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Iron Series Hartree-Fock Calculations*
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Seventy-six Hartree-Fock calculations have been completed for the iron series (Sc to Cu) atoms and
ions. All calculations are for the (3d)" type of configuration (i.e., no 4s electrons are present). The results
are discussed, but due to lack of space, are not presented here. Comparisons are made with the experimental
ionization and multiplet spectra. Agreement is poor due to limitations in the Hartree-Pock formalism.
The results are used in an eGort to gain information concerning correlation energies.

I. INTRODUCTION Many of the neutral atom 3d" states, for which I have
done calculations, are the lowest lying states of their
particular symmetry.

The calculations which have been done are listed in
Table I and a of c denotes a calculation for the average
of all the multiplet states of a configuration, ' i.e., a
calculation where the variational principle is applied
to the center of gravity of the configuration rather than
to a single state.

The calculations have been done with the Roothaan
procedure~ as modi6ed by Nesbet. They yield analytic
one-electron Hartree-Fock radial functions of the form:

RULY self-consistent Hartree-Fock solutions for
the nonclosed shell iron series (Sc to Cu) ions

have not been available until recently. This has been
due to the large amount of work associated with the
computations. The first such calculation was that of
Worsely' for V IIj: (V~). There have also been calcula-
tions by Mayers, ' by Piper, ' and by the writer. 4 5 It
seemed desirable to carry out a large number of Hartree-
Fock calculations for the iron series so as to observe
the properties of Hartree-Fock wave functions for this
very interesting row of the periodic table. Seventy-six
separate calculations have been completed with this
purpose in mind. Unfortunately space considerations
make it impossible to present the results here. These
and discussion of the Hartree-Fock formalism and of
the computational techniques used will be found
elsewhere. 4 ' This paper will be limited to the results of
a single sample calculation and to a discussion of the
whole set of results.

The calculations are limited to the 3d" configurations
(by configuration we mean the assignment of the
one-electron principal quantum numbers n and l to
each electron). In other words no 4s electrons are
present. These calculations were done on the Whirlwind
computer at M.I.T. and the inclusion of the 4s shell
would have necessitated a severe decline in numerical
accuracy if the computations were to stay within
Whirlwind's capacity. The 3d" configuration is the
most important one for doubly (III) and more highly
ionized ions. It competes with the 3d" '4s in supplying
the ground states for the singly ionized (II) ions and it
provides high-lying states for the neutral (I) atoms.

U' (r) Q. g gAj+l+le zjr—
l is the angular quantum number of the particular
one-electron function of which U, (r) is the radial part.
The A s and Z s of the basis functions are supplied
to the computer and the C;,'s are determined by a
variational calculation. One cannot do a calculation with
a complete set of basis functions since one does not
have a computer of infinite capacity. As a result, the
Roothaan procedure has associated with it the problem
of choosing good, incomplete sets of basis functions.
To onset this disadvantage, the Roothaan procedure
avoids the numerical integrations which introduce
errors into the conventional numerical methods for
solving Hartree-Fock equations. It is my belief that
with the existing computers and computational tech-
niques the Hartree-Fock solutions can be more econom-
ically and accurately obtained by analytic methods
than by numerical techniques. There is one special
feature of the version of the Roothaan procedure used

by me which should be noted. It cannot handle nonzero
o6-diagonal I.agrange multipliers which are occasionally
necessary if the final Hartree-Fock one-electron
functions are to be orthogonal. This is no limitation
here, for contrary to the belief of some workers, the
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TABLE I. A list of states for which Hartree-Fock calculations
have been done.

Sc I
Sc I
Sc II
Sc II
Sc III
Sc IV
Ti I
Ti II
Ti III
Ti III
Ti IV
Ti V
VI
VI
VII
V II
V III
V III
VIV
UV
V VI
Cr I
Cr II.
Cr III
Cr III
Cr IV
Cr IV
Cr IV
Cr IV
Cr IV
CrV
Cr V
Cr VI
MnI
Mn II
Mn III
Mn III
Mn IV

d3 4P
d aofc
d' 3F
d' a of c
d' 'D=a of c
d' 'S=u of c
d4 'D
d3 4P
d' 'F
d' a of c
d' 'D=a of c
d0 'S=a of c
d5 6S
d' a of c
d4 'D
d' a of c
d' 4F

a of c
d2 3F
d' 2D=a of c
d' 'S=a of c
d6 5D
d5 6S
d4 'D
d' a of c
d' 4F
d' 4P
d' 26
d' 2P
d' u of c
d2 3F

aofc
d' 'D=u of c
d7 4F
d' 5D
d5 6S
d' aof c
d' 'D

Mn IV
Mn IV
Mn IV
Mn V
Mn VI
Fe I
FeI
Fe II
Fe II
Fe III
Fe III
Fe IV
Fe IV
FeV
FeV
Fe VI
Co I
Co II
Co III
Co III
Co IV
Co IV
Co V
Co VI
Ni I
Ni II
Ni III
Ni III
Ni IV¹iIV
Niv
Ni V
Ni VI
Cu II
Cu III
CQ Iv
Cu V
Cu VI

d4
d4
d4
d3
d2
d8
d8
d7
d7
d6
d6
d5
d5
d4
d4
d3
d9
d8
d7
d7
d6
d6
d5
d4
d10
d9
d8
d8
d7
d7
d6
d6
d5
d10

d9
d8
d7
d6

3II
36
a of c
4p
'F
3P
uof c
4p
uofC
5D
uofc
6S
a of c
'D
aof c
4p
'D=a of c
3P
4p
aof c
'D
aofc
6S
5D
'S=a of c
'D=a of c
3P

.a of c
4p
uof c
5D
aofc
6S
'S=a of c
'D=a of c
3P
4p
5D

'D. R. Hartree, The Catcllatiort of Atomic Strttctlre (John
Wiley tk Sons, New York, 1957).

