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Papapetrou and Treder, '4 who found that they are
allowed on null hypersurfaces if, and only if, the
discontinuities of g, , can be written as

(72)

where the b „are subject to

so that (73) is always satisfied. However, it follows
from (29) and (74) that such discontinuities are not
real, in the sense that they can be transformed away by
a suitable choice of the coordinates. ""

On the other hand, in the case of transverse waves,
one has

(75)
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In the case of longitudinal waves, one has

so that (73) reduces to
(73')

gtn74b —Q (76)

b „= 2jf'j—L„L„, (74)

"A. Papapetrou and H. Treder, Math. Nachr. 20, 53 (1959);
Ann. Physik (7) 3, 360 (1959).

which means that the discontinuities of the first de-
rivatives of g „have to be such that the 6rst derivative
of g= 8'—AC remains continuous.
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Initial conditions for the source-free Einstein equations are exhibited which represent, in a singularity-free
manner on a manifold with the topology of Wheeler's "wormhole, " two neutral objects of equal positive
masses instantaneously at rest.

~

~T the time Wheeler erst showed' that classical
objects (geons) behaving like massive particles

could be constructed theoretically from gravitational
and electromagnetic fields, he suggested that charged
particles could also be constructed from these 6elds.
The existence of charged particles in the Einstein-
Maxwell theory, vrith the charge-current density every-
where zero, requires a departure from Euclidean
topology. One example of a suitable topology, the
"wormhole, " is shown in Fig. 1. It has been shown' that

Fin. 1. A coordinate plane (+=0, e.) through the symmetry
axis of the "wormhole" metric is sketched here imbedded in a
fictitious 3-space to show the topology and curvature. At large
distances all the coordinate lines, p, =const and 8=const, are
arcs of circles.
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solutions of the Einstein-Maxwell equations actually
exist which can be interpreted (in a classical ideali-
zation) as spaces containing charged, massive, particles;
these examples have topologies somewhat different
from the wormhole. In this note we shall show that a
solution of the Einstein equations exists having the
form shown in Fig. 1. The solution given here refers to
the special case of a wormhole free of electromagnetic
field, and therefore, the two ends or "mouths" of the
wormhole behave as neutral concentrations of mass
energy.

Rather than attempt to solve the entire set of
Einstein equa, tions in the wormhole topology we
restrict ourselves to the initial value equations, '
R„'——,'8„'E=O, on one fixed hypersurface t=O. These
equations (analogous to V' K=0= V H in electro-
magnetism) and free of second time derivatives and,
therefore, impose restrictions on the initial values to be
specified for g„„and Bg„„(r)t (The rema. ining Einstein
equations serve to determine the second time deriva-
tives. ) Choosing for simplicity a time symmetric
problem' where, initially, Bg„„(8t=0 and g»

———5„', these
equations reduce to the single condition

'E=O,

where 'E is the curvature scalar for the three-
dimensional metric g;; of this initial surface. Corre-

s Dieter R. Brill, Ann. Phys. 7, 466 (1959).



WORMHOLE INITIAL CONDITIONS

&sw $ dsD ~ (4)

It is required of P that it be periodic in p with period 2s.,
that as p, and 0 approach 0,

g'~(cosh@ —cos8) '~4(li'+8') ' (5)

and that dss'satisfy Eq. (1),which in this casebecomes'
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One solution of Eq. (6) immediately follows from the
circumstance that dsp' satisfies Eq. (1). From this
solution the desired periodic solution is formed by
addition:

Lcosh(ii+20@a) —cos8] i. (7)

Here a slight generalization has been made by assuming
that p has period 2ps (instead of 2s.). The constant ps
allows for diferent ratios of mass to separation distance
for the two "mouths. " The absolute mass may be
changed by any (positive) factor by multiplying ps by
this factor. The total energy or mass of the wormhole
metric (4) using d from Eq. (7) is found by comparison
of its asymptotic form as (p'+8') —+ 0 with that of the
Schwarzschild metric written in bispherical coordinates:

dss'-$1+m(li'18')i]L4/(li'+8')s]dsg)' (8)
4 Y. Foures-Bruhat, Acta Math. 88, 141 (19S2).
~We use the convention that Latin indices refer to space,

Greek to space-time, and take units so that y=c= 1, where y is the
Newtonian gravitational constant.

sponding to any 3-metric g,; satisfying (1), there is' a
solution of the Einstein equations for which the metric
at t=O reduces tos ds'= dt—'+g;, dx'dx& and satisfies
then Bg„„/Bt=O; this solution is free from singularities
for at least some finite time. We will obtain a wormhole
solution of Eq. (1) by modifying the metric

dgDs = nr4is+ (d8s+ sjns8d ys) —s (p (s (2)

which represents a 3-dimensional doughnut D=S')&S'
whose cross section (p= const) is a sphere. Part of this
doughnut, near p= m =——m, will become the tube
connecting the wormhole mouths in Fig. 1. The anti-
podal part, near p =0—=2x, must be ruptured and spread
out to form the asymptotically Bat space at infinity.
The asymptotic form required here may be found from
the metric of Qat space in bispherical coordinates,

dsi ' = (cosh@—cos8) dso (3)

We limit attention to those wormhole metrics which
may be written in the form

In this way one finds

mr,,i=4 Q (sinhnps) '.

As a measure of the separation of the two "mouths"
we may take the length L of the shortest closed loop
through the wormhole

(10)

This integral may be evaluated by noticing that
g(li, 8=s.) is an elliptic function. The result is

L= (4/s)EL(1 —k') l]Z(k) (11)

where E, 8 are complete elliptic integrals of the 6rst
and second kind, respectively, and the modulus k is
Axed by the requirement that

p, =~x(k)/Z&(1 —P)1]. (12)

The possibilities for obtaining information about the
time development of this "wormhole" metric by using
an electronic computer are being investigated by R. W.
Lindquist.

The present metric, plus its time development,
describe a two-body problem in terms of the geometro-
dynamics of curved empty space. Because of the
symmetry of the metric under the transformation

p —+ —p, these two bodies are identical in every respect.
Although they are initially at rest, the solution of the
Einstein equations will show at later times Bg„„/Bt/0,
corresponding to a motion of these bodies as well as
the generation of gravitational waves due to their
motion. From the work of Einstein, Infeld, and HoGman
we know that this motion is to lowest order just the
Newtonian attraction of two equal masses. Because
of the similarity of the wormhole tube (p~0) to the
"neck" in the Schwarzschild solution, ' we expect a
singularity to develop here in a finite time T; in case the
mouths are well separated (ps»1) we would have
T m&, &. The gravitational 6eld at time t=0 may be
considered as entirely- due to the bodies and containing
no gravitational waves in addition, just as we wouM
say that an electric field E= —grad (ri '+rs ') con-
tained no waves even though the charges were acceler-
ated at 1=0.For, with an appropriate choice of canoni-
cal variables for the gravitational 6eld, it can be shown~

that on a surface 1=0 where Bg;,/Bt=0 and gs„= —8„'
the condition that g,; be conformally Qat is equivalent
to the vanishing of all the gravitational canonical
variables. (In the electromagnetic example above, the
transverse parts of A and E, which are canonical
variables in electromagnetism, both vanish. )

s M. D. Kruskal, (to be published).
r R. Arnowitt, S. Deser, and C. W. Misner (to be published);

see also, Phys. Rev. Letters 4, 375 (1960).


