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Paramagnetic Resonance and Optical Spectra of Divalent Iron in Cubic Fields. I.Theory*
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The energy level splittings of the ground state of the de configuration in cubic and axial fields are given.
The Zeeman splittings of the various levels are calculated for weak and strong magnetic fields. In the case
of tetrahedral symmetry the effect of the perturhations of the odd parity configurations d'p and dsf on the
ground state is estimated.

INTRODUCTION

HE research reported here is a continuation of
our systematic investigations on the paramagnetic

resonance and optical absorption spectra of the transi-
tion group elements in cubic fields. '

The problem of the d' configuration in the crystal
field of cubic symmetry is, however, of particular in-
terest. To our knowledge the energy level scheme of
divalent iron in cubic 6elds has not yet been treated
theoretically and the optical and paramagnetic reso-
nance spectra have not been observed experimentally.
This energy level scheme is such that in an octahedral
field the lowest level is an orbital triplet (I's). If the
perturbation of the spin-orbit interaction is taken into
account the fifteen-fold degenerate level splits up into
a number of levels of which a triplet is the lowest. This
triplet consists of a mixture of orbital and spin wave
functions. Under these circumstances the Jahn-Teller
theorem' predicts that the complex would deform itself
in order to remove this degeneracy. It was of particular
importance to see whether the Jahn-Teller effect is
indeed operative in the case of divalent iron.

Another part of this investigation deals with the
spectrum of iron in tetrahedral symmetry. In this sym-

metry the orbital doublet I'3 is lowest. Under the com-
bined perturbation of the cubic field and spin-orbit
coupling the orbital doublet and five-fold spin de-

generacy is split into a number of levels. At present
there are hardly any paramagnetic resonance data of
ions in tetrahedral symmetry. In the course of this
investigation, stimulated by the difhculty of explaining
the experimental spectra, it became clear that the
problem of the energy level scheme in the tetrahedral
symmetry is of considerable complexity. The reason
lies in the fact that a tetrahedron has no center of
symmetry. Therefore odd parity configurations can be
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admixed by the crystal 6eld to the ground and some
excited states.

YVe have estimated the eGect of the admixture of the
configuration dsp and d'f on the cubic splitting of the
d', 'D, ground state. The calculations presented here
indicate that the effect may not be inconsiderable. It
seems to us now that the estimated magnitude of this
configurational mixing may have a profound eBect on
the magnetic properties, on the optical spectra, on the
chemical bonding and on the stabilization energies of
such complexes. These eGects may not be limited to
divalent iron but are probably equally effective in other
ions located in tetrahedral symmetries.

This investigation is divided into two papers. The
6rst paper deals with the theoretical investigations and
the second with the experimental results. The theo-
retical section is divided under two major headings, A
and B. Section A is concerned with the energy level
scheme in cubic symmetries possessing a center of
symmetry and section 8 with the energy level scheme
in the tetrahedral cubic symmetry of four point charges.
In view of the lengthy calculations and the large
matrices this presents only a condensation of the
results. The complete matrices and results are being
submitted to the American Documentation Institute.

A. ENERGY LEVEL SCHEME OF d' IN A CUBIC FIELD
POSSESSING A CENTER OF SYMMETRY

The ground state of the free ion according to Hund's
rule is ~D. The optical spectrum of Fe has been care-
fully investigated. The whole configuration is within
60000 cm '. The narrowest levels to ~D ground state
are the 'I' and 'B levels removed by about 20 000 cm '.
For all practical purposes, therefore, the lowest Stark
levels even in a moderately strong crystal field can be
considered to originate from the ~D level. The contri-
bution from the Stark levels originating from excited
levels will contribute only slightly because of the rela-
tively small spin-orbit interaction in iron ( 100 cm )
and also because of the large separations of the excited
levels. In the subsequent discussion in part A the
lowest levels will be assumed to be pure Stark levels
arising only from the parent 'D state.

Group theoretical arguments tell us that the 'D level
will split into an orbital triplet (si's in Bethe's notation)
and an orbital doublet (sl's). The spin-orbit coupling
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D4 takes the value of (Z;e'r4/a, ') (4n./9) & where a; is the
distance between nearest neighbors. The expansion has
been terminated at Y4 since higher terms in Y yield
zero matrix elements in the case of d electrons.

The matrix including the spin-orbit coupling per-
turbation is 25&(25 and factors into three matrices of
6&6 and one 7/7, of which two are equivalent.

The general matrix, including the cubic field, axial
field and spin-orbit effects, is given in Appendix I,
Matrix I. Here Dq represents a constant factor and is a
measure of the cubic field strength. A2 represents the
axial contribution and X is the spin-orbit coupling
constant in the crystal. The magnetic field H is along
the symmetry axis (i.e. [10 0])and h= (cA/2mc) H =PH,
where P is the Bohr magneton. The matrix elements
have been evaluated using the appropriate %igner
coefficients of the manifold L= constant, i.e.,

c~,,'= PM' L(I.+1)3,—
FIG. 1. Energy level scheme of the 'D level in a cubic and axial

field. The right-hand side of the figure shows the levels as split
up by the cubic field and spin orbit coupling. The figure is drawn
for the case of an octahedron of charges. For a tetrahedron or
Quorite structure the orbital doublet is lowest. The numbers next
to the levels indicate the total degeneracy. The energy of the
levels is given by Eq. (4) and the order of the levels in the text is
according to the order of this diagram. The left-hand side indicates
the splitting of the energy levels in a relatively weak axial field.

(L~M)!(LCM+4)!
c~g4'= —70

24 (L+M)!(LWM—4)!.
can, o4= ii2 L35M4 30L(L+1—)M2+25M'

—6L(L+1)+3L'(L+1)')

(3)

will remove these degeneracies, i.e.,

D Xr,=r,+r,+r +r,yr, ,

D,xr, =r,+r,+2r,+2r, .

We expect, therefore, a large number of levels of
various degeneracies and of complex nature in which
the wave function will be a mixture of orbital and spin
wave functions. On quite general grounds it can be
seen that in the case of the orbital doublet the calcu-
lations of the energy level scheme will have to be
carried out with care. For this orbital doublet is split
neither by the cubic field nor by the spin-orbit coupling
acting separately. The combined e6ects of these per-
turbations will yield in the second and third order,
splittings of the order of a few wave numbers.

In carrying out these calculations it is convenient to
use the normalized spherical harmonic representation
of the cubic potential given by

U = Uo + (7/2)D4t 74 + PO~/14) (F4'+ Y4 ')7, (2a)

and

U *=U.**+(»/9)D L-U +(~0~/14)(U +U-')3,
(2b)

where the first equation gives the potential for the six
coordinated cubic symmetry and the second for the
eight coordinated cubic symmetry. Vo represents the
constant term of the potential and D4 is a constant. For
a model of point charges at the corners of an octahedron,

For the following it is convenient to transform matrix
(I) into a scheme in which the cubic field is along the
diagonal. This matrix, which will be used, is given in
Appendix I, Matrix II. We shall now give results of the
more important cases.

