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The static and high-frequency dielectric constants and the effective charge of LiF are calculated on the
basis of a simplified model in which the polarizability of the positive ion is neglected and that of the negative
ion is attributed entirely to perturbations in the outermost subshell (2p) of electrons. The present calculation
differs from the variational treatment of Yamashita mainly in the inclusion of perturbed wave functions
for the 2p electrons which are orthogonal to the core-electron wave functions. Also, diGerent methods are
employed in evaluating portions of the energy of the crystal in a field and in deducing the effective charge
ratio e"/e from the calculated energy. It is found that the use of trial wave functions which preserve the
orthogonality within individual ions is of prime importance, and leads to results in generally better agreement
with observation than the previously used nonorthogonal functions.

I. INTRODUCTION

T has been pointed out by Brown' that the complete
~ ~ theory of dielectrics involves the simultaneous
consideration of quantum theory, statistical mechanics,
and many-body electrostatic interactions. Any one of
these factors alone gives considerable diS.culty; a
treatment including any two of them is at present the
best one can hope to pursue with some success. In the
case of ionic crystals, it is usual to neglect temperature
effects (the dielectric constants change only by several
hundredths percent per degree'), and proceed to an
approximate theory which takes account of one or both
of the other complicating factors in a crystal at absolute
zero. Although the theory of dielectric constants of
ionic crystals has received much attention from this
point of view, no completely satisfactory treatment has
yet been given.

The simple classical theory considers only one of the
complicating factors, the many-body interactions. The
furthest advance of this approach is represented by the
well-known Szigeti equation, ' which relates the high-
frequency dielectric constant e„, the static dielectric
constant eo, and the rest-strahlen frequency v&. For a
lattice of singly-charged ions of reduced mass M, this
important relation may be written

(e„+2)s cV(e*)s

3 ) zvgM

where the quantity e~ appears in place of the net ionic
charge e. In the classical theory, the magnitude of e* is
determined. empirically from known values eo, e„, and

t Based on a thesis submitted to the Graduate Council of
Temple University {by E. R. L.) in partial fulfillment of the
requirements for the degree of Doctor of Philosophy.

'W. F. Brown, Jr., IIandblch der Physik, edited by S. Fliigge
(Springer-Verlag, Berlin, 1956), Vol. XVII, p. 20.' A. Kucken and A. Biichner, Z. physik. Chem. 27, 321 (1934).' B. Szigeti, Trans. Faraday Soc. 45, 155 (1945).

v&, in accordance with this equation; no independent
determination of e~ is possible on strictly classical
grounds. The ratio e*/e is less than unity for all alkali
halides of the NaCl structure. When e* is interpreted
as the "effective charge" that is displaced with the
center of mass of an ion, it becomes clear that the
simple classical theory fails in its inability to treat
quantitatively the electronic redistributions that accom-
pany relative displacements of neighboring ions.

The failure of the classical theory necessitates intro-
duction of the second complicating factor —quantum
theory. Recently, Dick and Overhauser4 treated the
alkali halides semiclassically, using a "spring" model
for the ions and obtaining the interactions of nearest
neighbors by extrapolation of the quantum-mechanical
results for the interaction energy of two helium atoms
to other closed-shell configurations. While the method
presents considerable improvement over the simple
classical theory, in that it provides explicit description
of the ionic deformations and also incorporates quantum
eGects connected with the overlapping of electron
clouds, several factors limit its effectiveness: A number
of broad assumptions and some rather rough approxi-
mations must be made in deriving the constants for the
model ions, in characterizing the near-neighbor inter-
actions and in taking account of various polarization
mechanisms. Yet, only the ratio e*/e (and the com-
pressibility, which does not enter the present discussion)
have been evaluated, and not the dielectric constants
themselves.

