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a third sample with a concentration ten times the first,
the initial trace showed that a portion of the resonance
is saturated but recovers within 0.03 second. In all
crystals the trace made, as the field moves oG resonance
after the saturation, indicates a saturated width of
several gauss. In the time the field remains oG resonance
the hole becomes less deep and about 10 gauss wide.

The external magnetic field inhomogenity, the micro-
wave frequency fluctuation, and the bandwidth of the
detection system do not account for the observed width.
During the initial saturation, the rf power remains on
the center of the resonance for a time which is sufFicient
for spin diffusion to take place. However, there is no
change in the unsaturated region so the energy does not
diffuse into the tails during the initial saturation or the
later recovery. ' The width of the saturated region is
greater than the width of an individual rnultiplet (theo-
retically less than 1 gauss) indicating spin diffusion. The
width of the saturated region is limited by the competi-
tion between spin diGusion and spin-lattice relaxation. A
quantum of energy in the F center may either be ex-
changed with a neighbor or be absorbed by the lattice.
The probability of energy transfer to a frequency neigh-
bor is proportional to the diGerence in saturation at the
two frequencies. The relaxation is proportional to the
saturation. Spread of the saturation ceases when the
gradient of the population difference is such that energy
is transferred to the lattice before it diffuses to an un-
saturated neighbor.

The concentration does not have a large eGect on the
width of the hole but the recovery rate is roughly pro-
portional to the concentration. The recovery rate in the
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FIG. 2. A sequence of tracings made from a single photograph
showing the recovery of the saturated portion of the resonance
absorption at 4'K. The high-frequency field was 4.4&(10 4 gauss.
The sweep is 156 gauss between extremes and the center of the
trace is near 3200 gauss. The concentration of Ii center was
4.8X10'7 cm 3.

most dilute crystals is taken as a measure of the spin-
lattice relaxation time, T&. This may, however, still
represent the time for heat conduction from the region
of the Ii center and not the time which might be calcu-
lated for transfer of energy from spins to phonons. The
hole has not been observed at 78'K so the large change
in recovery time occurs above O'K. The phonons in
potassium chloride corresponding to the appropriate
spin energy do not have an electromagnetic 6eld asso-
ciated with them. Therefore, the author believes that
the spin interacts ~with two or more optical phonons
instead of directly with one acoustical phonon.

The small peak in the bottom of the hole in the reso-
nance observed in crystals of low concentration is
possibly caused by cross relaxation. ' Two saturated
spins can exchange energy with two other spins having
the same total energy. However, the process cannot
proceed farther because of the absence of unsaturated

pairs of systems whose absorption suKciently overlaps
that of the saturated systems.
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With use of the generalized random phase approximation an attempt is made to estimate the absorption of
photons with energy less than the energy gap due to transverse collective excitations, The ratio of the surface
resistance due to transverse collective excitations to that of normal metals in the extreme anomalous limit,
calculated within the weak coupling theory, turns out to be too small to explain the observed data for
superconducting lead and mercury. The interpretation of the collective excitations as bound pair states is
brieQy discussed.

I. INTRODUCTION

ECENTLV Ginsberg, Richards, and Tinkham
measured the absorption of infrared radiation in

bulk samples and the transmission through thin 61ms of

*This work was supported in part by the Office of Ordnance
Research, U. S. Army.

several superconductors. ' The observed data were in
good agreement with the result of the theory of Mattis
and Bardeen, except for an interesting anomaly in the
case of superconducting lead and mercury. For these

D. M. Ginsberg, P. L. Richards, and M. Tinkham, Phys. Rev.
Letters 3, 337 (1959); D. M. Ginsberg, Ph.D. thesis, 1959 (un-
published); P. L. Richards, Ph.D. thesis, 1959 (unpublished).
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two metals they observed some structure in the absorp-
tion curve for photons with energy less than the energy
gap, indicating residual absorption in the gap. Similar
structure was found in the transmissivity of the thin
6lms. It seems likely that the structures observed in
both cases are due to the same mechanism. It has been
suggested that this phenomenon might be explained by
an anisotropic energy gap, although it is rather dificult
to account for the bump in the absorption curve by the
anisotropy alone. An alternate explanation was pro-
posed by Stern, ' according to which the observed dip in
the transmissivity of the thin Alms is due to the possible
dielectric anomaly giving rise to a perfect reQection of
the radiation not normally incident on the film. Apart
from the value of the frequency at which this anomaly
takes place, the frequency range where this eGect is
noticeable seems to be too narrow to explain the dip. He
also discussed the effect of some surface collective oscil-
lations as a separate mechanism for the case of a bulk
sample. Another possibility pointed out by a number of
people is to interpret the observed results as the absorp-
tion of radiation by low-lying levels of the transverse
collective excitations discussed in the works of Ander-
son' and Bogoliubov, Tolmachev, and Shirkov. 4' It is
the purpose of the present paper to investigate this
latter possibility.