3d" configuration does not require such terms and as a
result my calculations are, except for computational
inaccuracies, solutions of Hartree-Fock equations of
the form described by Hartree. '

One would like to know how the accuracy of these
analytic Hartree-Fock solutions compares with numer-
ical solutions. It is easy to obtain accurate values of
the one and two-electron integrals and in turn the total
energy for the analytic solutions but this is not the
case for numerical solutions for which no total energies
are available. Comparison of total energies would be
one of the best measures of Hartree-Fock wave function
accuracy but since this is impossible one must compare
one-electron radial functions and the few available
integrals. I have observed4 ' that the analytic solutions
agree best with the numerical solutions carried to
greatest accuracy. One currently cannot say whether
the best of the numerical results are or are not superior
to the analytic results.

In the sections which follow one will 6nd a sample set
of results, then discussions concerning how well the
Hartree-Pock solutions pred. ict multiplet and ionization
spectra and finally a description of an e8ort to gain

TABLE II. Mn III basis function parameters.

For the construction
of s functions

p functions

d functions

1
2
3

5
6
7
8
9

10

12
13
14
15

0
0
0
0
0
0
1

1
1
1
2
2
2
2

A;

0
1
1
2
2
2
0
0
1
1
1
0
0
0
0

Z2

26.0651
22.7184
11.4540
10.5661
6.0612
3.8730

16.0787
9.5095
8.7370
4.9595
3.0743
2.0235
3.9754
7.4822

13.4624

some information about correlation energies (i.e., the
differences between the Hartree-Fock total energies
and the true total energies).

II. A SAMPLE SET OF RESULTS

The results of a calculation for the Mn III 3d' 'S
state have been chosen as an illustration of the results
which have been obtained. Hartree" did his pioneering
calculation for this state. Due to the size of the computa-
tion, he used interpolated one-electron functions for the
inner shells and solved Hartree-Fock (henceforth
denoted as H-F) equations for the 3P and 3d alone.
This led to results which diGer4 5 noticeably from mine.

The basis function parameters are listed in Table II.
These and the parameters for the other calculations
are the result of an extensive variational investigation
which is described elsewhere. 5 Table III lists the results
which consist of the total energy, the one-electron
energies (i.e., the eigenvalues of the Hartree-Fock
equations), the one-electron nuclear potential+kinetic
energy integrals, the C;,'s and all the two-electron
integrals which contribute to the total energy. These
are in the form of Slater Ii~ and 6~ integrals. "It should
be noted that due to the analytic form of the wave
functions, the one and two-electron jntegrals are
generally accurage to six digits for these functions.
This does not mean that the Roothaan procedure
converged this far.

III. COMPARISON OF RESULTS W'ITH THE
OBSERVED MULTIPLETS

The energy expressions for the set of multiplet states
for a single configuration differ in the two-electron
integrals where both electrons are in nonclosed shells.
Much work has been done on calculating the differences
in the energy expressions. If one assumes a common set
of radial functions for all the multiplet states, these

"D.R. Hartree, Proc. Cambridge Phil. Soc. 51, 126 (1955)."E.U. Condon and G. H. Shortley, The Theory of Atomic
SPectra (Cambridge University Press& Cambridge, 1953) (in
particular Chap. VI).
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TABLE III. Mn III 3d' 'S results (total energy = —2298.2099 ry).

Average one electron energies (H) and nuclear potential+kinetic
energies (X) in rydbergs

H (is) = —482.3830
H (2s) = -59.S1487
H(3s) = -8.921S29
H (2P) = -50.92840
H (3P) = —6.261782
H (3d) = —2.583616

K(1s) = —624.7135
K(2s) = -152.6847
K(3s) = -58.4S680
K(2p) = -151.3391
K (3p) = —54.89494
K (3d) = —45.90934

Two electron Ff and G& integrals (rydbergs)

Fo(is, ls)
Fo(1s,2s)
Fo(is,3s)
Fo(2$,2$)
F~(2$,3$)
Fo(3s,3s)
Go(is, 2s)
Go(is,3s)
Go(2s, 3s)

F 2(2p, 2P)
F0(2p, 2p)
»(2P,3P)
F'(2P,3P)
»(3P.3P)
F0(3p,3p)

= +30.54914
= +9.055729
= +3.050969
= +6.445168
= +2.740247
= +2.091190
= +0.8241432= +0.1029509
= +0.1758411= +3.481113
= +7.378854
= +0.5173625= +2.690531
= +0.9967973
= +1.981962

F0(1s,2p) = +10.12992
F'(2s,2p) = +6.812214
Fo(3s,2p) = +2.779520
Fo(1s,3p) = +2.959449
F~(2s,3p) = +2.641607
Ff) (3$,3p) = +2.034158
Fo(1s,3d) = +2.365510
Po(2s, 3d) = +2.327156
Fo(3s,3d) = +1.853596

Gs(2P,3p) = +0.2058069
Go(2p, 3p) = +0.1968488
F&(2p,3d) = +0.41833S2
Po(2p, 3d) = +2.336507
Ps(3P,3d) = +0.8598438
Fo(3p,3d) = +1.809526

G1(is,2p) = +1.682690
G'(2s, 2p) = +3.938323
GI (3s,2p) = +0.2184650
G'(is, 3p) = +0.1844419
G'(2s, 3p) = +0.1518273
G'(3s,3p) = +1.354236
Gs(is, 3d) = +0.0030536
Gs(2s, 3d) = +0.2715640
Gs(3s,3d) = +0.8144374
G'(2p, 3d) = +0.1677535
G'(2p, 3d) = +0.2956213
Gg (3p,3d) = +0.6482390
G'(3p, 3d) = +1.072835
F4(3d,3d) = +0.4843713
Ps(3d,3d) = +0.7774090
Fo(3d,3d) = +1.673131