Cubic Field

Assuming A2=0 and k=0, i.e., a pure cubic crystal
field, and a zero magnetic field, the energy levels to
second order and the eigenfunctions to zeroth order
are given in Table I.

The right-hand side of Fig. 1 shows the energy level
scheme for a cubic field, assuming 4Dg to be the lower
level.

The eGect of a magnetic field on these energy levels
is calculated in two limiting cases by means of the
perturbation theory.

(a) Weak magnetic fteld (h«X'/Dq)

M/Dq is of the order of 10 cm ', and therefore
h«X'/Dq corresponds to the usual situation in the
laboratory. The energy levels have been calculated (a)
for the part not dependent on h to an accuracy of
X'/Dct, (b) for the linear Zeeman effect to an accuracy
of Xh/Dq, i.e., terms such as (X/Dq)'h have been
neglected, (c) for the quadratic Zeeman effect to an
accuracy of (Dg/X') h'. These levels are given in
Table II.

It is to be noticed that the wavefunctions are now
mixed both by the spin-orbit coupling and the magnetic
field.
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TAsLE I. Energy levels of the ground state of the d configuration in a pure cubic crystal 6eld. The energy levels are calculated to
second order and the eigenfunctions to zeroth order. The numbering of the energy levels is according to the roots of Matrix II.

Energy levels

E13=
Egg= 4Dq+3X+ (9/25) ()"/Dq)
E25

Ez= 4Dq+l+s0'/Dq)
E24=

4Dq+l+ (6/5) (l'/Dq)
E18

Elp
Ezz

—— 4Dq 2X+ (6/25—) (l '/Dq)
E22 ——

E4—
Ezz = 4Dq 2X+ (6/5) (X—g/Dq)

E28=

Es=4Dq —»+ (12/5) (l '/Dq)

E,= —6Dq —(12/5) (l s/Dq)

E9-
E,= —6Dq —(9/5) (Xg/Dq)

E21

6Dq (6/5)—(Ag/D—q)E14=

E8
E„= 6Dq ', (»/Dq)— ——
E2p=

E18=—6&q,

Wave function

4'z s = (3/20)&[ (—2 —1)+(2—1)+2 (—1—2)7+ (1/10)& (1,0)
4'zg ——(3/10)&[(—1—1)+(11)7+(1/5)&[(—20)+ (20)7
+»= (3/20)'L (21)+(—21)+2(12)7+ (1/1o)'[(—lo)7
Nzg = (1/12)&[—(—2 —1)—(2—1)+2(—1—2)7—(1/2)& (1,0)
ez = (1/6)&[—(—2—2)—(2—2)—(—22)—(22)+ (1—1)+(—11)]

egg ——(1/22)&[—(21)—(—21)+2(12)7—(1/2)&( —10)
mls ——(1/6)&[(—2 —2)+ (2—2)+ (—22)+ (22)+ (1—1)+(—11)7

+zs (1/2)l[( 1 1) (11)7
9'zp= (1/40)~[5(—12)+2(—2 1}+2(2 1) s(—1 2)7—(3/20}&(+10)
+,z= (1/5)&[(—1—1)+(11)]+(3/10)&[(—20)+ (20)]
egg ——(1/40)&[5 (1—2)+2 (21)+2 (—21)——,

' (12)7—(3/20)& (—10)
eg ——(1/12)&[(—2 —2)+ (2—2)—(—22) —(22)—2 (1—1}+2(—11)7

qfzz = (1/24)&[3 (—12)—2 (—2 —1)—2 (2—1)+(—1—2)7+-', (10)
egg ——(1/24)&[3 (1—2)—2 (21)—2 (—21)+(12)]+—,

' (—10)
@s= (1/12)&[(—2 —2)+ (2—2)—(—22) —(22)+2 (1—1)—2 (—11)7
4's ——(1/8)&[—(—2 —2)+ (2—2)+ (—22) —(22)+2(00)7
&g ——(1/8)&[—(—2—1)+(2—1)7+(3/4)&(01)
+s———,

' [(—2 —2)—(2—2)+ (—22) —(22)7
%'gg = (1/8)&[—(21)+(—21)7+ (3/4)& (0—1)
eg = (1/8)&[(—2 —2) —(2—2)—(—22)+ (22}+2(00}7
e,s ———,

' [(—20)—(20)+ (0—2)—(02)7
+s= (3/8)&[(—2 —1)—(2 —1)7+g (01)
+»= (1/2)'L(o —2)+ (o2)7
4'gp= (3/8)&[(21)—(—21)7+-(0—1)
q'ps= g[(—20)—(20)—(0—2)+ (o2)7

TABLE II. The energy levels of the ground state of the ds configuration in a cubic field in a weak magnetic field (h«Xs/Dq). Tbe
energy levels have been calculated (a) for the part not dependent on h to an accuracy of X'/Dq, (b) for the linear Zeeman effect to an
accuracy of Xh/Dq, i.e., terms such as ().g/Dq)h have been neglected, (c) for the quadratic Zeeman effect to an accuracy of (Dq/&~)hg.

E4

E6

E8

E1P

Ell
E12
E13
E14
E15
E16
E17
E18
E19
E2p

E21
E22

E23

E24

E25

—6Dq —(6/5) (Xs/Dq)
—6Dq —(9/5) (l s/Dq)

6Dq (12/5) (Xg/Dq)— —
4Dq 2X+ (6/5) (Xg/Dq)—
4Dq+X+ (6/5) (X'/Dq)
4Dq 2X+ (12/5) (Xs/Dq)—
4Dq+X+ —,

' (Xs/Dq)
—6Dq ——', (Xs/Dq)
—6Dq —(9/5) (1'/Dq)
4Dq —2X+ (6/25) (Xs/Dq)

4Dq —Zk+ (6/5) (~g/Dq)

4Dq+X+ ,' (X'/Dq)—
4Dq+ 0+ (9/25) (&s/Dq)

-6Dq-(6/5)(l'/Dq)
—6Dq ——,

' (Xs/Dq)
—6Dq
4Dq 2X+ (6/25) (Xs/Dq)—
4Dq+&+ (6/5) (&'/Dq)
4Dq+3X+ (9/2S) ('As/Dq)
—6Dq —s (~s/Dq)
—6Dq —(9/5) (}'/Dq)
4Dq —2X+ (6/25) (&s/Dq)

4Dq —2X+ (6/5) (&'/Dq)

4Dq+~+! (1'/Dq)
4Dq+3&+ (9/25) ( '/Dq)

