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The general behavior of the current is consistent with
a model of tunneling of carriers through the reversed
biased barrier. Such a barrier becomes broadened, but
sharply peaked. Again, it is required that the barriers
be of diGerent height in order to explain the diGerence
in behavior with difFerence in sign of voltage.

It is to be noted. in comparing Figs. 6 and 7 that for
values of dc bias for which the equilibrium value of e

coincides with the theoretical value in Fig. 7, the
equilibrium value is reached instantaneously as shown
in Fig. 6. Where experimental points in Fig. 7 fall below
theoretical values, there is an observable delay between
application of electric field and 6nal value of capaci-
tance taken from Fig. 6. This corresponds to the fact
that time is required for space-charge layers to build up.
Initially (in time) after application of the electric Geld,
the normal dielectric constant is observed. As the space-
charge layer broadens, the observed capacitance (or
apparent e) decreases.

VI. CONCLUSION

Unraveling the assorted anomalous effects that have
been reported in BaTi03 which have been attributed to

some form of surface layer has not led to any consistent
picture of the layer except in the most qualitative terms.
The results reported here are representative of measure-
ments made on a number of crystals in which evidence
of space-charge layers whose thickness is voltage de-
pendent may be seen. The detailed quantitative in-
terpretation of results is hampered by complicated
electric Geld distributions and our general ignorance of
BaTi03 surfaces. On the other hand, the observations
indicate that further work in which impurity concen-
trations and dielectric constant are varied (the latter
by varying temperature) as well as thickness of samples
would be worthwhile in trying to understand details of
surface layers and 6elds in insulators and BaTiO3 in
particular.

It is felt that measurements of this kind will shed
light on the general problem of mapping of space-
charge regions in insulators. It is clear that experiments
that actually probe such regions are difficult to imagine
on the general insulating material. The special property
that makes a ferroelectric amenable to such probing is
the sensitivity it exhibits to reasonably attainable fields

in its Kerr eGect and dielectric constant.
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A system of E electrons in the presence of a rigid periodic background of positive charge is considered.
Following Martin and Schwinger, an inverse dielectric operator, X', is introduced. An approximate equation
which takes into account the long-range nature of the Coulomb Geld is derived for X . A representation
is used where X' is a matrix with rows and columns labeled by vectors of the reciprocal lattice. Poles and
zeros in the dielectric operator are found to be manifestations of Bragg's law. Assuming these to be the
major effect of the lattice, the equation for X is solved. The result is examined in the weak-binding limit
and seen here, except at the Bragg reflections, to agree with that of Nozieres and Pines. Finally the ground-
state energy of the system is exhibited.

INTRODUCTION

GOOD deal of attention has been devoted lately
to the properties of a gas of interacting electrons

in the presence of a uniform background of positive
charge. Much of the interest in this system stems from
the hope that it will, for some applications, be a good
model for the electrons in a solid. Now in a solid, of
course, the positive charge is not uniformly distributed
but rather concentrated on ions which vibrate about
equilibrium positions that form a lattice structure
containing various kinds of defects. The existence of

*The work reported in this paper was performed at Lincoln
Laboratory, a center for research operated by Massachusetts
Institute of Technology with the joint support of the U. S.
Army, Navy, and Air Force.

t Now at the University of Washington, Seattle, Washington.

the lattice as well as the defects in it and the vibrations
about it may be expected to have some eGect on the
dielectric properties of the electron gas. It is the
purpose of this paper to investigate the eGect of the
lattice, ignoring defects and vibrations, in order to see
where the free electron gas results are valid and where
and how they must be modified because of the presence
of the lattice. To this end the inverse dielectric operator
of Martin and Schwinger will be considered here and
techniques suited to the weak but long-ranged nature
of the Coulomb 6eld will be used to derive an approxi-
mate equation for it. This equation will be solved and
the eGect of the lattice on this operator and hence on,
say, the ground-state energy of the system, will be
seen.

Consider a system of volume 0 containing Ã electrons
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imbedded in a rigid periodic background of positively
charged ions which we shall describe by the potential
Vz(r). The spatial structure of the positive lattice
may be described by means of a set of E lattice vectors,
typiled by R, which go from one (arbitrarily chosen)
ion to each of the others. In terms of these vectors the
periodicity is expressed by

Vz(r) = Vz(r+R).

An electron at (r,t) has a direct interaction with one
at (r', t') described by

2

z(x—x') =a(r —r')3(t —t') = 5(t—t').
(2)

We then describe the system by a Hamiltonian

H = dr ft (r, t)f(—fPVs/2m)+ Vz (r)ff(r, t)

where the operators P(r, t), ff(r, t) obey the anticom-
mutation relations

where yg is the mass of the electron. The Hartree
potential is given by

V (r) = u(r —r')p(r')dr', (6)

where p is the density of electrons,

1 rp dk
p(r) =—Z

' 4-*(k,r)4-(k, r).
Q n(m 8 s (2z-)

and the notation on the integral is intended to convey
that we sum over only those levels below the Fermi
level (at band m, momentum P), i.e., only over occupied
levels.