Because of these difficulties, it appears that an
approach based entirely on quantum-theoretical meth-
ods is required to place the theory on a Arm foundation.
That this is a diN. cult task probably aeeounts in large
measure for the dearth of work along these lines. The
only quantum-mechanical treatment of dielectric con-

4 B. G. Dick, Jr., and A. Vif, Ovgrhg, user, Phys. Rev, 112, 9Q
(1958).
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stants to date is the variational calculation for LiF and
MgO by Yamashita. ' He describes the distortion of
the ions in the presence of an applied field by assuming
a simple form for changes of the electronic wave
functions. Several points in this treatment are open to
question, the most important being that the wave
functions employed do not fulfill the tacitly assumed
condition of orthogonality among the atomic orbitals
associated with a given ion. It is well known that such
a situation often leads to large errors in the calculated
energy of a system. While Yamashita's results suggest
that his calculation is not seriously in error, it is of
considerable interest to know the extent to which the
orthogonality of the wave functions influences the
calculation. The present paper is intended primarily to
elucidate this aspect of the theory.

A new calculation for LiF, following the general lines
of Yamashita's variational method, is presented. The
energy of the crystal in an applied 6eld has been
completely re-evaluated, rather than amended to take
account of the nonorthogonality of the V'amashita
wave functions. Different methods, believed to give a
truer accounting of the nearest-neighbor interactions,
are employed to obtain the energy, and several energy
contributions neglected in the earlier treatment have
been included. The energy calculation, which is of
central importance, is described in Sec. II. Then, in
Sec. III, the dielectric constants and the effective
charge are deduced from the resulting energy expression.

II. ENERGY CHANGE IN AN ELECTRIC FIELD

We consider the LiF crystal a lattice of F and Li+
ions. In the absence of an externally applied 6eld, the
ions are all spherically symmetric, centered at the
normal lattice sites. The electrons are described by
atomic orbitals (AO) of the central field type: for the
Li+ 1s and F is, 2s orbitals we used the analytical
functions of Lowdin, ' which closely approximate the
Hartree free-ion functions; for the F 2p orbitals we

employed the radial function given by Vamashita. 7

All of these radial wave functions may be expressed as

TABLE I. Radial wave functions for F and Li+.
P„g(r) =r Zs A s exp ( ag )+r' Z r B—r exp( Par)—

0+
I

d

0+6

0+ 0+ 0+ 0+ 0++~

No Field

F

High Frequency Field

0+1

Static Field

Pro. 1. Polarization oi crystal (schematic).

sums of exponentials in the form

P &(r) r p& g&e asr+rs —
p& g&& &sr—

The constants A~, eI„etc., are given in Table I.
When a 6eld is applied to the crystal, the electron

distributions about the nuclei are altered and the ions
have induced dipole moments. We neglect the distortion
of Li+ ions, in view of the fact that their polarizability
is 30 to 40 times smaller than that of the larger F
ions."In a high-frequency (optical) field, the entire
polarization of the crystal then results from the F -ion
distortion dipole moments; in a static (or low-fre-
quency) field, relative displacement of the positive- and
negative-ion lattices gives rise to an additional polar-
ization component. We can consider that the negative
ions remain fixed in position while all the positive ions
are displaced a distance d in the direction of the field,
as illustrated schematically in Fig. 1. The distortion of
the F ion in a static field is expected to be smaller than
the corresponding distortion in a high-frequency field,
because the displacement of the positive- and negative-
ion centers towards each other reduces the space
available for distortion. This results in an effective
charge that is less than unity.

The polarizability of the F ion is assumed to arise
entirely from alterations of the 2p orbitals, which are
given (without spin) by the trial functions

|p„=I'„—ui, (1s t
I'„)—us, (2s l

I' )1 (3)

where n&, and u2, are the F is, 2s orbitals, respectively,
and

(1s~ F„)=— ur, F„dr; (2sl 7'„)=— ' us, F„dr.