—h+ rg (»/Dq)
+h+ s (»lDq)
+-,'h —(6/25) (»/Dq)
+ h (»/Dq)
—gh+ gs (»/Dq)
—-', h —(9/25) (»/Dq)

+h ——', (»/Dq)
—h ——,'(»/Dq)
—-'h+ (6/25) (»/Dq)

,'h+ s ('Ak/Dq)——
+-,'h —-', (»/Dq)
+ k+(9/25) (»lDq)

+ (40/3) (Dqhs/lP)

—(40/3) (Dqhs/Xs)
—(10/3) (Dqh'/Xs)

+15 (Dqhs/P ')
+ (10/3) (Dqhs/) ')
—15 (Dqhs/Xs)
+sDqks/l'
—-', Dqhg/Xs
—(125/32) (Dqhg/Xs)

+ (125/32) (Dqkg/Xs)

—(40/3) (Dqhs/) ')

+ (40/3) (Dqhs/Xs)

+-,' (Dqh2/) 2)
——:(Dqk'/l g)
—(125/32) (Dqhs/Xs)

+ (125/32) (Dqhg/Xg)
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TABLE IV. Energy levels of the ground state of the d configuration in a cubic and axial field. The axial Geld is strong compared with
the spin-orbit coupling and both are larger than the magnetic perturbation. (Dq»bs»XL S»b). Terms of the order X'/Dq or X~/Dq. X/bo
are neglected.

Es 6Dq———+ ,'(Xbs/-Dq) ', (bs—o/D-q) 4b-
Es= 6Dq—+ ss (ebs/Dq) ,'(bs—s/D-q)+4Is
Es= —6Dq —s (»s/Dq) —s (bs'/Dq)
Es= 6Dq —k(»s—/Dq) :(bs'—/D—q)

Es =4Dq+bo —2X—-', (ljbs/Dq)+ xo (bss/Dq)+3k
Es 4Dq+——bs 2X ',—(Xbs—/D-q)+ ', (bss/D-q) 3h-
E,=4Dq+b, +X+s(i bs/D-q)+ ', (bss/D-q)

Eo=4Dq+bs+X+ x (Xbs/Dq)+ -', (bso/Dq)
86=4Dq —2b2

Eso = 6Dq o(X—bs/Dq—) s(bss/D—q)+4k
Ess = 6Dq -',—(bs'/D—q)
Ess = 6Dq+ o (Xb—s/Dq) s(bss/Dq) ——2b

E13=4Dq —2b2 —4h

E,s 4Dq+bs+——,'(bss/Dq) -h-
E&s=4Dq+bs b s(Xbs—/Dq—)+ s (bs /Dq) h-
E16=4Dq —2b2+2h
E,s—-4Dq+bs+2&+-'o (i bs/Dq)+ -', (bss/Dq)+5k
Ess = 6Dq x(X—bs/Dq) —', (bss/—Dq)—4h-
Eso = 6Dq sbss/D—q--
Eso = —6Dq+ ss (Vo/Dq) —-'(bss/Dq)+2Is
E21——4Dq —2b2+4h
Ess= 4Dq+bs+xs(bss/Dq)+b
E„=4Dq+bs X s(i bs/D—q)+—o (bs /Dq)+b
E24= 4Dq —2b2 —2h

E» -4Dq+bs+2l —+so(ebs/Dq)+ 's(bss/Dq) 5h-—

4s = (1/3)t (2—2)+ (2/3)i (—1—2)
Cs= (1/3)t( —22)—(2/3)t(1 2)
4 s = (I/6)t (2 1)+(1/3)t( —11)+(1/6)t (—2 —1)—(1/3)t (1—1)
C4 ——(1/6)t( —2-1)—(1/3)t(I —1)—(I/6)i(2 1)—(1/3)t( —1 1)
4s ——(2/3)t (—2 2)+ (I/3)o (+1+2)
4o ———(2/3)i(2 —2)+ (1/3)t( —1—2)
I s ——(1/3)t (—2 —1)+(1/6)t (1—1)—(1/3)o (2 1)+(1/6)o( —1 1)
C o = —(I/3)t(2 1)+(I/6)t (—11)—(I/3)t (—2—1)—(I/6)t (1—1)
Co ——(00)

C'so= (1/3)t(2 2)+(2/3)t( —1 2)
4u= (1/3)i(—2 0)—(2/3)t(1 0)
@so= (1/3)i (2—1)+(2/3)O (—1—1)
4 so ——(0—2)
C,4 ——(2/3)o (—2 0)+ (1/3)o (1 0)
ass = (2/3)t (2—1)+(I/3)i (—1—1)
Coo ——(0 1)
C os = —(2/3)o(2 2)+ (I/3)o( —1 2)
I'ss = (1/3)t (—2 —2)—(2/3)t (1—2)
&&so = (1/3)t (2 0)+ (2/3)O( —1 0)
C'so= (1/3)O( —2 1)—(2/3)i(1 1)
Cos ——(0 2)
Coo= —(2/3)t(2 0)+(1/3)O( —1 0)
q'sos= (2/3)O( —2 1)+(1/3)O(1 1)
Css= (0 —1)
Iss ——(2/3)O (—2 —2)+ (1/3)t (1—2)

Admixture of the
order of b/bs hy

46
C2, 44
41, C3

47
C'll

@'10' C'12

C'll

4'l6

@'16

C'13

414 417
C'l6

C'19

C'18, @'20

C'19

C'2S

C24

4'21

422' C'25

C'24

(b) The axial field is weak compared with the

spin orbit coupli-ng: [X(L S))bs]

These energy levels are given in Table V.
The various cases are illustrated in Figures 1, 4, and

5. The left-hand side of Fig. 1 indicates the level scheme
in which the axial field (along [100]) is weaker than
the irst order L S perturbation, but stronger than the
second order correction. Figure 4 gives the case in which
the axial field is stronger than the first order spin-orbit
perturbation. Figure 5 indicates the very weak field
case for the I'3 level in which the axial 6eld is weaker
than the second order I-S perturbation. It is to be
noticed that in these very weak fields the lowest
doublet has a g„2, g, =0 along the [100j direction.