C~~ Combining Coefficients
s= is 2$ 3$

j=i
2
3
4
5
6

+244.9321
+280.1814-1.608468

+3.639575—0.1279412
+O.OOS7261

-73.82540—474.7808
+389.7162
+625.4454

+5.728098—0.0693771

+27.19187
+165.9776
-140.7843—532.3601
+91.03777
+38.54133

3d

j=7
8
9

10
11

+190.7758
+273.5570

+4.259848
+2.247107—0.0907603

—57.22179
-108.7043-11.68352
+72.44829
+10.61107

j=12
13
14
15

+2.225893
+29.24675
+65.10942
+23.89884

differences give theoretical estimates of the multiplet
splitting. Slater collected the existing published Ii~

and G~ integrals which had been obtained by fitting
the observed iron series spectra. He then made addi-
tional fits using the method of least squares and
the writer continued this work. Figure 1 shows the
F'(3d,3d)'s resulting for the 3d" configurations. Only
the F'(3d, 3d) and F4(3d,3d) contribute to the 3d"
multiplet splitting if we assume common radial func-
tions and neglect configuration interaction and other
effects. The two Fs(3d,3d)'s stay moderately close to a
fixed ratio, the F'(3d, 3d) being larger and of more
importance to the splitting. The figures shows points for
different states of ionization and different atomic
number. In several cases, fits supplied by several
researchers for the same ion have been graphed. In
some cases the resulting spread is considerable. The
points do suggest curvature along the isoelectronic
sequences. The points also show some structure in the
lines of common ionization (appearing in the F'(3d,3d)/
F'(3d, 3d) ratio as well). This structure is harder to pin
down and it seems that straight lines are about all
that can be reasonably drawn. The lines on the graph
have been drawn so that they vary smoothly from one
to another. Detailed fitting of the lines to the points
has been neglected. This figure is of interest to us
because if we assume hydrogenic 3d functions, the
F'(3d, 3d)'s are proportional to the screening constants

of the exponentials. This work emphasizes the linearity
of functional variation along lines of common ionization
rather than along isoelectronic sequences.

Fits for P~'s were made for other configurations.
It is of interest to note that the 3d" '4s fits, for the
Fs(3d,3d), for the I states, fall on the II line of the
figure and. the 3d" '4s'(I) fits fall slightly below the
III line. This tells us that the 4s electrons contribute
almost no screening to the 3d electrons. Calculated and
least square fit F'(3d, 3d)'s are presented in Fig. 2.
The calculated values come from average of configura-
tion H-F calculations. Individual multiplet state
Fs(3d,3d)'s are not graphed. Lowest lying multiplet
state values run larger than those for the averages of
configuration (for the same atoms and states of ioniza-
tion) with maximum increases of 0.001 rydberg. We
see that there are violent differences between the
calculated and the "experimental" F'(3d, 3d)'s. The
neutral atom (I state) calculated F'(3d,3d) 's are
approximately twice as large as the "experimental"
ones. This discrepancy decreases both in magnitude
and in percent with increasing ionization. The calculated
Fs(3d,3d)'s run large by approximately 20% for the IV
state. More accurate H-F solutions would not appreci-
ably change these discrepancies.

It is more convenient to consider the ratio F'(3d, 3d)/
F'(3d, 3d) rather than the F4(3d,3d) alone because the
ratio gives some measure of how hydrogenic the 3d
functions are. The value of the ratio for a hydrogenic
3d function is 0.649. Least square fit ratios Qucuate
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Q. I— d" denotes the isoelectronic lines
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Sc Ti
2( 22

I l I l I I
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FIG. 1.F (3d,3d) as a function of atomic number and ionization
as determined by least square 6ts of the iron series (3d) conagura-
tion spectra.
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rather violently in value. For the most part they have
values between 0.60 and 0.75 with an average of about
0.67. Any trend in the values is rather well hidden
by the Quxuations so we will not try to generalize on
this matter. The F4(3d,3d)/F'(3d, 3d) ratios for the
H-F calculations are shown in Fig. 3. These values also
represent the average of configuration solutions. All
calculated values lie well below the hydrogenic ratio.
What this implies in the shape of the functions can be
seen in Fig. 4 which includes U(r) as a function of r
graphs for the Fe I average of configuration 3d function
and for the hydrogenic 3d function with the same
F'(3d,3d) value. The calculated ratios lie on smooth
curves as do the calculated F'(3d, 3d) values. This is
not surprising since the average of configuration H-F
equations vary smoothly with varying numbers of 3d
electrons. Lowest lying multiplet state F'(3d, 3d)/
F'(3d, 3d) ratios do not vary as smoothly. This is due
to less smoothly varying 3d H-F equations. These
ratios lie within 0.001 of average of configuration
values.

The calculated J ~'s predict multiplet splittings which
are much too large. There are two ways to improve on
these predictions. First, one can do H-F calculations
for individual multiplet states and use the diGerences
in total energies to predict multiplet splittings. Secondly,
one can go on to wave functions which are superior to

I I l j I I

I.Q—

0.8—

ru P7—

0.6—
'U
rn

0 5

,65 I I i I I

Hydrogenic
function ratio

.64—

Fro. 3.The f'(3d, 3d)/
F~(3d,3d) ratio as a
function of atomic num-
ber and ionization as
determined by Hartree-
Fock average of con-
figuration calculations
for the iron series (3d)"
configuration. .6I

.604

note

I I I I I I

Sc Ti V Cr lgn Fe Co Ni
2 I 22 23 24 25 26 27 28

A tomic Number

I,O

0.8

nctions
stote

(its
hat for

H-F wave functions. For example, one could super-
impose configuration i:nteraction on the H-F solutions.
This would also require individual calculations for
individual multiplet states when predicting multiplet
splitting. We will shortly consider these approaches but
let us first consider the spectra which we wish to
predict. Inspection of Moore's" tables shows that in
general the order of the observed multiplets for any
single configuration is somewhat diferent from the
order predicted by the multiplet energy expressions.
Further study shows that the observed order changes as
one moves along an isoelectronic sequence. In the iron
series, one of the extreme examples of this occurs for
the (3d)' configuration. We have listed the predicted
order and the observed orders from Sc I to Ni VIII for

0.6

U(r)

04

lowest
Iguratlon--

0.2—

O. I— Roman. numerals denote the lines of
common ion i z a t i on.
All graphed points represent Hartree-
Fock average of configuration solutions

I l I l t I I

0.2

1.0 2.0 5.0 4.0
tn Atomic Units

5.0 6.0

Sc Ti
2I 22

V Cr Mn Fe Co NI
23 24 25 26 27 28
A tomic Number

I'io. 4. Fe3d wave functions (U(r)'sj for the (3d)" configurations.