AO k=1 k=2 k=2 k=3
The functions I „are, in turn, given by

F (1s) ass
Ala

F (2s) 0,7s

AI

F-(2@)

8.1890
40.285

7.1485
11.755

12.187
9.5770

Li+ (1s) ais 2.4346 4.4250
A Is 6.6641 2.5618

t4 1.6465 2.7178 4.1211
B7s -1.3054 —8.7816 —6.6845

3.05 1.25
Bgs 11.07 1.05

Pi= /is(1+Xr cos8) =LPs„(r)/r) cos8(1+Xr cos8),
I"s =ass (1+Xr cos8)

= fEs„(r)/r$ sin8 cosg(1+Xr cos8), (4)
I's=tPs'(1+Xr cos8) = )Ps„(r)/r] sin8 sing(1+Xr cos8),

where the P„' are the F 2p orbitals in the normal

' J. Yamashita, Progr. Theoret. Phys. (Kyoto) 8, 280 (1952).
P. O. Lowdin, Phys. Rev. 90, 120 (1953).

r J. Yamashita, J. Phys. Soc. Japan 7, 284 (1952).

s L. Pauling, Proc. Roy. Soc. (London) A114, 181 (1927).
1' J. R. Tessman, A. H. Kahn, and W. Shockley, Phys. Rev. 92,

890 (1953).
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V= —eF(g Z.x.—P, x,), (6)

where x„designates the x coordinate of the nucleus o.,
and x; that of the ith electron. Since all the wave
functions are AO centered on the ionic nuclei, it is
meaningful to separate IIO as

Hp=H„+H„h,

(7)

ZZ~e' f Z 1 1~
H-~=—2 2' +e'2"'~ ——+-2 —I, (g)

rs '
k r, 2 i rj)

where P; denotes summation over only those electrons
which occupy AO associated with the nucleus n, and
P;»' indicates summation over all electrons except
those occupying AO associated with nucleus o.. Then
H„[Eq. (7)j contains only operators associated with
interactions within individual ions, and leads to the
self-energy of the ions; H„i, [Eq. (8)] contains all the
interactions between different ions, and leads to the
cohesive energy of the crystal; similarly, V [Eq. (6)]
gives the interaction of the lattice with the 6eld—the
"fmld energy. " The energy per ion pair resulting from
application of the 6eld can be conveniently discussed
in terms of these three contributions.

(1) The Field Energy

The total crystal energy arising from the partial
Hamiltonian V [Eq. (6)$ is

Ep Ii P e(Z e)—x— e—p»—)I P—x,/dr, (9)

"See, e.g. , L. I. Schiif, QNantum 3lechoeccs (McGraw-Hill
Book Company, New York, 1949), p. 171.

crystal (no 6eld) and X is a variational parameter; the
polar (8) axis is antiparallel to the applied field. The
I'„are the variational wave functions employed by
Yamashita. While they are orthogonal to each other,
one of them, I'~, is not orthogonal to N~, or N2, . The
function it r [e= 1, Eq. (3)j, constructed from F'r

according to well-known procedures, " restores the
orthogonality within the F ion. It is to be noted that
F'p and F'p are orthogonal to ui, and ep„so that 1t p

——F'p

and fp F'p. ——In what follows, the function V„will be
termed the "nonorthogonal wave function, "and the P
the "orthogonal wave function. "

The Hamiltonian of a crystal in an applied field may
be written

H=Hp+V,

where Ho is the Hamiltonian in absence of a field and
V is the operator for potential energy due to the 6eld.
If the field is uniform over the crystal and acts in the
x direction,

where e is the number of electrons associated with the
nucleus 0,, Z is the atomic number of the nucleus, and

f is the total crystal wave function (a Slater determi-
nant of the one-electron wave function in the presence
of a field). Since all the ions are singly charged, and the
positive- and negative-ion lattices are displaced rela-
tively by a distance d from their normal positions, the
first term in brackets [ j of (9) gives rise to an average
displacement dipole moment ed per ion pair. Identifying
the second term in brackets as the dipole moment ex(n)
of the electronic charge of ion o,, the field energy per
ion pair becomes

Er= F[—ed+ex(F )+ex(Li+)5 (10)

This is just the (classical) energy of the dipole per ion
pair in the field F.