B. INFLUENCE OF CONFIGURATION INTERACTION
(dsP) ON THE ENERGY LEVELS OF d' IN A

TETRAHEDRAL FIELD

2

12

2@5

SD

Zx5
10

s*s/

The crystal field potential of a tetrahedron diGers
from that given in Eq. (2) in that it contains odd
spherical harmonics. The potential expressed in car-
thesian coordinates, assuming a point charge model, is
given to sixth order in (r/b) by

Ze 20 *ye 35 )x'+y'+s' —sr'q
~

r'q
~=—4+— ——

I

—
I I

1+12—
I

b 3b b' 9( bo ) l. b'i

308 fxs+yo+so (3j7) ro)—
(6)

9 5 b'

5

H LS I..S AXIAI. CUBIC

SKOkD FIRST FlELD FIELD

ORDER ORDER (100)

CUBIC AXIAL L.S. L.S. H

FIEU) FIELD FIRST SECOND

011) ORDER ORDER

Fxo. 4. Energy level scheme in a very strong cubic field, and
axial field stronger than the spin orbit interaction in an external
magnetic Geld. The right-hand side shows the splitting in the
trigonal case. The g factor of the lowest levels is approximately
0, 4, and 8 for the singlet, and two doublets. The g factor of the
lowest)doublet of the I's state is approximately g. The right-hand
side shows the splitting for the tetragonal case (axial Beld along
the $100) direction).
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TABLE 7. Energy levels of the ground state of the fg configuration in a cubic and axial field. The axial field is weak compared with
the spin-orbit coupling (Dq)&XL S)&b2»h).

E,= 6Dq—(1/4—5) (bP/Dq)
Em = 6Dq —(12/5—) (x'/Dq) —(17/45) (bp/Dq)
Ea = 6Dq——,

' ()P—/Dq) —(1/45 ) (b22/Dq)+ *, (Xbz—/Dq)

E4 = 6Dq —(9/5)—(Xm/Dq) —(17/45) (bP/Dq)+ 5 (Xbm/Dq)

Es=4Dq 2X+ —bs+ (6/5) (Xs/Dq)+ —', (b2s/Dq) —4 (hbu/Dq)+ 3h
L& 6 =4Dg 2K+b—m+ (6/5) (X'/Dq)+ 5 (b22/Dq) —;(7 b—s/Dq) 3h-
E7 4Dq 2X 4—b&+ (—36—/25) (X'/Dq)+ (2/25) (bP/Dq)+ (16/25) (Xb2/Dq) —(54/125) (b2 /X)
Es=4Dq+X+ b2+ s (X~/Dq)+ ', (bP/Dq)—+ 5 (b b2/Dq)
E9——4Dq+ 3x—-',by+ (9/25) (x'/Dq)+ (3/25) (bg'/Dq) —(6/25) (ibm/Dq)+ (54/125) (be'/x)

Ko= —6Dg —s(7'/ q)+i'o( 2'/Dq) —5(Xbs/ q)+h
En ———6Dq —(6/5) (X'/Dq) —', (b2'/Dq—)
E» —— 6Dq (—9/5) (7—'/Dq) —-,'(b2s/Dq) ——', (7 bu/Dq)+ h

Bg3=4Dg+X —52 —3k+ 3 b22/P

E&4 =4Dq 2x ', b—2+h—-(208/3—75) (b2'/7 )
E» 4Dq=27 —2h —fbi—/7
E~8 =4Dq+X+-,'b2+ gh+ (1/24) (b2'/x)
E&7 =4Dq+3x+ ~~~ b2+ 2h+ (513/1000) (bp/x)
E„=—6Dg —5'/Dq+ ,', bP/Dq ——',Xbg/Dq ——h

E,9 6Dq (——6/—5)X'/D—q
—,' bP/Dq-

EM = 6Dq (9/5)7—s/Dq —,'b2'/Dq 5—7 b—2/Dq h- —
E2g ——4Dq+x —b2+3h+ ;bp/x—
E» 4Dq 27, ', b——2 h —(2—08—/37—5) (bp/7 )
E„=4'—2X+2h ——;b,2/~

Em&=4Dq+7+ ', bm ', h+(1/-24)—bm'-/7

E&5——4Dq+3X+hbz —
~~h+ (513/1000)bp/X

For d electrons, the potential, therefore, consists of
two terms: U' odd in spherical harmonics and U4 even

g„=g L
gi=o / rg~I ~M=oLg ~I TRANSITIONl

rr g=I LlM=O

Lg-"I TRANslTIQN

Lg
IMAGNETIC AXIAL L,S AXiAL MAGNETIC

FIELD FIELD SECOND FJELl) FIfLD

000) ORDF. Q ('I'I ))

FIG. 5. Energy levels in an external magnetic field for the case
where the axial field is weaker than the first and second order
spin-orbit interaction perturbation. Only the levels of the F~ state
are shown.

Here b is the distance between adjacent ions.
Expressing this in normalized spherical harmonics,

this can be written

U= (Ze/b) {4+ (20/3) (2'/35) ' (r/b) '(Vss+ F's ')
—(~~) (4~/9) '* (r/b) 4L (28/9) V4s —(2/9) (70) '

X (V4'+ Y4-') ]L1+12 (r/b) ']+ (-', ) (4~/13) '*

X( /b)'L(16/9) V '+(g/9) (14)'
X (V, +V;')]). (6a)

in spherical harmonics. U4 has the same form as the
potentials given in Kq. (2b) except for a factor of —', .
As long as we calculate matrix elements of the type
(d~ V~d) the odd part of the potential will not con-
tribute since on replacing x, y, s by —x, —y, —s, the
potential V~ —U, but J'@s%sdr does not change
sign. The energy level scheme is then given as calculated
in (A). However, if one considers an odd configuration
such as d'p or d'f the matrix elements (d~ &'~ p) and
(d~ U'~f) will differ from zero. ' It is the purpose of this
section to estimate this perturbation.

There are two ways to approach the problem. One
way is to construct the strong crystal field wave func-
tions describing the e and t2 energy levels. The "cor-
rected" wave functions will be a linear combination of
the strong field functions of the d, p, and f electrons. For
example the t2 functions will have the form

C (t,) =Vs(t,)+a@(4p;)+b@(4f,)
where a and b will be a measure of the admixture. These
wave functions can then be used to calculate the energy
separation of the I'3 and 1 ~ levels. Another method, used
here, is to consider the effect on the ground state of the
various excited levels of the two higher con6gurations.
This scheme is more suitable for the weak field case
which is that usually found in tetrahedral symmetries.

We shall make the following simplifying assumptions:
1. A point charge model is assumed and the overlap

of the charge distributions between the ion and the
'Because of the triangle condition and parity only the dsp and

d'f configuration interact with d through U .
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surroundings is neglected. The eRect of the covalent
bonding can later be taken into account by constructing
the appropriate linear combination of atomic orbitals.

2. We shall assume that energy diGerence between
the excited configurations and the ground state is the
same as in the free ion. This will certainly not be
correct since the constant part of the potential differs
in the excited conhguration from that of the d' con-
figuration. Further because of the overlap of the wave
function on the adjacent ions the spectrum resembles
probably more the Coulomb energy of Mn'+ and the
corresponding Coulomb energy will be smaller. In view
of the absence of experimental data in a crystal we
shall assume the energy diGerence between the centers
of gravity of the excited configurations and the ground
state to be about 100000 and 150000 cm ', respec-
tively. Since in all probability the separation in a crystal
is smaller this will give a lower limit in the pertur-
bation.

