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electron being removed. A graph of P would show
breaks in its curves between the d' —+ d' and d'" —& d4

transitions. The graph would also show that most of the
P's are negative (i.e. , DE,b, (DE,e, .t«t,»). The
exceptions occur for the high-lying point cases of
Fig. 5. Inspection of Table IX shows that the one case
of an apparently small average of configuration
AE,„,,~„t,„„is for a high-lying point transition (V
IV —+ V). The fact that the $'s and P's are generally
out of line for the same transitions suggests that
experimental rather than computational errors are the
cause. The writer reran the pertinent H-F calculations
as a check. No errors were uncovered.

VII. CONCLUSION

We have seen that the Hartree-Fock results are
generally in poor agreement with experiment. While
the total energies are accurate to better than one
percent, the observables we are trying to predict by
taking total energy differences are even smaller
and thus poorly predicted. The calculated F~ (3d,3d)

integrals poorly predict the multiplet spectra. This is
in large part due to the inadequacies of the Hartree-
Fock formalism and to a lesser part due to the assump-
tion of common radial functions for all the multiplet
states of a configuration. The lower state one-electron
energies are found to be in very good agreement with
ionization energies. This is due to a remarkable cancella-
tion of errors. Finally we have the unsurprising behavior
of the 3d electron "correlation" energy with its sudden
increase for more than half 611ed shells.
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An expression is obtained for the range-energy relation R(T„) for protons (T~=proton kinetic energy)
as a function of the mean excitation potential I which enters into the Bethe-Bloch formula for the ionization
loss dE/dx. The expression for R(T„l is obtained by an interpolation of the previously calculated range-

energy relations for Be, Al, Cu, and Pb. The resulting expression for R(T„) can be used for any substance,
provided an appropriate value of I is assumed. Values are also obtained for the quantity q = (I/R) (dR/dI)
which gives the fractional change of R for a small variation of the excitation potential I.

I. INTRODUCTION

ANGE-ENERGY relations for protons' have been
recently calculated for six substances (Be, C, Al,

Cu, Pb, and air). These range-energy relations are
based on values of the ionization loss dE/dx which
include the shell corrections at low proton energies and
the density effect correction which becomes important
in the high-energy region. The values of dE//dh depend
mainly on the value of the mean excitation potential I
of the atoms of the substance considered. The following
values of I were used in the previous calculations:
IB,——64 ev, I~=78 ev, I~i——166 ev, I~„=371 ev,
Ipb = 1070 ev, and I„,= 94 ev.

In the present paper, we will obtain an expression
which gives the range R(T„) for an arbitrary value of

*This work was performed under the auspices of the U. S.
Atomic Energy Commission.

' R. M. Sternheimer, Phys. Rev. 115, 137 (1959). This paper
will be referred to as I.

I, as a function of the proton kinetic energy T~, and
which can therefore be used to obtain the range-energy
relation for any substance, if an appropriate value of I
is assumed. The general expression for R (T~) is obtained

by an interpolation of the previous results' for Be, Al,
Cu, and Pb. It is estimated that the resulting range-

energy relation is accurate to & 1'P~ for values of I lying
in the range from I~,= 64 ev to Ipb= 1070 ev.

n. EXIRESSION FOR Z(r„)
In order to obtain the interpolation formula for

R(T~), we note that the Bethe-Bloch formula for
dE/dx can be written as follows:

1 dE Z 1V(P)=—M(P) ln. ——2P' —6—U,
pdS 3 I

where p is the density of the medium (in g/cm'), A is

the atomic weight, M(P) and!V(P) are functions of the
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velocity @=Pc only. If —(1/p) (dE/dx) is expressed in
units Mev/g cm ', M (p) is given by

G can be expressed as a power series in x '.

G = 1+Gix+G2x'+Gsx'+ (10)

1V(P) is given by

M (P) =0.1536/P'. (2)

S(P)= 2m''W, „,„/(1—P'), (3)

where R(2 Mev) must be obtained from experiment, '
in view of the fact that. the Bethe-Bloch formula
becomes inapplicable for T„&2 Mev, on account of
the possibility of electron capture by the incident
proton.