Neglecting the small contribution due to the over-
lapping of neighboring ions, we may write

x(-)=Z'- ~P( ;)~d =-2; P(;cose;)4d.
J

A*(r)(«ose)4'(r)d, (11)

where the P, are now the one-electron wave functions.
The Li+ AO are spherically symmetric is functions, so
that x(Li+)=0. Similarly, the F 1s, 2s AO make no
contribution to the ionic dipole moment; the whole of
x(F ) arises from the perturbations of the 2p orbitals
in the applied field. The numerical values of x(F )
calculated from (11) for the AO (3) and (4) are shown
in the first line of Table II. The present result for the
nonorthogonal wave function diGers from that given by
Vamashita because of diGerent normalization criteria:
We normalized the 2p AO over all space; Yamashita
has normalized in a sphere of radius equal to the
interionic distance.

(2) Self-Energy of the Ions

Although the partial Hamiltonian H„(7) is inde-
pendent of the external field, the self-energy of the ions
changes because the wave functions are altered in the
presence of a field. Again neglecting overlap, it is
evident that the change in self-energy of a particular
ion depends only on the changes in the AO associated
with it and not on its position in the lattice. The change
in self-energy of an ion pair is then just that of a single
F ion, and is independent of the displacement param-
eter d. From the statement of H„ it can be seen that
the change in self-energy of an F—ion consists of three
contributions: the changes in kinetic energy of the 2p
electrons, the altered Coulomb attractions between the
nucleus and the 2p electrons, and the altered Coulomb
and exchange energy among the electrons. Yamashita
included the kinetic energy, but neglected the intra-
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TA.sx.E II. Contributions to energy per ion pair due to field.

Source of contribution

Field energy

Nonorthogonal wave function

—dF —8.82) F
Orthogonal wave function

—dF —7.19XF

Yamashita

—7.60&F

Self-energy of ions
Kinetic
Coulomb
Exchange

Xd' X~'
3.00
1.60—0.67

Xd' X~'
5.08
0.97—0.24

Xd' x&'
3.00

Cohesive energy
Electrostatic
Exchange
Overlap

—0.0189 —0.333 —1.47—0.0482 —0.306 —0.16
0.0752 0.768 0.42

—0.0189 —0.271 —0.98—0.0482 —0.289 —0.15
0.0752 0.724 0.37

—0.019
0.0278

—0.294 —1.11

0.251 0.80

ionic interactions. All of these contributions to the ionic
self-energy were considered in the present treatment.

The calculated values of the separate contributions
to the change in self-energy of an F ion are given in
Table II, to second order in the variational parameter
X. These were obtained by straightforward procedures.
For the evaluation of the electronic kinetic energy, we
used an expression derived by Kirkwood" in an investi-
gation of the polarizabilities of rare gases. The electron-
nucleus Coulomb contributions, which are one-center
integrals, were obtained by simple integration. The
electron-electron interactions (Coulomb and exchange)
are two-center integrals, which were evaluated analyti-
cally by expanding the operator 1/rr& in spherical
harmonics. "

(3) Cohesive Energy

The cohesive energy contributions to the change of
energy per ion pair were calculated on the basis of the
well-known expression of I.owdin" for the cohesive
energy of an ionic crystal. According to this formulation,
the cohesive energy itself may be considered as the sum
of three contributions: the electrostatic energy Ez,
the exchange energy Ez and the overlap energy E8.'

ments of the one-electron wave functions, which may
be identified as

The electrostatic energy is just the total of the
Coulomb interactions between the ions; in the normal
crystal these interactions produce the Madelung energy.
The corrections to the Madelung energy brought about
by the distortion of the F 2p orbitals in an applied
Geld can be expressed as lattice sums involving the
multipole moments of the F charge cloud. However,
these sums may be readily shown to be equivalent to
the energy obtained from assumption of the Lorentz
field factor (4s/3)P. If y is the dipole moment of an
ion pair and a the interionic distance, the electrostatic
part of the cohesive energy per ion pair is then [see
Eq. (10)j:

1 4rr 1 4m- [ed+ex (F )j'
E ————g= ———IIJI,= ———

2 3 2 3 2a

(12)
The numerical values of this contribution are given in
Table II. Again, the differences between our results for
the nonorthogonal wave function and the corresponding
terms from Yamashita's paper are due to the difference
in normalization procedures.

In these equations S;; is the overlap integral,

(13)

and the quantities in parentheses denote matrix ele-

"J.G. Kirkwood, Physik. Z. BB, 57 (1932).
~ See, e.g., D. R. Hartree, The Calculation of Atomic Structures

Qohn Wiley & Sons, New York, 1957), p. 46."P. 0. Lowdin, Arkiv Mat. Astron. Fysik 3SA, No. 30 (1948).

(4) Treatment of Exchange and Overlap

Evaluation of the changes of E~ and E8 resulting
from application of a field presents the most formidable
problem in the energy calculation, since both Ez and
Ez depend entirely on products of AO centered on
different nuclei. %e have treated this problem by
approximation techniques which closely parallel the
rigorous mathematical treatment. Considering only
nearest neighbor overlap, and writing the perturbed
F 2p orbitals as p;=p,s+)tp;, each of the overlap



ii46 E. R. LEVIN AND E. L. OFFENBACHER

F»G. 2. A negative ion and its positive neighbors, showing the
symmetry of the negative-ion orbitals (schematic).

integrals has the form

~ v= 0'(r)4. (r)&r= 0"k,d,+~ I e;g,~r

turbed negative-ion AO (i=1, 2, 3). The interactions
corresponding to (iy)=(11), (16) are the most im-
portant for the Geld direction shown in the diagram.
The (22)-type interactions are about two orders of
magnitude smaller; the four equivalent sets of these
interactions t (iy) = (22), (25), (33), (34)j influence the
results by only a few percent. All other interactions are
zero or negligibly small.

Figure 3 shows p»»' and p»1' as functions of distance
along the line joining the Li and F nuclei, for the normal
internuclear distance of the LiF crystal (a=3.81 atomic
units). On the opposite side of the Li nucleus, along this
line, the overlap charge densities decrease more rapidly
with distance from the Li nucleus, since in this region
both lf L„and lt & are decaying exponentials. Along any
direction in the plane perpendicular to this line, the
dependence of p»»' and p»1' on distance from the Li
nucleus is determined mainly by the Li+-ion wave
function. The behavior along all three directions is
shown in Fig. 4. To determine the eGect of relative
displacement of positive and negative ions on the
overlap charges, it is necessary only to note the expo-
nential character of the overlap charge distributions
(see Fig. 3). Since both the Li+ and F AO are almost

f
p;~'dr+A p;, 'dr,

J
(16)

where g, is the ls AO centered on one of the Li+
neighbors (p~). The total overlap integral 5;„essentially
represents a charge, which we will designate as the
"overlap charge"; the integrands p;~' and p;~' are then
charge densities —the "overlap-charge densities. "All of
the terms in Ex and E~ may be considered as electro-
static interactions involving the overlap charge distri-
butions. For example, the exchange integral

)p- I

E~(iv)

P;*(1)P,*(2)(1/rrs)f, (1)f;(2)dr»

t G 'r'(1)+&p'v (1)X 'r'(2)+&p'r'(2) j
J

lp 2

may be interpreted as the electrostatic interaction
energy of two similar charge distributions of density
(P~v'+&~'r').