3. It is found experimentally that the crystal field
splittings in tetrahedral symmetry are small compared
with the term separation. We shall neglect the Stark
splittings, caused by the U or U' terms of the excited
levels (and similarly that caused by Z e'/r;;). These
splittings will eGect only in second order our calcula-
tions of the separation of the F3 and F~ levels. The fine
structure splitting of the ground state levels (caused
by spin orbit interaction) will however be effected indi-
rectly by this splitting. The main effect of the d~p

configuration on this fine structure separation of the
gound state is by terms of the form

(d'[ v'id'p)(d'p[& s[d'p)(d'pi v'[d')

(g~s —+~6)2

The eGect of the fine structure splitting of the excited
states (split mainly by U') on the fine structure of the
ground state is given by terms Of the form

of these higher configurations is small and since the
radial integrals can at best be only estimated we shall
neglect the effect of these configurations.

5. We have also neglected the eGect of the configu-
ration interactions such as d'4s, induced by electron
correlation term Z e'/r, , on the separation of the I'3
and Fs levels. It is felt that this mixing may be smaller
than the perturbation caused by the odd part of the
potential.

We shall follow the notation and methods of Racah. 4

We indicate here the calculation for the perturbation by
the 3d'4p configuration. The calculations for the 3d'4f
configuration follow the same lines. According to the
Wigner-Eckart theorem the matrix elements to be
calculated may be written:

(3d DM~V, t3d 4p Lu')
= ( 1)'+~(3—d' 'D

~i
v')~3d5 4p 5Lv(2L3; —MM'g)

=L(—1)' '+'+ IV'&7(3d"Dll V'll~d'4p 'L)

X (2I- MM')
i (2L3——g). (7)

The transformation from the 1 scheme to the I.scheme
is given by Racah [II, Eq. (44b)] and is

(3d L'd D[[v ~~~3d L'p I.)
= (—1)'+'-'-i(3d' 3d ([ v'i[3d' 4p)

X [2(21+1)(2L+1)O'W(221L; L'3) (8)

where I.' is the orbital angular momentum of the d'
configuration, W(221L; L'3) the Racah coefficient.

The wavefunction of the level 'D of the configuration
d' is a linear combination of the functions 3d'L'd with
diGerent I-' of the d' configuration. The coefficients of
these functions, called fractional parentage, are not
tabulated. They can, however, easily be obtained from
the equation [Racah III, Eq. (19)]

(d'I v'I d'p) (d'p
I
& s

I
d'p) (d'p

I
U'I d'p) (d'p I

v'I d')
' (Eg„Ed)3—

and similar terms for d'f. Since this is a third order
calculation this is to be considered small.

It is to be noticed that the magnitude of the splitting
of (d'P

~

V4~ O'P) may differ considerably since the mag-
nitude of the crystal field potential is different in an
excited configuration.

4. We shall neglect the interaction of the configura-
tion such as dsiip with d~ef with I=5, 6. . . This inter-
action yields the same matrix elements as the interac-
tion with d'4p and d'4f, only the radial integrals and
the energy level separations being different. The only
eGect of these configurations is, therefore, to change the
effective value of the radial integrals. Since the effect

[d'(S'L') dSL (d' SLj

(4+1)(2S'+1)(2L'+1) -
&

6(2S+1)(2L+1)

X[d (SI.)dS'L'P S'I.'j. (9)

Here L=2, S=2 and the values of L' are L'=0 (S'= 2),L'=1 (S'=2), L'=2 (S'=2), L'=3 (S'=-,'), L'=4
(S'=$). The fractional parentage coefficients of d'd are
given by Racah. The calculated fractional parentage
coefficients are given in Table VI.

We shall a,ssume that for each term in the 3d'4p
there corresponds one parent, i.e., to each I. of a given
level corresponds a definite I.'.

4 G. Racah, Phys. Rev. 61, 186 (1942), I; 62, 438 (1942), II;
63, 367 (1943), III.
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TABLE VI. The effect of the perturbation by the d5P conhguration on the Fl and F& levels.

Term

Coeflicient
of fractional Racah Normalization

parentage coellicients L (2L'+1) (2L+1)/(2%+1)j&
Pd"D ids (L")dDj W (221L,L"3) =L (5/7) (2L+1)g&

Perturbation of the F3
level in units of

1(3dll &'l4P) I'/& (L)

Perturbation of the Fs
level in units of

(Sd lit/5ll4P)5/&(L)

'p('s)
'p(4p)
5P (4D)

5D (4P)
5D (4D)

'D('F)
'P(4D)
5p (4p)

'p('G)
'G(4F)

'G(4G)

'H(4G)

(1/5)'
—(5'o)'

(-:)'
—( o)'

(5)'
—(7/30)&

(s)'
—(7/3o)'

(5'o)'
—(7/30)'

(—'o)'
(~o)'

(1/15)&

5 (-:)'
s(1/21)'

l (-:)'

5 (2/7)'

1/35

(2/35)(6)'
(1/7)(5'o)'

(1/21) (—'o)'
(1/7) (s)'

5 (1/42)'

l(1/7)'

(15/7)&

(15/7)'

(15/7)'
(25/7)'

(25/7)&

(25/7)'

(5)i

(5)'
(5)$

3(5/7)&

3 (5/7)&

(55/7)&

0
0
0

—,55(2/75)(25/7)1
—,'(2/175)(25/7)1

(7/30)(1/1225)(25//)1
0
0
0

(7/30) (5/294) (45/7) (8/15)
sso (1/378) (45/7) (8/15)
—,', (1/63) (55/7) (21/55)

—,'(1/15)(15/7)(10/21)
—'o(1/45)(15/7)(1o/21)
—,'(1/525)(15/7)(10/21)

0
0
0

—,'(24/1215)(5)5

(7/3o)(3/490)(5)s
5'o (1/4410) (5) 5

(7/30) (5/294) (45/7) (14/45)

5'o (1/378) (45/7) (14/15)
—,', (1/63) (SS/7) (68/105)

The matrix elements then are:

(3d' 5D3E I U,'~ 3d' 4p 5L(L")/V')
= (de 5D(de(Llr)d 5D)(—1)2+sr(—1)L''+3 2 L

X (3dj~ U'~~4p) L(2L+1)5j'*W(221L; L"3)
XP(—1)~'/+7/(L2M' —M

~
L23—q).

We need in addition the various Racah coefficients.
These can be calculated according to the formulas

given by Rose, ' or as tabulated by Biedenharn. 6%'e list
these in Table VI.

The configuration d'p has the following quintuplet
(10) energy levels: 'P, 5G, 5H, 5F, 'D, and 5S (see Table VI).