FIG. 2. Comparison between experimental and Hartree-
Fock average of connguration values for F~(3d,3d)f as a
function ef atomic number and ionization for the iron series (3d)"
conhgurations.

'2 C. E. Moore, Atomic Energy Levels, National Bureau of
Standards Circular No. 467 (U. S. Government Printing Once,
'lA'ashington, D. C., 1949}, Vol. I—III; and for some corrections
to the iron series ionization spectra see, M. A. Catald, n and
R. Velasco, Anales real soc. espan. fis. y quim A48, 247 (1952).
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TAsx, E IV. 3d3 predicted and observed multiplet state orders.

Observed
Predicted Sc I Ti II V III Cr IV Mn V Fe VI Co VII Ni VIII

4p
4p
2Q
2p
2H
2D
2F
2D

4F 4F 'F 'F 4F 4F
2D 2G 2P 2P 4P 4P
4P 4P 4P 4P 2G 2G

2P 2Q 26 2P 2P
2D 2D 2D 2D 2D
'H 'H 2H 'H 2H
2p 2F
2D

4p 4p
4p 4P
2Q 2g
'D 'D
2H 2H

TAnLE V. Cr IV total energies and E(f) values
(all are in rydbergs).

State

av of config.
4P (ground)
2p
4p
2G

State

Total energy

—2082.7414—2082.9435—2082.72S9—2082.7844—2082.7919

X(3s)

E(3d)
—43.35800—43.54521—43.34633—43.39908—42.39416

X(3p)
—50.67848—50.65748—50.67985—50.67391—50.67441

IC(2s)

Z(2p)
—139.1392—139.1382—139.1393—139.1390—139.1389

av of config.
4p
2p
4p
2Q

—54.00450—53.99000—54.0054—54.00134 .—54.00168

—140.4926—140.4919—140.4927—140.4926—140.4924

—575.7166—575.7167—575.7166
-575.7167—575.7166

(3d)' in Table IV. The lowest levels are listed at the
top of the columns and the bracket in the "predicted"
column signifies that these two multiplet states are
supposed to have identical energy levels. Not one ion
has a multiplet state order which is in agreement with
the "predicted. " The 'G falls lower than the 4I' in
violation of the predicted order for Ti II. All other
violations are due to the 'I' and one of the 'D's taking
on lower level positions than predicted.

The writer has run computations for the average of
configuration and the four lowest multiplet states of
Cr IV. This is of interest in light of the above discussion
on ordering but is of greater interest since it gives an
indication of how much the predicted multiplet split-
tings can be improved through the use of individual
multiplet state calculations. This ion was chosen for
two reasons. First, it has a (3d)' configuration and
secondly because for IV states, the (3d)" multiplet
states lie well below all other observed multiplet states.
This assures us that any configuration interaction would
lower energies. I.et us 6rst consider Table V which
lists the total energies and a number of integrals
which are interesting to compare. We see that the
variations in the E(3d) s (one-electron kinetic phis
nuclear potential energies) are of the order of the energy
diGerences between multiplet states and that the
E(3P) and E(3s) variations are about 0.1 and 0.05 of
the energy differences, respectively. The writer wouM

say that these represent important variations in the
functions. The results of greatest interest are to be seen

in Table VI. This table gives the multiplet splittings in
terms of the ground 4P whose energy is set to zero.
The first column gives the experimentally observed
values. The second is obtained by putting the results of
least squares 6ts back into the multiplet splitting
equations. We should note that the least square fits
gave values of Ii', F4 and an average energy for the
configuration. These three values were inserted into the
energy expressions and the energy scale ztas shifted so
that the 4P energy equaled zero. Thus the zero of the
second (and also those for the third and fifth) column
is not strictly the zero of the first. The third column
was calculated using the Ii' of I'ig. 1 and an assumed
F4/F' value of 0.649 (the hydrogenic value). The fourth
column gives the energy differences resulting from the
four multiplet state calculations and the fifth column
was calculated using the Ii' and F' from the authors'
average of configuration calculation. The F' and F'
values associated with the various columns are listed
underneath the spectra.

Table VI Comparision of experimental and calculated multiplet
spectra for Cr IV (3d)' (all energies are in rydbergs).

Exptl.
6ts of
F2 and

Exptl. ' F4

Using
F'and Based on av of

F' individual config.
from calcula- F4 and

figure tions F2

4p
2p
4p
2G

'D(one of two)
2H
2p

~ ~ ~ ~ ~ ~ ~

F2
p4
it 4/gi'2

0 0
0.12462 0.19020
0.12548 0.13833
0.13399 0.14409
0.18164 0.20769
0.18827 0.19020
0.32971 0.32853

~ ~

0.70202
0.45026
0.6414

0
0.18032
0.12978
0.13706
0.19725
0.18032
0.31010

~ ~ ~ ~ ~

0.663
0.4303
0.649

0
0.2056
0.1501
0.1526

0
0.21383
0.15865
0.16094
0.23265
0.21383
0.37248

~ ~ ~ 0

0.79608
0.49826
0.6267

a L S splitting is 0.003 rydberg for these states.

The first thing to note is that the individual calcula-
tions did not change the predicted order of the spectra.
It is impossible for this to happen since the H-F
equations are derived from expressions for the total
energy which involve this order. The second factor to
note is that the individual multiplet calculations do
give appreciably better predictions than one obtains
using the average of configuration Ii' and Ii4 values
(column 5). The last factor of some interest is t:hat the
experimental fits give a fair but not very good reproduc-
tion of the spectrum.

The predicted multiplet splittings from the individual
calculations are 20 percent high for the 4I' and 14%%uo high
for the 'G. The 'I' which does not lie in the predicted
position shows a 65 percent error. These results and the
large calculated F~'s are typical of what one finds if
one studies other cases, for example the unfilled 2p or

3p shell spectra. More accurate or less restricted H-F
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solutions might produce better multiplet splitting
predictions, but the improvements would not be great.