In order to carry through the approximate treatment
of the exchange and overlap on this basis, it is necessary
to investigate the spatial distribution of the overlap
charge densities and their variation with relative
position of the neighboring ions. Figure 2 is a schematic
representation of a reference negative ion and its six
nearest neighbors, showing the symmetry of the unper-

Li a
4 F

F»a. 3.Wave functions and overlap-charge densities as functions
of distance along line joining Li and F nuclei. The ordinates are
in arbitrary units.
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pure exponentials in the vicinity of the Li nucleus, the
total overlap charge S;~ must vary with small displace-
ment of the nuclei in much the same way p;~ varies
with distance from the Li nucleus. Accordingly, we
have assumed S;~ (and p;~) to vary exponentially with
relative displacement of the positive and negative ion:

pll (d) s "piP(0); pn'(d) =s""pll (0)
(18)

p~6'(d) = s '"p16 (0); pcs'(d) = s '"p15 (o),

the constants no and 0,& being given by the reciprocals
of the distances (Fig. 4) in which p~P(x) andp n'(x),
respectively, decay to 1/e of their values at the Li
nucleus. The S;~ themselves were evaluated, for the
case where the nuclei are at the normal interionic
distance, by expanding the Li+ 1s function in spherical
harmonics about the nucleus of the neighboring F ion
and then integrating the product PyP~. Because of the
orthogonal properties of the spherical harmonics, only
a few terms of the integrated expansion are nonzero.

The most important terms in the overlap energy of
the crystal are those which reduce to the form

Es(1)=S;,(y(H" (i—) and Es(2)=S'~(yvlG~iv)& (19)

' 0 O.I .2 .3 .4 .5 .6 .7
X, -X,or y {At Omio U nitS)

FIG. 4. Directional dependence of p&10 and p»'.
The ordinate is in arbitrary units.

which represent the interaction of the overlap charges
with the positive ion on which the overlap is localized.
These terms, together with the exchange energy, which
we have already characterized [Eq. (17)7 as interactions
among the overlap charges, constitute the major contri-
bution of overlap to the crystal energy. To evaluate
this contribution, we represented the overlap-charge
densities as decaying exponentials of ellipsoidal sym-
metry, centered on the Li nucleus:

pno ~ exp[ —R (no' cos'0'+Po' sin'0') '*7

p~,' ~ exp[ —R (yo' cos'0+Pa' sin'0') &7

pn' ~ exp[—E.(n~' cos'0'+pq' sin'0') &7

pu' ~ exp[ —R(7P cos'0+PP sin'0) &7

0&0«/2
~/2&0«
0&0&~/2
~/2& Q~&n. .

(20)

This representation is in consonance with both the
symmetry discussed above and the exponential behavior
illustrated in Fig. 4. The constants no, Po, and yo were
taken as the reciprocals of the distances (Fig. 4) along
x, y, and —x, respectively, in which p&P decays to 1/e
of its initial value at the Li nucleus; Q.q, Pq, and yq were
similarly obtained for p»'. The total charge contained
in the distributions was normalized to the value of the
overlap integral Su, in accordance with (16). With
these charge distributions, the terms (19) and the
exchange integrals were readily obtained by standard
techniques.

We have also calculated the exchange energy (for the
case 8=0) by expanding both the Li+-ion wave function
and the operator 1/rq2 in spherical harmonics about the
negative-ion nucleus, and then computing each ex-
change term as a series of one-center integrals. Although
the series converged rather slowly, we obtained the
series limits by approximation estimated to yield the
exchange energy with an accuracy of about 10%. [The
exchange, however, is only a small part of the total
energy (see Table II), so a 10% error here is equivalent
to an error of only 1% in the over-all energy calcu-
lation. 7 The exchange energy calculated by this method
was in good agreement with the corresponding result
obtained with the ellipsoidally-symmetric overlap-
charge distributions (20).