TABLE VII. The effect of the perturbation by the d'f con6guration on the F3 and Fs levels.

Term

'P (4D)

sp (4p)

'p(4G)
5D (4P)

5D (4D)

'D (4F)

5D('G)

'p('5')

'F(4P)
5P (4D)

5p (4p)

'F(4G)
5G (4P)

5G(4D)

'G('P)
5G (4G)

5H(4D)

'H(4F)

'H(4G)

CoeKcient of
fractional
parentage

(5)'
—(7/30)&

(—'o)'
—(—'o)'
(5)'
—(7/3o)'

(5'o)'

(l)'
—(—:o)'

(5)'
—(7/30)'

(5'o)'
—(x'o)'

(s)'
—(7/30)&

(—'.)'
(l)'
—(7/30)&

(—'o)'

Racah
coefBcient

(2/35)(6)'

(1/7) (—:.)'
(1/21) (—'o)'
—l (3/7)'

(1/70) (6)'
(5'o)'

(1/14) (5)'
(1/35)'
—s(1/70)'
—(11/420)(6)&

(2/7)(1/15)'
(1/21)(11/4)&

-', (5/14)&
—(1/14) (5)'

0
(1/21) (11/3)'
(1/'7) (l)'
—(1/14) (5/3)'

(1/42) (13)&

Normahzation

(15/7)&

(15/7)'
(15/7)'

(5/7)'

(5/7)'

(5/7)'

(5/7)'

(5)'
(5)'
(5)'
(5)'
(5)'
3 (5/7)&

3 (5/7)&

3(5/7)&

3(5/7)&

(55/7)&

(55/7)&

(55/7)&

Shift of F3 level

0
0
0

—,', (3/175) (25/7) 1

5 (6/4900) (25/7) 1

(7/30) 5'o (25/7)1
—,', (1/588) (25/7)1

0
0
0
0
0

5'o (5/504) (45/7) (8/15)
-', (3/282) (45//) (8/15)

5so (11/1323)(45/7) (8/1S)
-', (1/294) (55/'7) (21/55)

(7/30) (5/588) (55/7) (21/55)
—,', (13/1764) (55/7) (21/55)

Shift of Fs level

5 (24/1225) (15/7) (10/21)

(7/30) (3/490) (15/7) (10/21)
—,', (1/4410) (15/7) (10/21)

0
0

0

0

5 (1/35) (5)s

5'o (1/280) (5)-;

5 L726/(420)57(5) 5

(7/30)(4/735)(5)s
—,'o (11/1764) (5) ss

5'o (5/5o4) (45/7) (14/45)
—', (3/382) (45/7) (14/15}

—,'o (11/1323)(45/'I ) (14/45)
: —,'(1/294) (55/'I) (68/165}

('7/30) (5/588) (55/'I ) (68/165)
5'o (13/1764) (55/7) (68/165)

5 M. K. Rose, EIerr5ersiary Theory of ANgNIar 2doN5ersegrr5 (John Wiley 85 Sons, Inc. , New York, 1957).
6L. C. Biedenharn, Oak Ridge National Laboratory Report ORNL 1098 (unpublished).
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The 'S level does not perturb the 'D level since the
triangular condition 6, (D, S, 3) does not hold. Hence
we have to calculate the effect of the other 5 levels, i.e.

(DM
f U,' fI.M') =const' (I.2M' —M fL23—q), q= +2.

The appropriate Wigner coefficients are given in
Table IV4 in Condon and Shortley~:

From Eq. (10) the various matrices can be obtained.
These matrices have 5(2I.'+1) columns and lines. The
matrices are evaluated by perturbation theory. Tables
VI and VII summarize these calculations. The per-
turbations on the energy levels are given by

'8 level F3= —6 Dq,

10 0.'
Kg~4 Dg——

21 E(P)

'D level F3 —6 Dq ———

E(D)

F =4Dq,

'Il level F3= —6 Dq,

where

(dflU'llp) v(dffi' flu) I
(dllU'll&) ~(dll I'4lld) Is

(13)

Ii= R(3d) (rs/b4)R(4P)r dr,

Is= R(3d) (r4/b' )E(3d)r dr,

we find the sums of column 5 and column 6 in Table VI
to be 23/294 and 671/1751. The difference between
these two sums is approximately 0.31L(d

f f
U'

f f
p)'/

(Es6„—E&~)j. Similarly the sums of columns 5 and 6
in Table VII are 0.123 for the F3 level and 0.0629 for
the Fg level and the relative separation has therefore
increased by about 0.06L(d

f f
U'

f f f)'/(E& r—E& ].
The extent of the eGect of this perturbation will

depend critically on the knowledge of the radial inte-
grals. These integrals are of course not known in the
solid. One need to know the nature of the wave function
including the overlap on the surroundings. An estimate
of these integrals can be obtained by comparing it with
the integral of (d ff U'ffd) which can be obtained from
the experimentally observed spectra.

Consider ratio

2 . A

Fg 4Dq ——
3 E(F)

8 o.'
'G level F3 —6 Dg ——

15 E(G)

and

y= (20/3)(2s/35)'Z„e',

8 = —(1/2) (4ir/9) &(28/9) Zses.

14 e'
Fg~ —4 Dg ——

45 E(G)

The angular part in (18) can be calculated from

(2l,+1)(2l+1)
(t, ffI",fft,)=(t, 1 ooft, ll, o) — —, (14)

4rr (2lf+ 1)
21 Q

'H level F3 —6 Dg ——
55 E(II)

and therefore

(~IIU'IIP) —10 l 5i & Z„I,
(d ffU'ffd) 7 (2) Zs I,68 0.'

r —4Dq—
165 E(II)

and similarly for the ds 'f configuration.
Assuming now that

E(P)~E(G)~E(F)~E(D)~E(II)~Ebs —Eg~

Ligand integrals have recently been tabulated by C. J.' E. U. Condon and G. H. Shortley, Theory of Atomist'c Spectra Ballhausen and E. M. Ancmon, Kgl. Danske Videnskab. Selskab.
(Cambridge University Press, New York, 1935). Mat. -fys. Medd. 31, No. 9 (1958).

Using hydrogenic wave function and taking Z„=2—3,
where Z~=5—6, and taking the distance between zinc and the

sulfide ion to be about 2.3 A, one can evaluate these
~= f:ds sDjf~'(I-")dD](3~ II U'II4p) ~'(221L; I"3) two integrals. It is found that the exact choice of these

yL(5/7) (2L+ 1)g)( 1)i+I, (12) parameters is not very important in. the evaluation of
Ii/Is. Ii is only slightly smaller than Is (Ii is about
—0.8 Is). The ratio (13) is therefore of the order of one.
In Appendix II it is shown that (d U4 d) = 10(70)&Dq.
Taking Dq~330 cm ' one finds (et U' p) of the order
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of 28 000 cm '. The relative depression of the F3 and F5
levels is therefore 0.3(28000)'/104~2000 cm '. The
evaluation of the radial integral may be smaller possibly

by 50% but on the other hand it is very likely that the
relative separation between the two configurations in
the tetrahedral symmetry may be only of the order of
5X104 cm '.