If one assumes that the effect of the terms b and U is
a function of I only, the integral of Eq. (5) can be
written as follows:

dTT,

(Z/A)P(P, lnI)
(6)

where P is a, function of P and lnI only.
In view of Eqs. (5) and (6), we define the function

4 (T,) as follows:

4 (T„)== (2Z/A) [R(T,) —R(2 Mev)]. (7)

Except for the eRect of the terms 8 and U, C (T„) is a
function only of T„and lnI. Ke now define a function
G as follows:

(8)G(T.)=C'(Tn, I)/C'~t(T. ),

where 4 (T„,I) pertains to an arbitrary I, while C gt(T„)
is the function C for Al. C ~i can be obtained from the
table of R(T„)for Al, as given in I, which was calculated
for Ihi=166 ev. Values of 4 Ai are given in Table I of
the present paper.

In the approximation that the effect of the terms 8

and U is a function of I only, G(T„) will be a, function
only of x defined as:

x—= logio(I/I~i) = logio(I/166 ev).

~ H. Bichsel, R. F. Mozley, and W. A. Aron, Phys. Rev. 105,
1788 (1957). See also S. K. Allison and S. D. Marshal, Revs.
Modern Phys. 25, 779 (1953).

where m is the electron mass, and 5,„is the maximum
energy transfer from the incident proton to an atomic
electron. For energies T„«(m„'/2m)c', where m„
=proton mass, 5" is given by

(4)

In Eq. (1), 5 is the correction for the density effect due
to the polarization of the medium, and U is the shell
correction term. Aside from the terms 8 and U, the
square bracket of (1) is a function only of P and lnI.

The range R(T~ i) as obtained in I, is calculated from
the following expression

dTp
R(T„,i) =R(2 Mev)+ (5)

, ,—(1/p) (dz/dh)

where G», G2, and G3 are functions of T„only. Of course,
for x=0 (I=I~i 166——ev), we have G=1.

It was found that sufFieient accuracy (& 1%) can be
obtained by using four terms in the expansion of G, i.e.,
all terms up to G3x'. The values of G», G2, and G3 were
determined by 6tting the values of 4 for Be, Cu, and
Pb, as obtained from the range tables of I. The corre-
sponding values of x for Ip, =64 ev, I~„——371 ev, and
Ipb = 1070 ev are —0.4140, 0.3493, and 0.8093,
respectively.

The resulting values of G, are given in Table I,
together with the function 4~i. As expected, the values
of the G; vary smoothly with the energy T„.In view of
Eqs. (7), (8), and (10), the range R(T„,I) for an
arbitrary value of I is given by

R(T„,I)=R(2 Mev, I)+ (2/2Z)C'pt(T„)
X (1+G,x+G x'+G,x'), (»)

where R(2 It~lev, I) is the range for T„=2 Mev. R(2
Mev) must be obtained empirically, from the data of
Bichsel et al. ,

' as was done in I. Its value ranges from
-0.01 g/cm' for light elements (Be, C, Al) to 0.04
g/cm' for heavy elements (Pb).

The values of Table I extend up to TED=100 Bev.
As was pointed out in reference 1, the proton range
R(T„) is a purely mathematical quantity above -1
Bev, since nuclear interactions will attenuate a proton
beam to a negligible intensity for distances greater than