The remaining terms in the overlap energy, i.e., those
which are not of the type (19), may all be characterized
as electrostatic interactions between the overlap charges
and charges not associated with the positive ion on
which the overlap is localized. For the evaluation of
these terms, we have considered the total overlap
integral S;~ to be a point charge at the center of the
positive ion. This representation accords well with the
indications in Fig. 4 that the overlap is appreciable
only in a small region near the Li nucleus. Dick and
Overhauser have also used the point charge assump-
tion in connection with their "exchange charge"
(=4 P; S;„').Figures 3 and 4 show clearly why their
"extreme" case, in which the exchange charge is
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situated at the center of the positive ion, gave somewhat
better results than the normal case, where the exchange
charge is located at points of tangency of Zachariasen
spheres.

Numerical values of the exchange and overlap energy
contributions, computed by the methods described in
this section, are given in Table II.

III. DETERMINATION OF DIELECTRIC CONSTANTS
AND EFFECTIVE CHARGE

The sum of the separate contributions of Table II
represents the total energy per ion pair resulting from
application of a field to the I.iF crystal. To second
order in the distortion parameter X and the displacement

parameter d, this energy can be written in the general-
ized form,

e%= 1 AC/28. — (30)

of the ions. The effective charge e* is defined (for Z= 1)
by

Pir=Pp —P~ =—Ne d. (28)

From the previous discussion [see Eq. (10) ff.], the
dipole moment per ion pair in a static field is (ed+eA'Ao),
and in a high-frequency field it is eA)„. Then, from
(27) and (28)

e*/e = 1—A P.„—Xo)/d. (29)

By substituting for the quantities )„,Xp, and d from
(22) and (24), e*/e may be expressed completely in
terms of the coefFicients of the energy expression; this
yields the surprisingly simple result

hE= Fd AFX—+BR—'+8 d'+CA'. (21)
IV. RESULTS AND DISCUSSION

Minimizing the energy with respect to both X and d,
we obtain for the case of a static or low-frequency field

(d/0)

AF C 28 AF
F 28p C F

Xp=
28 C ' 28 C
C 28p C 28p

2 (8+A'8 p AC)—
~&p= —-,' F2.

7

48p8 —C'

(22)

(23)

and for a high-frequency field (d= 0)

X„=AF/28,

AE„=——,
' [A'/28]F'.

(24)

(25)

Now, from elementary considerations, the energy in a
polarized dielectric is ——,'XF', where x is the (macro-
scopic) susceptibility: Accordingly, we can identify the
quantities in brackets [ ] in (23) and (25) as the
static and high-frequency susceptibility per ion pair,
respectively. The corresponding dielectric constants are
obtained from the relation

e—1=4m.NX, (26)

Pp=P;,+P„. (27)

The infrared polarization contains the e6'ects of both
the displacement of the ions as a whole and the elec-
tronic redistributions which accompany displacement

where N is the number of ion pairs per unit volume.
The effective charge ratio e*/e can also be determined

simply from the coeScients of the energy expression
(21). Following the treatment of Szigeti, the total
polarization of a crystal in a static (or low-frequency)
field may be written as the sum of the high-frequency
(optical) polarization and an infrared component

A B Bp 60 Coo 8/8

Nonorthog
wave function

Orthog.
wave function

Yamashita
Observed

8.82 2.72 0.0081 0.129

7.19 5.05 0.0081 0.164
7.60 2.69 0.0088 —0.043

8.0 2.63 0.79

8.1 1.59 0.88
10.1 2.33 1.06
93 192 087b

a From Eq. (30). See text.
b Equation (1) (Szigeti).

The coeflicients for the energy equation (21) are
obtained by summing the several contributions of
Table II. The resultant values are given in Table III,
together with the dielectric constants and effective
charge ratio deduced from them. Results obtained
with both the "orthogonal" and "nonorthogonal" wave
functions are included to illustrate the effect of the
orthogonalization; Yamashita's results for I iF are also
listed for comparison. Signi6cant di6erences between
the energy coeKcients for the orthogonal and non-
orthogonal cases are evident; this is particularly so for
the coefficients A and 8, about which more will be
said presently.