It is apparent that configuration interaction (or some
other technique for wave function improvement) is
necessary if we wish to accurately predict multiplet
spectra. The need for configuration interaction is
greater than had been previously thought. Ke should
note that our discrepancies are in a direction which
configuration interaction will improve. Any randomly
chosen, single excited configuration is @sore likely to
contain a multiplet state with low L and S values than
a state with higher L and S values. This suggests that
configuration interaction will have its greatest effect on
states with low S and L values. We have seen that the
experimental (3d)' spectra show the 'D and 'P terms
lying lower than expected. These are the terms of
lowest L and S. One should also note that the
lowest lying multiplet states generally have the
largest S and I. values (witness Hund's rule). This
suggests that these terms would be least affected by
configuration interaction and thus that a H-I predicted
spectrum would be more widely spaced than the
experimental one. This means that the calculated Ii'
and P4 integrals should run large and this is what we
observe.

The writer does not believe that the configuration
interaction can be restricted to the contributions of
just a few configurations and produce good results. This
matter will be discussed shortly.

IV. Fe CALCULATIONS FOR VARIOUS
STATES OF IONIZATION

In the last section, we discussed both the fitting of
the multiplet spectra and the variations in one-electron
wave functions produced by obtaining solutions for
difIerent multiplet states. We will now discuss the
discrepancies between observed and predicted ionization
energies and the variation in 3d wave functions when

going from one state of ionization to the next. Ke will
use Fe as our example.

Let us first consider the variations in Fe 3d functions.
Figure 4 is a plot of the 3d V(r)'s as a function of r for
the Fe I, III, and V average of configuration solutions.
A hydrogenic 3d function, with an F (3d,3d) which is
equal to that for the Fe I function, is also plotted. Let
us note the fact that the 3d screening constant values
have a dependence on atomic number and ionization
which roughly parallels the calculated P'(3d, 3d) values.
Kith this in mind, it is interesting to see that although
all the Fe V 3d screening constants [and to a less
extent the F'(3d, 3d)] are roughly twice those for Fe I,
the Fe V and Fe I U(r) maxima lie close together. The
Fe I maximum is not twice as far out as the Fe V one,
although this is what the change in screening constants
would suggest. We see that the changes in the 3d function
are primarily matters of shape. The 3d functions for
states of higher ionization are more nearly hydrogenic.

TAnLE VII. The E(s)'s and total energies for the Fe I, II, III,
and IV lowest (3d)" multiplet calculations in rsdbergs.

Fe I
It (1s)= —675.7103
Ii (2s) = —165.3840
E (3s)= —63.25324
E(2p) = —164.0475
X(3p)= —59.51367
E (3d) = —44.42264
Total
energy = —2524.3137

Fe II
—675.7103—165.3819—63.30455—164.0456—59.63822—47.69708

Fe III
—675.7100—165.3782—63.61446—164.0416—59.93252—50.27814

Fe IV
—675.7094—165.3781—64.01641—164.0429—60.43305—52.60767

—2524.2856 —2523.3041 —2521.2214

TABLE VIII. Comparison of observed and calculated
Fe(3d)" ionization energies in rydbergs.

Experi-
mental

Differences
in

calculated
total

energies

Lower
state
one-

electron
energy

Higher
state
one-

electron
energy

Fe I gF ~ Fe II 4F
Fe II gF -+Fe III 6D

Fe III 6D -+ Fe IV 6S
Fe IV -+ Fe V

+0.29938 +0.0281
+1.17127 +0.9815
+2.249— +2.0827
not observed

+0.35594
+1.23847
+2.3212

—0.34014
+0.69713
+1.8308

This agrees with the P'/F' trend shown on Fig. 3.
Some of the readers may have felt that an F'/F' ratio
of 0.61 was really not far from the hydrogenic value of
0.649. Figure 4 shows that this difIerence represents a
rather pronounced change in the shape of the function.
The last thing to note, concerning Fig. 4, is that the
diGerences between average of configuration and lowest
multiplet state 3d functions are so small that it is
impractical to include both on the figure. The maximum
dift'erence for the Fe functions is illustrated on the
figure.

Let us now consider Table VII. Here we have listed
the E(i) 's (one-electron kinetic+ nuclear potential
energies) for the Fe I, II, III, and IV lowest multiplet
state calculations. The writer has also included the
total energies. The variations in the E(3d) are greater
than the total energy differences. The E(3s) and
E(3p) variations are generally between one-quarter
and one-half the total energy differences. From this,
the author concludes that the 3s, 3p, and 3d wave
function variations are significant when going from
one state of ionization to the next. Table VII also
enables us to trace the variations of the functions,
because E(i) increases when U(i) moves in toward
the nucleus and vice-versa. Although the writer finds
these shifts interesting, he will not discuss them but
let the reader study the table instead.

Let us now compare the observed (3d)" configuration
ionization energies with the calculated values. Table
VIII gives the comparison. The first column lists the
observed values and the second is obtained by taking
the difterences in calculated total energies. The third
column lists the (individual) one-electron energy of the
electron being removed from the lower energy state as
given by the calculation for the lower state and the



last, column gives the (individual) one-electron energy
of the same electron as given by the calculation for the
higher state. We see that the differences in total energies
give poorer results than do the third column one-
electron energies. This is in contrast to the case of
multiplet splitting where differences in total energies
gave better results than did splitting estimates based on
single calculations. The reason for the poor "difference
in total energy" results, is that the various calculations
are for systems with differing number of electrons.

'9/hen H-F solutions have been obtained for small
atoms where the total energy has been observed
experimentally, comparison of experimental and H-I"
total energies has shown that the magnitude of error
in the H-F total energy increases when the number of
electrons is increased. This appears to be happening
here. We can use the discrepancies between the observed
ionization energies and the differences in calculated
total energies to give crude estimates of the error in
the H-F total energy contributed by the electrons
which are being removed. Doing this, we can say that
for Fe, there is a H-F total energy error of 0.27 rydberg
associated with the 28th electron, 0.19 rydberg with
the 27th and 0.3.6 rydberg with the 26th. We will make
use of these figures shortly.

