.14—0.78

Renorm.

—1~ 17—0.001—0.52—0.07

Core

0
0

0.58
0.004

Total

—7.37—0.01—2.08—0.85—5.18
1.20

~4.12

ss E. D. Kane, J. Phys. Chem. Solids 6, 256 (1958).
s' J. C. Phillips, J. Phys. Chem. Solids 7, 52 (1958). The dis-

crepancy between the matrix elements of reference 29 and this
paper stems mainly from the values of a0 and 50 assumed there.
While these are appropriate to Woodruff's Si calculation, ao and bo

there are too small because VIII'" is too attractive. The normaliza-
tion correction included here also contributes a signidcant change
to the results of reference 29.

It'se(x +wy +w s )=0.515(x +wy +w s )e
(w'= 1). (6.5d)

Its, and P» follow from Eqs. (3.6); the choice of the
factor 1 in the exponential of the d functions is some-
what arbitrary but the results do not depend strongly on
it. The normalization Cs, of Ps, = 1.069 and Cs„=1.044.

The leading terms in Eqs. (6.5) represent analytic
approximations to p in the core region. They are the
only terms which are large outside the core. Matrix
elements of p involving q alone can be taken from the
results quoted above which were obtained using the
plane-wave expansion of y which is valid throughout
the unit cell. Terms involving core orbitals will be large
only in the core region, where Eqs. (6.5) represent an
adequate approximation. In this way we find two
corrections to the values previously obtained above
using p only. The first of these, which is the larger here,
stems solely from the changed values of C; this correc-
tion is listed in column 3 of Table XV. The second and
more obvious correction comes from the cross terms
involving core orbitals; this is shown in column 4. The
contribution of the core to B& can be seen to be zero by
symmetry.

The values of B~, H2, Ii, and G including core effects
are given in the last column of Table XV. The results,
while only approximate, give a fairly good indication of
the eGect of the oscillations of the wave functions in the
core region on the effective masses. The inclusion of
these eGects slightly worsens agreement with experi-
ment; the values of A, 8, and C are still correct to
about 30%.

It has been suggested by Kane" and Phillips" that
the non-local nature of exchange and correlation po-
tential tends to make the experimental values of Ii, G,
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[Dr&'&
~
d/dx~ Ar&'&

[

Gr ——4Q
0
—If t

(6.7a)

p, jv,
(6.7b)

where 65~&" is the eigenfunction transforming like y of
the 1th twofold degenerate 65 level and h~(" is the
eigenfunction of the lth 6& level. Hence we may write

E=Ep+ (mz, */m)K, '+ (mr*/m) (K„'+K.'), (6.8)

where

mr, */m=(1+Gr) ' mr*/m=(1+Gs) ' (6.9a, b)

G~ and 62 were calculated in the same manner as the
matrix sums H&, H&, Ii, and G and yield mr. */m =0.971,
my*/m=0. 205."The experimental values of reference
25 are mr, ~/m=0. 97, mr*/m=0 19.

Thus again in the case of electron eGective masses we
6nd good agreement with experiment. Such agreement
would not have been found had we used wave functions

~ The wave functions at 6 were obtained by extrapolating the
wave functions at X.This leads to an uncertainty of less than 0.01
in the values of rar, */ra and rap */m.

and B larger than the calculated one-electron values.
The sign of this correction, though not its magnitude, is
uniquely determined by "exchange and correlation
hole" arguments. While physically plausible these semi-
classical arguments may fail in semiconductors, as was

. pointed out in the Appendix to I. We are inclined to
believe that such is the case here, for if corrections as
large as those suggested by reference 29 are used (and
these are only half as large as predicted by the Slater
model of reference 28) the calculated values will differ
from the experimental ones by a factor of 2.

We now turn to the case of the electrons at h. The
minima of the conduction band occur at the six equiva-
lent points (2s/a) (n,0,0) where from both experimental
and theoretical data" a=0.86. The energy as a function
of distance from the k, minimum is given in ry by"

E=Ep+K,'(1+Gt)+ (K„'+K,') (1+Gs), (6.6)

where

derived from WoodruG's incorrect repulsive potential
(which was too weak). For his potential not only is the
energy gap too large but the leading coefficient a, in the
expansion of p =P, a,(K;) (where n= Fsp or Ap) is too
small; the corresponding values of the various constants,
especially H& and Gs are too small. (The same comment
probably applies to the calculations of Herman" for
Ge.) From the results that we have presented it appears
that we can again conclude that our calculation is cor-
rect to within the limits of accuracy imposed by neces-
sary approximations for valence-valence exchange and
many-electron interactions.

VII. CONCLUSIONS

There are several conclusions concerning the valence
semiconductors to be drawn from this paper and from I.
The most important of these is that it is possible in a
fairly simple way to obtain semi-quantitative results for
the band structure of diamond-type semiconductors.
The crystal charge density surprisingly is close to a
superposition of free-atom charge densities. The crystal
Coulomb potential is therefore easily obtained and the
momentum-dependent free-electron approximation can
be used to obtain satisfactory values for valence-
valence exchange. The only technical point that re-
quires careful treatment is the calculation of the core-
orbitals part of the valence wave functions.

The results of a careful calculation can also be used to
compute the eGective masses in a one-electron, local
potential approximation. Comparison of the computed
and observed values indicates that these approximations
yield good results for at least s and p electrons. Correc-
tions due to the nonlocal nature of the many-particle
potential appear to be quite small in this case, and much
smaller than had previously been estimated from free-
electron arguments.
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