{lt(r,t), lt (r', t)) =O= 8t(r, t), pt(r', t)).

We want to determine the eGect of the detailed
electron-electron interaction on the energy of a degen-

erate electron gas at zero temperature. We calculate
this energy change as a perturbation on the energy of a
system of E electrons subject to the same average
Hartree potential and occupying the lowest E single-

particle levels. The highest Glled level is called the
Fermi level. The eigenfunctions and eigenvalues of
the Hartree problem are assumed to be known and
to satisfy

(—(O'V'j2m)+ Vz(r)+ Vzz(r)pit „(k,r)
=Z„(k)lt „(k,r), (5)

Using the techniques for the many-electron system
developed by Martin and Schwinger, ' we should like
to calculate the effects of the electron-electron interac-
tion on the energy, that is, we want the exchange and
correlation energies. This problem has been considered
in detail for the free electron gas' i.e., a uniform back-
ground of positive charge. It will be our purpose here
to see how the presence of the periodic potential, Vz(r),
sects the usual result.

It is worth noting that while the presence of Vz(r) in
general tends to complicate things, it may in some
cases simplify the interpretation. Thus consider the Ã
electrons to consist of E—T electrons Glling the atomic
core and valence levels of an insulator or semiconductor
and one electron with momentum k in the conduction
band which is separated from the valence band by an
energy gap of width E,.' In this case there will be real
energies for excited states (kQO) provided the excitation
energy is less than E,. In the free electron gas, for any
excitation energy, E„one can always construct states
with the same momentum but smaller excitation energy
by distributing the energy and momentum over more
than the one electron. Thus any single-particle excita-
tion will have a finite decay time, or, crudely, a complex
energy. With the energy gap, however, for E,(E„one
may unambigously consider the excitation as a one-
particle excitation as there are no multiparticle states
to which it can decay.

THE APPROXIMATE EQUATION

In an electron gas, where the interactions are weak
but long ranged, divergences occur when calculations
are performed by standard perturbation theory. It is
well known, however, that these divergences, due to
the range of the Coulomb Geld, are cancelled by
polarization effects4; that is, a charge placed in the
medium has its Geld altered by the medium which
tends to shield the charge. Equivalently, if an external
potential, U(x), is applied to the medium, an effective

potential, V'(x), consisting of the external potential
together with the induced change in potential produced

by the medium, will be experienced in the medium.
Let us therefore consider the operator X'(x,x')

' P. C. Martin and J. Schwinger, Phys. Rev. 115, 1342 (1959)' E.g., J. Lindhard, Kgl. Danske Videnskab. Selskab, Mat. -fys.
Medd. 28, No. 8 (1954); D. Pines, Solid-State Physics, edited by
F. Seitz and D. Turnbull (Academic Press, Inc. , New York, 1955),
Vol. 1; J. Hubbard, Proc. Roy. Soc. (London) A243, 336 (1958);
P. Nozihres and D. Pines, Phys. Rev. 109, 762 (1958).' It will be noted that this case is not exactly the degenerate gas
since there will be unoccupied levels in the conduction band
below the level with momentum k. However, the theory of this
paper may still be used provided that these levels are included in
the class of unoccupied levels in the sum over levels, and that the
level with momentum k is considered as occupied. Thus, in the
sum over levels there will be an integral over the valence band
plus the contribution from the lone occupied conduction band
level, whatever it might be.

4M. Gell-Mann and K. A. Brueckner, Phys. Rev. 106, 364
(1957).
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which relates U(x') and U'(x):

V'(x) = X'(x,x') U(x')dx'.

where G(x,x') is the Green's function which describes
the propagation of an electron (or hole) through the
medium from x' to x and satisfies

(g)

To recognize X', assume that the potential U is set up
by a charge distribution p. Then the Fourier transform
in space and time of U is given by

8 O'V~ f
i +— —Vr (r) V—' (x) i—

)
dx"dx"'

Bf 281

X t) (x—x")X'(x"',x")5/5V'(x'") G(x,x')

U(k &u) = (4)r/k') p(k, a)). (9) =&(x—x'). (15)

If we, for the moment, specialize to the case of spatial
(as well as temporal) translational invariance, we may
write the Fourier transform of (8) as

The Hartree approximation consists of neglecting the
last term in (15), from which it easily follows that

bGrr(x, x')/bV'(x") = GIr(x, x")Gir(x",x'). (16)
(10)

If we then insert (16) into (14) as a first approximation,
we arrive at

V'(k, e)) = X'(k,e)) (4m/k') p (k,a)) .