On the basis of the generalized random-phase ap-
proximation introduced by Anderson, Rickayzen dis-
cussed in detail the roles of collective excitations in the
theory of superconductivity, including the eGect of the
transverse collective excitations on the Meissner eGect. '
Using his formulation we attempt to calculate the fre-
quency spectrum of the excitations and to estimate the
absorption of electromagnetic waves due to them. In so
doing we have to assume a simple form for the matrix
element of the two-body interaction because of the
difhculties in determining it for actual metals. Because
of this and other approximations used in the calculation
the result is bound to be of a qualitative nature.

In Sec. II the equations of motion for the collective
variables in the presence of an external electromagnetic
field are solved for a simple type of transverse collective
excitations which can couple with radiation. In an
attempt to get a physical interpretation of the trans-
verse collective excitations it is explicitly shown in Sec.
III that they can be viewed as bound states of a pair of
quasi particles. In Sec. IV the correction to the BCS
paramagnetic current density is calculated, from which
we can determine the surface resistance R, (Q) of a bulk
superconductor for frequencies below the energy gap.
The ratio of E,(Q) to the normal resistance in the ex-

s E. A. Stern, (unpublished).
e P. W. Anderson, Phys. Rev. 112, 1900 (1958).
4N. ¹ Bogoliubov, V. V. Tolmachev, and D. V. Shirkov, 2

ttrero Method tn the Theory of SNpereondgetevtty (English transla-
tion: Consultants Bureau, Inc. , New York, 1959), Chap. 4.' These possible explanations are discussed in detail by Richards
gnd Ginsberg in their doctoral thesis (see reference 1).

e G. Rickayzen, Phys. Rev. 115, 795 (1959).

treme anomalous limit is then computed and compared
with the experimental data. We shall not discuss here
the case of a thin Qlm because it is not clear how the size
aGects the collective excitations, although we would
expect more or less the same eGect as in the bulk sample.
In this work we consider only the case of zero tempera-
ture. The notation used here is the same as in Rickayzen's
article. The basic equations and their derivations in
Sec. II are almost the same as in Sec. VI of the latter
article, so that we do not repeat them in detail.

IL EQUATIONS OF MOTION FOR
COLLECTIVE VARIABLES

The Hamiltonian of the system is

&& 0 ~ k, ty 61t;CIh, ty Cg, tr

+ g VD(»k )C ',k k'+q, o -C k+q, oCk, o'& (1)
k, It.",q, ty, a'

where VD(»k') includes the unscreened Coulomb inter-
action. In the following V(»k') denotes the interaction
responsible for the superconducting transition, which is
screened and is predominantly negative. In terms of
quasi-particle operators introduced by Bogoliubov,

vko=gkckt vkc kt q Vkl ttkc kt+vkckt

Nk= z (1+ok/&k)', v k= ', (1 sk/-&k—)',
the collective variables in a superconductor are defined
as

p(Q) =Z. m(»Q)(v .*v. '+v 7.o),

& (Q)=& V(&t) (»Q)(v+ o*7 *+7 7 o), (2)

~tr(Q) = Zk V(&»)t(»Q)(vk+qo 7» vmqtVks)

where
l (k,Q) = ttkm k+9+vkvk+q,

qÃ(»Q) = ttkvk+q+vkgk+q

S(»Q) =Nkttk+q vkv~q—.

In the definitions (2) we have omitted the parts in-
volving pa+go*y~o and yI,~*y~g~ which, operating on
physical states, always give zero. The interaction
Hamiltonian with a transverse electromagnetic 6eld,

a(Q,Q) expr —iQ X—iQt+rtt] (3)

satisfying a Q =0 (throughout this paper we put 5= 1),
is given by

ne '"'+q'Q—k a(Q,Q)(2k+Q)
Xp(»Q)(Vko*V~qr' —Vktvkpqo), (4)

where
p(»Q)=gkvk+q vklk+q

and a=e/2tmc. An infinitesimally small quantity rt is
introduced in order to ensure that the interaction is
switched on adiabatically. With B=Ho+IIt we calcu-
late the equations of motion for the pair operators
y~~o*y~~* and Yk+@~yI,O with the help of the random-
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phase approximation, linearizing them with respect to
the BCS ground states:

Ã 7«+qo V«1

=(E.+E .)v ...*v. *+v.(e).(e) (k,e)
+-: (k,NB.(e)—:I(k,e)A. (e)

+2np(k, e)a(Q,Q) ke '"'+"', (5)