R(1 Bev), which corresponds to 4 mean free
paths. The part of the table for T~=1—100 Bev was
calculated mainly because of its applicability to p,

mesons (of energies -0.1—10 Bev) Lsee Eq. (14) of I].
The a,ccuracy of Eq. (10) for G was cheeked by

calculating G for carbon (I=78 ev, x= —0.3280), and
comparing it with the value of G as obtained directly
from the range table for C given in I. The agreement was
to within 0.5% throughout the energy range from
T„=10 Mev to 100 Bev. The expression for R(T„)
has also been checked by comparing it with the pre-
viously calculated range-energy relation for air' (I=94
ev, x= —0.2470), and with the range-energy relation
of Barkas' for nuclear emulsion (I=331 ev, x=0.2997).
For air, the agreement for Ris to within 1%. for T„
between 10 Mev and 1 Bev. For T~& 1 Bev, the
density effect correction for dL~'/dx increases R(T„) for
soHd materials (Be, Al, Cu, Pb) by several percent, so
that the interpolation formula LEq. (11)] cannot be
used for gases. For emulsion, the present expression for
R agrees with the results of Barkas' to within 1% for
T„between 10 Mev and 10 Bev.

In order to obtain an additional check on the accuracy
of Eq. (11),we have calculated a range-energy relation
for a value of I= 659 ev, giving y=0.5988. This value

' W. H. Barkas, Nuovo cimento 8, 201 (1958).
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TAsLK I. Values of the functions G&, Gs, Gz, and Cx& which enter into the expression for the proton range-energy relation [Eq. (11)g.

T„(Mev)

3
4
5
6
7
8
9

10
12
14
16
18
20
22.5
25
27.5
30
35
40
45
50
55
60
65
70
75
80
90

100
110
120
130
140
150
160
180
200
225
250
275
300
325
350

G1

0.634
0.595
0,570
0.551
0.537
0.525
0.515
0.507
0.493
0,481
0.472
0.464
0.457
0.449
0.442
0.436
0.430
0.420
0.412
0.404
0,397
0.391
0.385
0.380
0.376
0.372
0.368
0.361
0.356
0.350
0.345
0.341
0.338
0.334
0.331
0.326
0.321
0.316
0.311
0.307
0.303
0.300
0.297

G2

0,450
0.379
0.336
0.307
0.285
0.269
0.257
0.247
0.229
0.218
0.211
0.204
0.198
0.193
0.188
0.183
0.180
0.173
0.166
0.161
0.157
0.152
0.148
0.144
0.141
0.138
0.136
0.131
0.127
0.123
0.120
0.117
0.114
0.112
O. i io
0.106
0.102
0.098
0.095
0.092
0.090
0.088
0.086

0.495
0.468
0.436
0.404
0.378
0.353
0.330
0.309
0.278
0.250
0.225
0,205
0.189
0.172
0.158
0.146
0.136
0.120
0.109
0.100
0.093
0.088
0,084
0.081
0.078
0.076
0.074
0.071
0.068
0.066
0.065
0.064
0,063
0.061
0.060
0.058
0,057
0.057
0.057
0.057
0.057
0.056
0.055

Cpi (g/cm')

0.01016
0.02313
0.03871
0.05681
0.07734
0.1002
0.1254
0.1528
0.2142
0.2841
0.3622
0.4484
0.5424
0.6708
0.8108
0.9625
1.1253
1.4839
1.8855
2.328
2.811
3.333
3.894
4.491
5.124
5.793
6.496
8.003
9.639

11.400
13.280
15.276
17.381
19,593
21,91
26.83
32.13
39.24
46.85
54.92
63.41
72.30
81.56

T„(Mev)

375
400
450
500
550
600
700
800
900

1000
1250
1500
1750
2000
2250
2500
2750
3000
3500
4000
4500
5000
6000
7000
8000
9000

10 000
12 500
15 000
17 500
20 000
22 500
25 000
27 500
30 000
40 000
50 000
60 000
70 000
80 000
90 000

100 000

G1

0.295
0.293
0.288
0.285
0.282
0.279
0.273
0.268
0.264
0.259
0.251
0.243
0.236
0.231
0.226
0.222
0.218
0.215
0.209
0.205
0.200
0.197
0.190
0.185
0.181
0.177
0.174
0.168
0.163
0.158
0.155
0.152
0.149
0.147
0.145
0.139
0.134
0.131
0.128
0.126
0.124
0.122