Now, classically the potential, p, at large distances from
a static-charge distribution, p, in a dielectric medium
is given by X'(x,x') =5 (x—x') —(i/ir) dx "dx"' t) (x—x")

9)(k) = (4x./ek')p(k),
XGJI(x",x"')Grr(x"', x")X'(x'",x'). (17)

Xe—i&/)))iraqi&)i& —&') $) f~ (jg)

where e is the dielectric constant. Equation (11) is

3ust the Fourier transform of Poisson s equation in a The Hartree Green's function is given by"
dielectric. We may generalize (11) to include small
distances and temporally varying charge distributions 1 I'" dk

by letting e depend on space and time, so that its Grr( l ) ~
I

tl'~ (k )~~( )
Q n)m Jp

Fourier transform depends on momentum and fre-

quency. ' Then we have

V'(k, &v) = $4~/e(k, a))k']p(k), (12)

Thus X' tells us the dielectric properties of the medium.
It is more useful than e in that it also allows the
calculation of the inelastic scattering of fast charged
particles by thin solid foils~ and of the ground-state
energy of the medium. ' Further, it may be used to
develop single-particle equations to improve the results
of the Hartree equation in band-structure calculations. '

Martin and Schwinger' have shown that X' satis6es

X'(x,x') =8 (x—x') —(i/lr) dx "dx'" t) (x—x")

Comparison of (10) and (12) shows X' to be the
inverse of e. Even without translational invariance, if
we consider both X' and e as operators, ' we may write

dk1
y„*(k,r)P„(k,r')

& e(m as (2~)'

)(g
—(i/g) En(k) (t—&')

P„(k,r) =e'"'u (k, r),

where the N„are periodic

u„(k,r+ R) =n„(k,r).

(19)

(20)

We may therefore expand the I„in a Fourier series

N„(k,r) =+K)c„(k,K)e—'K' (21)

SOLUTION OF THE EQUM'ION

Let us introduce some alternative forms of the
Hartree wave functions P (k, r). As both Vr(r) and
Urr(r) have the periodicity of the lattice, we may
write the f in Bloch form:

(22)

where the reciprocal lattice vectors K are defined by

~V'(x'")
5 J. Lindhard, reference 2; P. Nozieres and D. Pines, reference

2; J. J. Quinn and R. A. Ferrell, Phys. Rev. 112, 812 (1959).' U. Pano, Phys. Rev. 103, 1202 (1956).
7 P. Nozieres and D. Pines, Phys. Rev. 113, 1254 (1959).' J. Hubbard, reference 2.
' G. W. Pratt, Jr. ito be published).

Some properties of the chosen wave functions and

'0P. C. Martin and J. Schwinger, reference 1; J. Hubbard,
reference 2; J. J. Quinn and R. A. Ferrell, reference 5; A. Klein
and R. Prange, Phys. Rev. 112, 994 (19585.
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energies are

P x„*(k,K)x„(k,K') =b„x,,
Px x.*(k,K)x„.(1,K) =S„„,,
x„(k—K, K') =g„(k, K'+K),

,„*(k,K)=„.(-k, -K),

Hence, for k—k' —K -+ 0 it is easily seen that

(36)

P. '""'(K)~~...[1+(k—k —K) y(k)]+(1 ~„„,)
(24)

(ik'/~) (k—1'—K) P K'~„*(k,K')~„,(k,K )
(25) KI

X
(26) E„(k)—E„(k)

E.(k) =E (—k) =E„(k+K).
We may expand X' as

(27) where f(k) is a function of k, the y„'s and Q„'s. From
(36), (32), (30), (27), and (24) it follows that for k ~ K

t dk do~

X'(rt, r't')=Q —e*' 'e '" &'—"&e-
(2m)' 2~

XX'(k, K; o)). (28)

Then inserting (28) and (18) in (17) and performing
the integrations in analogy with the free electron case, '
we obtain

x'(k, K; co)+ P a(k —K', K—K';(o)
K'

XX'(k, K', a)) =bx, o, (29)

A ) jan)

(k —K) 16«2
ZZ

(k —K(2

X (1/aP) (ik'/m) P K"x„.*(k',K")x„(k',K")

X(1—~...) P x.*(l'—K', K'")
XIII

Xx (k —K, K"')+[terms finite for k= K]. (37)
where

n(k —K', K—K'; ~)

p' dk'

X ~ ~'&~~a (2m)'

[p„(k—k') —E'„.(k')]

Xv(k K)Pk', k' —k (K)Pk', k' —k (K )

where g~0+,
(30)

Since the summation over K"' in (37) yields p„„ for
K'=K, we see that u(k —K', K—K';co), and hence
(k—K', K—K'; ), has a simple pole for k= K&K'.