If weignore the discussion of the preceding paragraph,
we can quite easily understand the rather good predic-
tions of the individual one-electron energies. Koopmans"
theorem tells us that the individual one-electron
energies are just the energies gained or lost by adding or
removing an electron, providing that both states of
ionization have the same one-electron radial functions.
We have seen that the radial functions do vary noticeably
with changing ionization. We would expect that the
calculations for the lower state would predict a large
ionization energy since the resulting functions would be
poor for the higher state (thus raising its energy).
Similar reasoning would suggest that the higher state
calculation should predict an ionization energy which is
small. We might then expect an observed ionization
energy to fall below the value given by the lower state
one-electron energy and above the value for the higher
state one-electron energy. We see this happens in all
three cases. We might note that the average of the
one-electron energy values is close to the value of the
total energy difference in each case.

The behavior of the calculated Pe(3d)" ionization
energies is typical of that for the other iron series
elements. An exception occurs for the Cr I to Cr II
ionization where the H-F total energies say that Cr II
lies lower than Cr I by 0.087 rydberg. This is easy to
explain. The observed ionization energy is 0.174
rydberg which is the smallest of the observed ionization
energies of interest to us. It is smaller than the 0.20
or 0.25 rydberg penalty (in H-F total energy error)
that Cr I pays for possessing one more electron than

"T.Koopmans, Physica I) 104 (1933).

Cr II. With an observed 0.174 rydberg ioniza tion
energy, we should expect that H-F results would
predict that Cr II lies lower than Cr I.

We can use the crude H-F total energy discrepancy
estimate for Fe's 26th, 27th, and 28th electrons to
give an even cruder estimate of the total error in the
H-F total energy. The writer believes that at the very
minimum this error is 1.0 rydberg (the three 3d electrons
contributed 0.6 ry) and that very likely the error is
more than 4 rydbergs. We might hope to use configura-
tion interaction to improve the total wave function
and the total energy. Earlier the writer'4 applied
configuration interaction to Ni IsF(3d)'(4s)'. The
effects of single configurations on the ground state
were considered and second order perturbation theory
was used. This gave energy improvements of:

~
%*(ground)H+(perturbing)dr

(IV-1)
E(ground) —E(perturbing)

The writer considered some of the perturbing configura-
tions which produce the smallest denominators (in
IV-1) and thus possibly the largest DE's. The availabil-
ity of integrals limited what configurations could be
considered, for example, configurations with f and g
electrons could not be used (some workers believe such
configurations are important). The largest DE obtained
was 0.005 rydberg. It is possible that a few very import-
ant configurations were overlooked but the result does
suggest that effective iron series atom configuration
interaction requires the use of more than a few (say
less than 50) strongly interacting configurations.

V. IRON GROUP ONE-ELECTRON ENERGIES

We have seen that there was remarkable agreement
between Fe's calculated lower state one-electron
energies and its observed ionization energies. We will
now make further comparisons between calculated iron
series one-electron energies and observed ionization
energies. The tables to be discussed are in large part
due to Slater.

I.et us apply Koopmans' theorem to the average of
configuration energies (E, ,r,). If we do this, we can
utilize the work of Slater'~ where he discussed the
the experimental energy differences between average of
configuration energies of atoms in their normal states
and of ions with one electron removed. These experi-
mental values are not appropriate for the 3d electrons
here since 3d" '4s' or 3d'" '4s rather than 3d" configura-

"Ni I(3d)'{4s)' 'I was a somewhat special case in that the
two near lying con6gurations, the (3d)', 4s and (3d)", have no
multiplets of the same symmetry. One would expect the strongest
interactions to be between the (d)", (d)" '4s and (d)" s(4s)'.
See R. E. Watson, Quarterly Progress Report No. 27, Solid-State
and Molecular Theory Group, Massachusetts Institute of Tech-
nology, January, 1958 {unpublished); . 10.

'"' J. C. Sweater, Phys. Rev. 98, 1039 1955).



tions were considered. We would like to recompute
E, oi .'s for 3d" configurations. One would like to do
this by finding the weighted mean of the observed
multiplet state energies of all the multiplet states of
any given configuration. Unfortunately there are very
few cases where all the multiplet states of a configura-
tion have been observed. Slater and the author have
computed the 3d" E, ,g, 's from the experimental data
in the following way. We took values of Ii'(3d, 3d) from
Fig. 1 and obtained F'(3d, 3d) 's by assuming the
J'(3d,3d)/F'(3d, 3d) ratio to be the hydrogenic value
of 0.649 (variat, ions of the ratio within the range
observed in the original fittings would have little
effect on our conclusions). These F's were then used in
computations for the energies of the multiplet states
of the atoms and ions of interest. These computations
utilized a program set up for this purpose on the
704 computer. The computed energies lack the E, ,g,
terms which are of interest. The computed multiplet
state energies were then subtracted from the observed
values giving a different value of E„g,for each observed.
multiplet state. whatever the choice of F' and Ii4,

one will never obtain a common value of E, ,g, for all
the multiplet states of a configuration because the
experimental 3d" multiplet spectra cannot be exactly
fitted by Racah's expressions for the multiplet splittings.
A weighted average of the E, ,q, 's was obtained for
each configuration. The E, ,g, of each multiplet state
was weighted by the degree of that multiplet state' s

degeneracy.

Transition

Sc I d' —+II d'
Ti I d4 —+ II d'

Ti II d' -+ III d'
Ti III d' ~ IV d

V I d' ~ II d4

V II d4 -+ III d'
V III d' —+ IV d'

VIV —+Vd
Cr I d' —+ II d'

Cr II d5 —+ III d4

Cr III d' —+ IV d3
Mn I d7~ II d6

Mn II d6 -+ III d~

Mn III d~ ~ IV d4

Fe I d' ~ II d~
I'e II dv ~ III d'

Fe III d' —+ IV d'
Co I d' —+ II d'

Co II d8 —+ III d7

Ni I d" ~ II d'
Ni II d —+III d

Experimental
ionization

energy

0.22873 rydberg
0.26713
0.96081
1.9580
0.31937
1.0497
2.0874
3.48695
0.36333
1.14523
2.21000
0.38753
1.21696
2.35802
0.39888
1.28721
2.46869
0.40277
1.36365
0.43246
1.42955

Calculated
(lower state

of ionization)
one-electron

energy

0.23072
(0.32043)
(1.04643)
(2.04648)
0.32280
1.08397
2.13157

(3.48145)
(0.39748)
(1.29980)
2.27563

(0.41532)
(1.32693)
2.41948
0.41946
1.35454
2.55251
0.44547

(1.46752)
0.50065
1.52535

TABLE IX. Comparison of experimental average of con6guration
ionization energies with calculated one-electron energies for
ionization processes involving the removal of 3d electrons.
Computed values refer to average of configuration solutions,
except those in parentheses, which are computed for the lowest
multiplet of a configuration.