The radial integral of J'E(3d) (r'jb')E(4f)r'dr can be
evaluated similarly. Vsing hydrogen wave functions
this radial integral is only a little larger than that of J~.
(It is about 1.3—1.5 Ii depending on the effective charges
used). The relative shift is therefore about (using the
maximum valve of 1.5 li) 0.06(42 000)'j1.5(10)'~700
cm ' or about one third of that of the 3d'4p configura-
tion. The total shift (note that the two shifts have

opposite signs, the d'4p perturbation shifts the I'4 level

more than the I'4 level and the d'4f does the opposite)
is therefore about 2000—700 or about 1300 cm '. These
relative shifts will only be increased by means of the
3d4rip and 3d4ef (r4=5 ) configurations.

This shift of 1300 cm ' is relatively large compared
with the observed separation of about 3300 cm '. If
these calculations should prove to be correct then the
effective Dq value is larger than 330 cm ' and the effect
of the perturbation of the excited states even larger.
However, because of the many approximations it is not
at all certain that the perturbation may not be con-
siderably smaller or even larger. However, if the per-
turbation is as large as estimated then the perturbation
carried out above breaks down. Indeed one might
expect other perturbations of the type

)
(3de

(
Zr'

(
3d~4P) ) ) (3d44P

)
U'

(
3d'4d)

j

(g44 44
—g34 ) (EM 4g

—E3~ )(2)

since 3d44p and 3d'4d will interact through U' as well.
These kind of successive perturbations (in which the
off-diagonal elements are nearly as large as the diagonal
elements) make the calculations unmanageable. The
situation will of course be even worse in trivalent ions
in tetrahedral fields since the crystal field (Dq) is usually
much larger.

EXPEMMENTAL EVIDENCE

There are very few measured spectra of the iron group
in the tetrahedral symmetry. One of these ions Fe+ in
ZnS is discussed in the following paper. It may be per-
tinent to remark here that if the configuration inter-
action is as large as outlined above it will have a con-
siderable effect on the individual levels of the F3 state.
This is because these levels are very closely spaced of
the order of a few cm ' only. It is very likely that had

we worked in a complete cubic field representation of
the excited d'p configuration and considered the per-
turbation of each excited Stark level, we would have
found that the relative spacing of the close-lying levels
would have changed drastically and possibly even the
relative order of the levels might have been changed.
Indeed this is one of the possible explanations of the g
factor and the optical spectrum in ZnS, assuming it to
arise from divalent iron.

The other more conclusive evidence is from the
optical spectrum of divalent. cobalt in spinels~ (the para-
magnetic resonance spectrum has been measured as
well and indicates the spectrum is nearly isotropic).
Crystal field theory predicts that the cobalt, which sits
in the tetrahedral site, would have an orbital singlet as
a ground state, and the next orbital triplets would be
removed by about 10 Dq and 18 Dq —6 where 6 is a
small perturbation by the near E level. Weak Geld cal-
culations yield also a ratio of 10:18. In cubic fields such
as CaF2 this ratio is obeyed fairly well in the case of
Co'+. Mrs. R. Stahl-Brada's data on this crystal indi-
cate that the ratio of 10:18is not obeyed, indeed the
I'4 level is much higher than 18 Dq (by about 1300 cm ').
Similarly the relative spacing of the fine structure of the
various levels as well as the absolute spacing do not
agree with those calculated from a pure cubic field of a
d' configuration.

YVe are now actively engaged in investigating a
number of other ions in tetrahedral symmetry.

Implications

If the above conjectures prove to be correct this will
have a number of important implications. First of all
it will prove to be diS.cult to calculate and correlate
consistently the optical spectra since these calculations
for all the levels will become very lengthy and laborious
and in view of the many uncertainties unrewarding.
Second these admixtures may have some effect on the
intensities of the absorption lines. It is well known
that intensities of the absorption lines in tetrahedral
symmetry are stronger by a factor of about 20—100
than in the octahedral configuration. The admixture of
the odd configuration will increase the intensities and
it is possible that the increase can be as much as one
hundred. Third these perturbations may effect both
the Jahn-Teller instabilities as well as cation distri-
butions amongst octahedral and tetrahedral sites in
spin els.'
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APPENDIX I
Matrix I

General Matrix of the ground state of d' including cubic field Dq, axial field along the i 0 0 direction A~, spin
orbit coupling X, and external magnetic field PH(1.+25) =h(L+2S).
MI, -2 2 -2 2 1 0
Mg -2 -2 2 2 -1 0

—Dq+4) +2As —6h SDq
SDq —Dq —4X+2A s —2h 2X

-Dq -4X+2As+zh
SDq

SDq
—Dq+4X+2A s+6h

4Dq -X -As -h
3X

3X
—6Dq —2As

3X
3X

4Dq —X-As+a

ML,
Mg

—2—1
—Dq+2X+2A s —4h

SDq
2X

2-1
5Dq

—Dq —2X+2As

—1-2
2)

4Dq+2X —As —Sa
4Dq —As+a

3X
3)

—6Dq —2As+2h
64,

—1
2

64
4Dq —2X -A s+3h

Mg
Mg

—2
0

—Dq+2As —2h
5Dq
64.

2
0

SDq
—Dq+2As+2h

—1—1
64.

4Dq+) —As —3h
64

0-2

6~)
—6Dq —2A s —4h

4Dq+X —A s+3h
64.

64,
—6Dq -2A s+4h

Mg
MB

2
1

—Dq+2X+2A s+4h
SDq
2X

—2
1

SDq
-Dq —2X+2As

1
2

2X

4Dq+2X —As+Sh

Matrix II

—1
0

4Dq-As-h
3X

0—1

3X
—6Dq —2As —2a

64.