For k~ K' everything is of the same form except for
the factor of

~
k —K

~

' in the denominator arising from
r (k—K). Hence we see that e(k —K', K—K'; &o) has a
simple zero for k= K'& K.

To understand these poles and zeros let us consider
an electromagnetic wave (e.g. , an x-ray beam) in a
vacuum impinging on the surface of a dielectric medium.
The reQection coeKcient, R, (the ratio of reflected to
incident intensities) is given as"

and
&(k—K) =4 e/~l —K~', (31)

„,,"- (K)= P &.*(k, K+K')x. (k', K') (32)

1f we expand e in a manner analogous to (28), we

may write (13) as

P e(k —K', K—K'; (u)X'(k, K', ~) =&x,o. (33)

R= [(el—1)/(e&+ 1)]'. (38)

Thus, for a=0 and e=- ~ we have 8=1, i.e., the
reQected intensity equals the incident intensity; there
is total reQection at the zeros and poles of e. Evidently
we may understand these zeros and poles to be simply
manifestations of Bragg's law.

Explicitly exhibiting the zeros and poles, we may
write

Comparison with (29) then shows

~(k,K; (o) =bx, o+cr(k, K; ~). (34)

From (5) and the definitions at the beginning of
this section one may easily derive an equation for
Pk, k.""'(K):

A )

]
k—K'/

P(k —K', K—K'; ~), (39)
[k—K[

where p(k —K', K—K'; &v) is finite and non zero for
k= K' and k= K. We may reasonably expect that these
poles and zeros constitute the major effect of the
lattice and that to a good approximation we may
neglect the K' dependence of P in (39). Then (29)

{(5'/2m) [(k'+ K)' —k']
—[E„.(k') —Z„(k)])p„„""'(K)

=Z(jP/m) (k—k' —K) P K'x„*(k,K')
1~ E.g., J. A. Stratton, Electromagnetic Theory (McGraw-Hill

Xx„,(k~+K, K~). (35) Hook Company, Inc. , New York, 1941).
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becomes

P(k, K; or)
x(kK )+ p ~1

—K'~x'(k, K', )
Jk —K)

=Bx,p, (40)

which has the solution

-1+ P P(k, K'; or)

x'(k, K; or) =bx, p

1++P(k, K'; or)

i k~ p(k, K; ~)—(1—bx, p) (41)
Ik —Kl 1++P(k, K'; or)

K'

as may be veri6ed by direct substitution.
Let us discuss this result in the weak. -binding limit.

Here the electrons are almost a free electron gas and
we may expect the contributions from K'QO in the
summations to be small (since for free electrons these
contributions are zero, only the K=O term contribut-
ing). Then we may write

where

p(r)v(r —r')p(r')drdr'+ h, (43)

&e2 d'g2

dh5(~) lim [x'(~,~') —S(x—~')j. (44)2J, C'-+S

Using (28) we have

i' r
"de' ~ dk dor—[X'(k,0; or) —1j, (45)

2 p e' & (2m.)' 2rr

iI'i
r
" de' I. dk dor r(i(k,0 or)

h = — D~ — — . (46)
2 "p e' ~ (2rr)'2rr 1++P(k, K;or)

THE ENERGY

Hubbard' has related the ground-state energy of the
system to X'~:

dk dk 4rre'
E„(k)—-', X

~(m J p (2rv)' ~ (2rr)' k'

x'(k, K; or) =px, p

1+P(k,O; or)

Noting that P e', we may perform the e' integration
and obtain 6nally

The first term (42) is ]ust of the form of the free electron
gas result' [note: P (k,0; or) =n(k, 0; or) j, while the
second term is small with respect to the first except at
the Bragg reflection. For ik~((~ K

~

the second term is
negligible, a result conjectured by Nozieres and Pines.
Thus in the weak-binding approximation the form of
X' is essentially that of the free electron gas result
except at the Bragg reflection. In general, even away
from Bragg reflections, the form of X' is modified
somewhat by the lattice.

It should be noted that in obtaining (41) the only
details of the form of e that have been used are the
nature and positions of the poles and zeros. Since we
have seen these to be simply manifestations of the
Bragg reflections, they must be a generally valid
property of p, not at all restricted to the use of (16).
Thus the result (41) should be valid no matter what
approximation is taken for 8G/8V' in (14).

a rather simple generalization of the free electron gas
result.
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"The transition to Hubbard's notation is simply made noting:
F (x,x') =X'(x,x') —b (x—x'),

'U (x,x') =1X'(x,x")v(x"—x')dx".

ski p(kK; ~) h ih r dk dor P(k,0;or)—(1—Sx,p) (42)
~k —K~ 1+/(k, O; or) 0 2 & (2rr)'2rv Q P(k, K; or)

&(in[1++ P(k, K; or)], (47)