0.085
0.083
0.081
0.080
0.079
0.078
0.077
0,075
0.074
0.073
0.071
0.068
0.066
0.064
0.063
0.062
0.061
0.060
0.058
0.057
0.056
0.056
0.055
0.054
0.054
0.053
0.053
0.054
0.054
0.054
0.055
0.056
0.056
0.057
0.057
0.060
0.062
0.064
0.065
0.066
0.067
0.069

0.055
0.054
0.053
0.051
0.049
0.047
0.045
0.044
0.042
0.041
0.040
0.039
0.038
0.037
0.035
0.033
0.030
0.029
0.024
0.020
0.017
0.013
0.007
0.002—0.002—0.007—0.011—0.019—0.026—0.032—0.037—0.042—0.046—0.050—0.054—0.065

—0.074
—0,082
—0.088
—0.093
—0.097
—0.10i

Csi (g/cm')

91.16
101.09
121,80
143.54
166.19
189.65
238.6
289.8
342.8
397.2
537.6
682.2
829.4
977.9

1127.1
1276.6
1426.1
1575.5
1873.1
2169
2463
2754
3331
3900
4463
501.9
5569
6924
8255
9564

10 857
12 135
13 400
14 655
15 900
20 797
25 594
30 316
34 978
39 589
44 158
48 691

of I was chosen partly because the corresponding x
lies approximately in the middle of the ra,nge from
X~„——0.3493 to Xpb ——0.8093, and therefore the devia-
t.ions of Eq. (11) from the actual calculated R are
expected to be largest there. For all values of T„, the
ratio $ of the value of G obtained from Eq. (10) to
the actual G as determined from the calculated range
was between 0.996 and 1.009. Typical values of $ and
the corresponding values of G are as follows: at 5 Mev:
)=0 9963,G= 1.5611;at 10 Mev: )=0.9979, G= 1.4615;
at 1 Bev: /=0. 9982, G= 1.1922; at 10 Bev: $= 1.0025,
G= 1.1180; at 100 Bev: $= 1.0090, G= 1.0665.

As an example of the use of Eq. (11), one can
calculate a range-energy relation for silver, using a
va, lue of I= 586 ev, which is the average of the I values
determined in the experiments of Bichsel et al.' and
Burkig and MacKenzie. 4 The corresponding value of

x is 0.5478. For R(2 Mev), we use the value 0.0263
g/cm-' obt.ained by Bichsel et al.' For example, for

4V. C. Burkig and K. R. MacKenzie, Phys. Rev. 106, 848
{1957).

T„=50 Mev, with G~=-0.397, G2 ——0.157, G3=0.093,
one thus obtains G=1.2799. With C'at ——2.811 g/cm'
and 2Z/A =0.8713, the second term on the right-hand
side of Eq. (11)has the value 4.129 g/cm'. Upon adding
R(2 1VIev), one obtains R(50 Mev) =4.155 g/cm'.
Similarly, for T„=100 3/Iev, one finds 6= 1.2443,
and R= 13.79 g/cm'.

Conversely, one can use Eq. (11) to determine the
value of I from a measurement of the range E. at a
particular energy T„,. From t,he value of R.(T„,i), one
obtains G(T„,i):
G(T„,i) = (2Z/3) LR(T, , i) —R(2 Mev)]/

4gt(T„, ). (12)

Then one solves Eq. (10) for x, which in turn gives the
value of I. In this connection, a plot of G vs x for
T„=T~, & may be helpful.