1—2

64,
4Dq —2X —As —3h

js
2(3)4,
-2 (2/3)4

fv
2 (3)-&a
—(6)4.
—2(3) +h

—(2/3)4
2(3)4.
2(3)4
4Dq —2X+2A s
—(2)&a

—2h

-2(2)4
-6Dq+2A s

2(z)4
2(3)4.
—2(2/3)~a
—2(3)+h
-(6)4,

—6Dq+2A s
—2(z)4 -2 (3)~h

—2(6)4.
-2h

2 (2)4
-6Dq -2A s

(2/3)&h -24
4Dq+X+2A s

—(2/3)4
z(3)4, 3a

(2)4
4Dq+X -As

—2(6)4.
—2(3)&h

4Dq —2X+2A s

(2)42(3)~h

This is Matrix I transformed so that the cubic Geld is along the diagonal. The wave functions 0' are given in
the text by Eq. (4).

fe

fs
-6Dq+2A s+h
+34
2(3/s) 4, —(3/5) &h

h
2&a
6 ~ 10+x—3 ~ 10 4

—eDq+ZAs
-2 9a

(6/5)4
2A,
-2.5&a

+34
—6Dq —2As+h
5&a
2.34, —3-4
—64, -6&a
(3/10)4

$1$
-z 2&a
—6Dq —2As

2 24
z(3/s)4,

3(2/5)4.

$10
2(3/5)4-(3/5) 4
s-4
4Dq —2'A —A s+(3/2) h

(15&/2)a
(6(s)4

fig

2.24
—6Dq —2As
(6/5)sh

—2 s-4

h

2 34.—3&a
(15&/2) h

4Dq —2X+2A s+(1/2) h
-9a

piv

(6/5)4
2 ~ (3/5)4
(6/5)4
4Dq -2) —As
—3 (2/5) 4

2A,
/is

-3(z/s)4
4Dq+) —As
—3(3/s)4

/is
2-4
—A. —e~a
(6/s)4

—9a
4Dq+X -As -(3/2) h
—(9/2)5-&h

$18
6 10 4—3 10&a
(3/10)4

-(9/2) 5+a
4Dq+3X —A s —(7/2) h

fxs
—2 5-&a

3(z/s)4.-254
—3(3/5)4
4Dq+3X+2A s

/so
-6Dq+2A s+h
-3&a
z(3/5) 4.+(3/s)4
-h
—(2)+h
6 X10-4+3g 10+a

Qsl
—34
—6Dq —2A s —h
—s~a
2 34,+3-4
—64, +6&a
-(3/10)4

ass
2(3/S)&+(3/S)&h
-5&a
4Dq —2X -As -(3/2)h
—(15/4)4
—(6/s)&h

Pss
-h
2.34,+3&a
-(1s/4)4

4Dq —2X+2A s+(1/2) h

24

fs4
—(2) &h

—64, +6&a
—(6/s)4
24
4Dq+X —As+(3/2) h

(9/2) 5+a

Psg
6 10+X+3 10+a
—(3/10)4

(9/2) ~ 5 4
4Dq+3X -As+) 7/) 2
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Substituting Eqs. (3) and (2) into (1) we get

(d' 'DM
l
U 4

l
d' 'DM')

= (—1)~-'(5/3) (dllU'lid) (»M' —M
I
»4—

q)

X&r, (—1)~'(d' sD(d'L'd eD) W(2222 L'4)

X (d'L'd sDllde 'D). (4)

APPENDIX II

We want to prove that (dllU4lld) =10 Dq(70)&. Ac-

cording to Racah (III):

X (d'L'd 'Dllde 'D) =3/50.

(d' 'DMll U,'l d' 'dM')
=Zi, (d' 'D(d'L'd 'D) (L'd sDM

l U,' l
L'd 'DM')

X (d'L'd sDllde 'D). (1)
Z (—I)iJ-'(d' ~DFd'1.'d 'D) W(2222; I.'43

According to the Eckart-signer theorem the de-

pendence on M and M' can be written

(r. d DM
l U,el L'd sDM')

= ( 1) +~(L—'d 'D
ll
U'"

ll
L'd 'D)

X l (—1)n e/(2. 4+—1)&](DDM' M
l
DD—4 q). (—2)

U4 operates on d but not on I."
(L'd sDllU4llL'd 'D) = (—1)~'+4 e nl (21+1)(2l+1)g&

X W(dDdD; L'4) (dll U'lid). (3)

Hence

(de 'Dol Uo ld' 'DO)
= (—1)~'(5/3) (d ll U'lid) (220—0

l
224—0) (3/50)

= —,', (dllU4lld) (36/7o):. (5)

But this matrix element is according to the usual calcu-
lation +6 Dq, therefore

(dllU lid) = 1o Dq(70)b.
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Paramagnetic Resonance and Optical Spectra of Divalent Iron in Cubic Fields.
II. Experimental Results*

W. Low ANn M. WEGERt
DeportnMnt of Physics, Hebrew University, Jerttsalern, Isroet
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The paramagnetic resonance absorption of Fe~+ in MgO is observed at g=3.428 and 6.86. The optical
absorption line is found at 10000 cm ~. The paramagnetic resonance spectrum indicates considerable
covalent bonding. The origin of the line at 6.86 is discussed.

In tetrahedral ZnS a paramagnetic line is found at g= 2.25 and optical absorption at 3 p and 0.7 y. Possible
explanations of this spectrum are discussed.

A short discussion of the optical absorption spectra of trivalent iron in MgO is presented.

INTRODUCTION

" 'N the preceding paper' we have calculated in detail
~ ~ the energy level scheme of the 'D level in an
octahedral and tetrahedral crystal symmetry. This paper
will be divided into two main sections, (A) The para-
magnetic and optical spectra of Fe'+ in MgO and

(B) The paramagnetic and optical spectra in tetrahedral
sphalerite (ZnS). Section (C) will deal with a number
of additional observations on these crystals. In Secs. (A)
and (8) it is shown that the spectra in MgO can be
understood along the lines developed in (I), but that
a definitive interpretation of the spectra in ZnS is at
present still lacking.

*This research was supported in part by the U. S. Air Force,
Ofhce of Scienti6c Research.

t Noir at the Department of Physics, University of California,
Berkeley, California.

'W. Low and M. Weger, preceding paper /phys. Rev. 118,
1119 (1960)), (to be referred to as I).

A. THE PARAMAGNETIC AND OPTICAL SPECTRA OF
Fe'+ IN THE OCTAHEDRAL CRYSTAL

SYMMETRY OF MgO

Magnesium oxide has a face-centered cubic structure.
Each magnesium ion is surrounded by six equidistant
oxygen ions. In this octahedral crystal Geld the ground
state is an orbital triplet (I's). This triplet which is
fivefold spin degenerate splits into a number of levels

by spin-orbit interaction of which a triplet is the lowest.
As shown in (I), this triplet gives rise to a first order
Zeeman splitting in an external magnetic 6eld. Transi-
tions among these levels are permitted. Since the other
levels are fairly close it is expected that the spin-lattice
relaxation time will be short. Indeed it proved necessary
to cool the crystal to liquid helium temperature in
order to detect any resonance. At O'K only thelowest
triplet is populated to a significant degree. (The next
level is removed by about B 150—200 cm ' or 200—
280'K.) One will not expect, therefore, to observe.
resonance from the higher levels.