Table X. Calculated one-electron energies compared with
observed ionization energies involving the removal of an electron
from any shell from neutral iron series atoms. Both calculated
and observed values are for the averages of configuration, except
for the calculated values in parentheses, which are computed for
the lowest multiplet state of a configuration.

Sc Ti V Cr

1s calc
obs

2s calc
obs

2p calc
obs

3s calc
obs

3p calc
obs

3d calc
obs

1s calc
obs

2s calc
obs

2p calc
obs

3s calc
obs

3p calc
obs

3d calc
obs

331.50 ry
331.1
37.80
37.3
37.99
30.0
4.77
4.2
2.82
2.6
0.23
0.23

(480.47)
482.0
(57.56)
57.7

(48.97)
47.8
(6.97)
6.6

(4.34)
4.0

(0.42)
0.39

(366.08)
366.1
(42.32)
42.0

(35.07)
34.0
(5 23)
4.8

(3.12)
2.9

(0.32)
0.27

Fe

522.05
524.3
63.11
63.0
54.08
52.8
7.60
7.3
4.80
4.4
0.42
0.40

402.55
402.9
47.23
46.9
39.59
38.3
5.85
5,3
3.56
3.2
0.32
0.32

Co

565.34
568.3
68.88
69.0
59.40
58.2
8.22
8.0
5,24
4.9
0.45
0.40

(440.62)
441.6
(52.24)
51.9

(44.11)
43.0
(6.37)
6.0

(3.91)
3.6

(0.42)
0.36

Ni

610.46
614.1

74.97
75.3
65.04
63.7
8.91
8.7
5.75
5.4
0.50
0.43

I et us now compare the calculated and experimental
results. In Table IX, we consider the ionization energies
associated with the removal of 3d electrons and compare
the experimental average of configuration ionization
energies with the calculated one-electron energies for
the lower states of ionization. The experimental
ionization energies are E,g, s of the more highly
ionized states minus the E,g, s of the less ionized
states. In Table X, we consider the removal of electrons
of any shell from the neutral atoms. The second table' s
observed ionization energies are those found in Slater's
article, "supplemented by the newly calculated values
for the 3d electrons. Calculated values in parentheses,
in both tables, refer to calculations in which the
calculated one-electron energies for the lowest multiplet
state were used (due to the lack of an average of
configuration calculation). Such calculated results
differ somewhat from calculated average of configura-
tion values.

Agreement between calculated and experimental
values is remarkably good in both tables. This is due
to a cancellation of errors as was indicated in the last
section. In the case of Fe, discussed in the last section,
the calculated (lower state) one-electron energies were

always larger in magnitude that the observed ionization
energies. There are many cases where this is not so in
the section. This occurs once in Table IX and is due to
an experimental error. This will be discussed. in the
next section. In Table X the apparently small one-
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electron energies occur for 1s and 2s functions. The is
functions are just the ones which require relativistic
corrections to the one-electron energies. With these
corrections, the resultant one-electron energies are
larger than the observed ionization energies. We might
note that the magnitude of these corrections increases
rapidly with increasing nuclear charge. This is just
what is needed here.

=~~.bs—~~canc. (VI-2)

One might expect that $ is, for the most part, a correla-
tion error "associated" with the electron which is
being removed. It is particularly convenient to consider

TAszz XI.Net changes in correlation energy (() during ionization
processes involving iron series lowest 3d" multiplets.

Ionization process

Sc I d' —+ II d'
Sc II d' —+ III d
Sc III d ~IV d'
Ti I d' —+ II d3

Ty II d' —+ III d2

Ti III d'~ IV d
TiIVd~Vdo

V I d' ~ II d4

V II d' -+ III d'
V III d3 ~ IV d'
V IV d'~ V d

V Vd —+VId'
Cr I d6 —+II d5

Cr II d' —+ III d4

Cr III d' -+ IV d'
Cr IVd' —+Vd'
Cr V d' -+ VI d
Mn I d' —+II d'

Mn II d6 ~ III d'
Mn III d' —+ IV d4
Mn IV d4 —+V d'

Mn V d3~ VI d'

AE,b,
ry

0.2170
0.8972
1.8197
0.2480
0.9902
2.0194
3.1577
0.3132
1.0771
2.1521
3.56—
4.8—
0.1738
1.2125
2.277—
3.6-
5,319
0.2687
1.0166
2.482-

not
5.573-

AEH F
ry

0.1186
0.8335
1.7543
0.1208
0.9110
1.9651
3.1203
0.1819
0.9806
2.0886
3,3846
4.7413—0.0874
1.1208
2.2049
3.5515
5.0637
0.0102
0.8211
2.4077

observed
5.2762

$(=tstE, b, —AEH p)
ry

0.0984
0.0637
0.0654
0.1273
0.0792
0.0543
0.0374
0.1313
0.0965
0.0635
0.18—
0.05—
0.2612
0.0917
0.072—
0.05—
0.255—
0.2585
0.1955
0.074—

0.297-

VI. CORRELATION ENERGY

I.et us now consider what information we can obtain
concerning "correlation energy. " By "correlation
energy" the author means the difference between the
true (i.e., experimental) total energy of an electronic
system and the system's H-F energy, that is,

E.„„=E,b,—EH F.

This definition differs from the normal in that one
usually subtracts relativistic correction terms from
E.,b, and uses the resultant value in the equation.