The results for our nonorthogonal case and Yama-
shita's calculation are directly comparable, since the
same wave functions were employed for both. Although
considerably di6erent methods were employed for the
energy calculation —particularly in the nearest neighbor
interactions —the results agree fairly well on the whole.
The difference in sign of the coeKcient C is, however,
quite significant. Referring to Eq. (30), it is seen that
the negative value of C causes e% to deviate in the
wrong direction from unity. In this connection it should
be noted that Yamashita derived the value 0.76 for
e*/e, rather than 1.06 (Table III), as we have calculated
for his data from (30). The difEculty lies in the deri-
vation of e%:Yamashita used the relation

P„/iV =n„[F+(4m./3)Pp], (31)

where e„ is the high-frequency polarizability per ion

TABLE III. Numerical results.
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pair. Since n„may be applied only to the high-frequency
polarization component, P„rather than Po should
appear on the right of (31).

There is little difference between the static dielectric
constants obtained with the orthogonal and non-
orthogonal wave functions. This is a consequence of the
fact that the term 8+2, which is not affected by the
orthogonalization of the wave function, is dominant in
the energy expression. Despite its importance, this is a
difficult term to evaluate accurately, for (see Table II)
it is the sum of positive and negative contributions of
nearly the same magnitude; its numerical value is a
small remainder, close to the limits of the approxima-
tions used in the cohesive energy calculation.

The calculated high-frequency dielectric constant and
the effective charge, on the other hand, are greatly
affected by the orthogonalization of the wave function.
The coefficients A and 8 completely determine e„[see
Eq. (25)j and, since C is not greatly affected by
orthogonalization, are also of prime importance in
fixing the value of e%. While BX' is the composite
result of a number of different energy contributions,
its value, in all three sets of data given in Tables II
and III, is very close to the altered kinetic energy of
the electrons alone. The total energy change in a
high-frequency 6eld then essentially contains just two
contributions: the kinetic energy of the electrons and
the interaction of the negative-ion distortion moment
with the macroscopic field. Thus the key to the theory
of the dielectric constant —at high frequency, at least—
appears to be the choice of orthogonal wave functions
that produce an ionic dipole moment and altered
electronic kinetic energy which are in proper balance.

From this discussion, it is concluded that the use of
wave functions which preserve the orthogonality within
individual ions is very important in the quantum
theory of dielectric constants. In this connection, one
further aspect of the present results is worthy of note.

According to the variation principle, no wave function,
used in conjunction with the correct Hamiltonian, can
lead to an energy that is lower than the true energy of
a system. This is equivalent to the requirement that
the dielectric constant deduced from a complete vari-
ational calculation cannot exceed the observed value.
The values 2.63 and 2.33, listed for c„ in Table III,
violate this requirement. The apparent contradiction
arises from the fact that nonorthogonal wave functions
were used in the calculations, but were treated in the
same way as orthogonal wave functions; the energy
terms thereby neglected would presumably remove the
difFiculty. Since the e„obtained with the orthogonal
wave function is somewhat lower than the observed
value, while that obtained with the nonorthogonal wave
function is considerably higher, the implication is that
the orthogonal wave function employed here over-
compensates in some way for the errors inherent in the
use of the nonorthogonal wave function. Better choice
of the orthogonal trial function could lead to results
which are better in agreement with experiment, even
with the simple model employed in this paper. A
negative-ion wave function that is not so much peaked
in the direction of the nearest neighbor may be indi-
cated.

Finally, it should be mentioned that the method
employed in this paper is not generally applicable to
all ionic crystals because the positive-ion polarizability
is neglected and the entire negative-ion polarizability
is attributed to the outermost subshell of electrons.
However, the results obtained indicate that an idealized
model such as this can be applied with reasonable
success to other ionic solids in which the positive-ion
polarizability is small compared with that of the
negative ion. It is also hoped that the broad features
of the present work will be useful in considerations of
more complicated systems, where these conditions are
not well met.