We note that the approximation that 6 depends on I
only, which underlies the use of the interpolation
formula (10) for T~&2 Bev, probably does not intro-
duce any significant inaccuracies, for the following
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TxaLE II. Values of q= (I/R)(dR/dI) for Be, C, Al, Cu, aud Pb. III. VALUES OF q= (I/R)(dR/dI)

T„(Mev}
10
20
50

100
200
500

1000
2000
5000

10 000

0.232
0.200
0.159
0.143
0.131
0.119
0.106
0.094
0.074
0.058

C

0.214
0,192
0.159
0.143
0.131
0.118
0.106
0.094
0.076
0.062

0.217
0.205
0.181
0.163
0.147
0.131
0.119
0.106
0.090
0.080

CQ

0.258
0.236
0.201
0.178
0.159
0.140
0.128
0.115
0.097
0.084

Pb

0.337
0.300
0.244
0.214
0.191
0.171
0.155
0.142
0.113
0.088

It may be noted that from Eq. (11) one can obtain
an expression for the derivative dR/dI, which gives the
change of E. for a small variation of the excitation
potential I. Thus dR/dI is given by

dR t A q dG/dx
C ~i(T,)

dI E 2Z) 2.303I

p A q (Gr+2Gr)t+3Gsxs)
(14)

&2Z)
reason. With increasing I, i.e., with increasing Z, 6

generally decreases uniformly, ' as is shown by I'"ig. 5 of
reference 5. The electron density e also enters into 8,
but since e generally also increases with Z, the value of
5 will therefore mainly depend on I (which is approxi-
mately proportional to Z). Hence, we expect that no
appreciable errors (&1j~) are introduced by the use of
Eq. (11) in the high-energy region, especially since this
expression fits the values of R (including the effect of 6

on dE/dx) for Be, Al, Cu, and Pb.
The shell correction U is given by

where we have made use of the fact, that d)t/dI=1/
(2.303I). In Eq. (14), the small term dR(2 Mev)/dI
has been neglected. This term will be unimportant,
except for very low proton energies (T„&10 Mev).

As an example, for Cu and T„=500 Mev, we have:
Gi——0.285, G~ ——0.080, G3=0.051, x=0.3493, so that
dG/dx=0. 3596. With C ~i= 143.54 g/cm', one obtains
dR/dI=0. 0662 gcm '/ev.

In connection with dR/dI, we define the quantity q
as follows:

U = 2 (Crr/Z)+ 2 (Cr,/Z), (13) q—= (I/R) (dR/dI). (15)

where C~ and Cg are the E and L shell correction
terms, first introduced by Bethe, ' which account for
the reduction of the stopping power of the E and L
shells at low velocities of the incident particle. This
correction becomes appreciable only at rather low
energies (T„&70 Mev for Cu). I/ varies uniformly with
increasing Z, in similarity to I. Moreover, U is very
small for T~& 2 Mev: U&0.1, as compared to a value
of the square bracket of Eq. (1) of the order of 10.
Thus the error introduced in Eq. (11) by the implicit
assumption that U depends on I only, will be completely
negligible.

As was discussed in I, the present proton range-
energy relations can be used for other heavy particles
(heavier than electrons), and in particular enable one
to obtain the range of p, mesons up to energies of 1.0
Bev Lsee Eq. (14) of Ij.

' R. M. Sternheimer, Phys. Rev. 91, 256 (1953).
M, S. Livingston and H. A. Bethe, Revs. Modern Phys. 9,

261 (1937).

We may write q as: (dR/R)/(dI/I), which shows that
q gives the fractional change of R for a given small
variation of I. Values of q have been calculated for
Be, C, Al, Cu, and Pb, for various energies in the range
from T„=j.0 Mev to 10 Bev. These values are given
in Table II. It is seen that q decreases with increasing
T„, and generally increases with increasing Z (at a
fixed energy T„).For 500-Mev protons in copper, one
finds q= 0.140, which means that a 1'%%uo error in a range
measurement would lead to an error of 1/q=7. 1% or
0.071X371=26.3 ev in the calculated value of I which
is inferred from the measured range.

The fact that 1/q is considerably larger than 1
illustrates the well-known property that a relatively
small error in the experimental range leads to a propor-
tionately much larger error in the calculated ionization
potential I. This result arises from the fact that I
enters only into the logarithmic term of the Bethe-Bloch
formula for dE/dx.