Unfortunately, total energies have not been observed
for atoms for more than ten electrons so we must
again turn to considerations of energy differences. I et
us consider the change in correlation energy (P) during
ionization processes, i,e. :
$—:E„„(state of higher ionization)

—E„„(state of lower ioniza, tion)
= Eoba (higher) —E,b, (lower)

—EH i(higher)+EH i.(lower)

$ for ionization processes between lowest multiplet:
states since such are single determinants. Then the
electron which is being removed has definite e, 1, m~,
and m, assignments. Ke will shortly consider ionization
processes involving the removal of 3d electrons from
single determinants. One would expect that relativistic
corrections would be almost identical for both states
and thus that ( can be interpreted as the difference in
correlation energies as conventionally defined.

The quantities AE,b„AEii F and f will be found in
Table XI. As indicated above, these are for the lowest
multiplet states of configurations and cot for the
averages of configura, tions. In Fig. 5, $ is graphed as a
function of the numbers of 3d electrons in the pairs of
states. The most important feature of the figure is the
break in the curves between the d' —& d5 and d' —+ d'
transitions. The former involves the removal of an
electron whose spin is antiparallel to the spins of the
other 3d electrons while the latter transition involves
the removal of an electron of parallel spin. One would
expect the break in the curves since the H-F formalism
has some built in correlation (the "exchange hole" )
between electrons of parallel spin. Another prominent
feature is the set of high lying points on the left-hand
side of the figure. Most of these points rely on AL',b, 's

which the experimenters obtained by extrapolation
rather than direct measurement. This is the case for a
sizable fraction of the AE,b, 's used here. This suggests
that the positions of these points are due to errors in
AE,b, values. More and better AE,b, 's are needed.

One might be tempted to analyse the curves further.
This is dangerous due to the possibility of systematically
varying errors in the EH F's. Random errors would
raise one $ and lower an adjacent one for the same
element. Systematic errors could shift, compress or
even rotate the curves. For this reason, the writer will
attempt no further analysis other than noting the
suggestion of structure on the right hand side of the
figure (as indicated by the dashed curves) and the
possibility of similar structure on the left-hand side.

We could define an P where the AEir r of P has been
replaced by the lower state one-electron energy for the

0& I I I I I I I I I I

O. I

Sc

Sc

y MnZ ZX co
F ~o Z X transitions
~+

Nj Cu~+ + tt IK transitions

Co
+— ttt itt transitions

~Ni

V2:~5K
Q+ ~+ ~ &crm-m

VHI ZZ
Cr IZ~Z

I I I I I I I I I I I

d" (lower state) —d" (upper stote)

FIG. 5. Change in correlation energy (&) for ionization progresses
involving lowest iron series 3d'" multiplet states.



Fe SERIES HARTREE —FOCK CALCULA'I IONS 1045

electron being removed. A graph of P would show
breaks in its curves between the d' —+ d' and d'" —& d4

transitions. The graph would also show that most of the
P's are negative (i.e. , DE,b, (DE,e, .t«t,»). The
exceptions occur for the high-lying point cases of
Fig. 5. Inspection of Table IX shows that the one case
of an apparently small average of configuration
AE,„,,~„t,„„is for a high-lying point transition (V
IV —+ V). The fact that the $'s and P's are generally
out of line for the same transitions suggests that
experimental rather than computational errors are the
cause. The writer reran the pertinent H-F calculations
as a check. No errors were uncovered.

VII. CONCLUSION

We have seen that the Hartree-Fock results are
generally in poor agreement with experiment. While
the total energies are accurate to better than one
percent, the observables we are trying to predict by
taking total energy differences are even smaller
and thus poorly predicted. The calculated F~ (3d,3d)

integrals poorly predict the multiplet spectra. This is
in large part due to the inadequacies of the Hartree-
Fock formalism and to a lesser part due to the assump-
tion of common radial functions for all the multiplet
states of a configuration. The lower state one-electron
energies are found to be in very good agreement with
ionization energies. This is due to a remarkable cancella-
tion of errors. Finally we have the unsurprising behavior
of the 3d electron "correlation" energy with its sudden
increase for more than half 611ed shells.
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An expression is obtained for the range-energy relation R(T„) for protons (T~=proton kinetic energy)
as a function of the mean excitation potential I which enters into the Bethe-Bloch formula for the ionization
loss dE/dx. The expression for R(T„l is obtained by an interpolation of the previously calculated range-

energy relations for Be, Al, Cu, and Pb. The resulting expression for R(T„) can be used for any substance,
provided an appropriate value of I is assumed. Values are also obtained for the quantity q = (I/R) (dR/dI)
which gives the fractional change of R for a small variation of the excitation potential I.

I. INTRODUCTION

ANGE-ENERGY relations for protons' have been
recently calculated for six substances (Be, C, Al,

Cu, Pb, and air). These range-energy relations are
based on values of the ionization loss dE/dx which
include the shell corrections at low proton energies and
the density effect correction which becomes important
in the high-energy region. The values of dE//dh depend
mainly on the value of the mean excitation potential I
of the atoms of the substance considered. The following
values of I were used in the previous calculations:
IB,——64 ev, I~=78 ev, I~i——166 ev, I~„=371 ev,
Ipb = 1070 ev, and I„,= 94 ev.

In the present paper, we will obtain an expression
which gives the range R(T„) for an arbitrary value of

*This work was performed under the auspices of the U. S.
Atomic Energy Commission.

' R. M. Sternheimer, Phys. Rev. 115, 137 (1959). This paper
will be referred to as I.

I, as a function of the proton kinetic energy T~, and
which can therefore be used to obtain the range-energy
relation for any substance, if an appropriate value of I
is assumed. The general expression for R (T~) is obtained

by an interpolation of the previous results' for Be, Al,
Cu, and Pb. It is estimated that the resulting range-

energy relation is accurate to & 1'P~ for values of I lying
in the range from I~,= 64 ev to Ipb= 1070 ev.

n. EXIRESSION FOR Z(r„)
In order to obtain the interpolation formula for

R(T~), we note that the Bethe-Bloch formula for
dE/dx can be written as follows:

1 dE Z 1V(P)=—M(P) ln. ——2P' —6—U,
pdS 3 I

where p is the density of the medium (in g/cm'), A is

the atomic weight, M(P) and!V(P) are functions of the