[+7«+ql'y«0)
= —(E +E«q)y«~qiy«0 —Vii(e) p(Q)m(k, Q)

—2N(k, e)B«(Q)—2I(k,e)A «(Q)

+2np(k, e)a(Q, II) ke '"'+&'

Since we are looking for the linear response of the
system in the ground state to the external 6eld, we can
treat the paii""operators as c numbers and keep only the
part varying as e '"'+&', thus replacing the left-hand
side of the equations by —(II+ip)7«+qo*p«i*
—(II+jg)y«+q, y«0, respectively. Then, it is easy to
derive the equations of motion for the collective vari-
ables, which are the basis of the present analysis:

P(Q) =E {v (Q)P(e) (k,e)+-: (k,e)B.(e))
Xm(k, e)Si(E«+E«+q)
—Z {—-'I(k, e)A (Q)+2nP(»e)a(e II) k)

X (k,e)S.(E.+E".), (6)

B (Q)=r..V(~,k){V (Q)p(e) (k,e)+-: (k,e)B.(e))
XN(k, e)Si(E«+E«+q) —Q«V(&, k)

X{——,'&(k,e)A «(Q)+2np(k, e)a(Q, II) k)
Xn(k, e)S2(E«+E«+q), (7)

A z(Q) =Q «V(Kk) {Vi)(e)p(e)m(ke)+-,'n(ke)B (Q))
XI (k,e)S,(E,+E„q)—P. V(Z, k)

X{—-'I(k, e)A (Q)+2 P(»e) (QII).k)
Xt(k,e)Si(E«+E«+q), (g)

where

S (g) =2g/[(Q+ jg)2—gq, S (g) =2II/[(II+ j7J)2—g2j.

We first note that the inhomogeneous term in (6) is
identically zero for a transverse field with a (}=0.As
was pointed out by Rickayzen, if V(k,k') is independent
of the angle between k and k' the terms involving a in
the above set of integral equations vanish and there will

be no effect of transverse collective excitations. Physi-
cally V(k,k') might be a complicated function of k—k'.
We assume that V(k, k') is only a function of the angle

p = k k'/kk', its dependence on k and k' being taken into
account only as a cutoG at eI, =co„where co, is the
average phonon frequency. I.et us write V(p) in the
form,

V(p)= Z V p"

The driving term in Eq. (7) for Bz(Q) is

If we replace the sum by integrals, it involves an integral
over e of the form,

( 1 1 )
de

l

——lS2(E«+E«+q),
ru—g v (E«+q E«)

where we can approximate e~q by e«+(k Q)/m to
order Q/k«. Since we are interested in the values of Q
such that voe«s&„we can readily show that this integral
vanishes because of the symmetry with respect to the
Fermi surface. The driving term in Eq. (8) for Az(Q) is
equal to

V„(K1)-
nge —P Q k k, Si(E«+E«+q),

m " E" & k" &1~~+@

where we took a in the s direction and (} in the g
direction. To order Q/k«, only the terms with even
e (WO) fail to vanish, and in general they take the
following form:

a(QQ)(ei K)"'(e2 K)"'(ea K)"'J(QQ)

where e~, e2, and e3 are the unit vectors in the directions
of a, Q, and a XQ, respectively, and Ni+N2+Na ——e is an
even integer. Therefore we may suppose Az(Q) and
Bz(Q) to be of this form also. Then, by the same
argument as we have used for the driving term in the
equation for Bz(Q), we can show that the cross terms
connecting Bz(e) and Az(Q) vanish. Similarly the
cross term connecting p(Q) with Az(Q) in Eq. (6)
vanishes when we sum over the angle of k, provided
that any one of ni, N2, and n& is odd. In this case Az. (Q)
are decoupled from the rest of the collective variables,

p(Q) and Bz(Q). Because the driving terms in the
equations of motion for p(Q) and Bz(Q) are small, we
can put them equal to zero as in the static case. The
equation of motion for Az(e) is now reduced to

( e«e«+q+eo )
Az(Q) = —Z V(It, k) —

kl 1+ IA«(e)
E«E~q )

~o(e«—e«+q)
+2n a(Q,Q) k Si(E«+E«+q). (10)

Since at present we do not have any detailed knowl-

edge of V(k, k') we have to proceed by assuming a
simple model. As the odd-power terms in (9) do not
contribute to the excitations which can couple with the
transverse field, we take as our simple model,

—V(P) = V[1+~~2(p)j (11)

where P2(p) is the I.egendre polynomial and ~ is a
parameter. For this form of V(p) the inhomogeneous
term in Eq. (10) becomes

1 Iq—neo+ V(E,k)(a k)l ——lS2( «+ «~q).
(E«+q E«)

e«(a K)((} K)
3no.iV(0) V— I.(Q,Q),

ep E' (12)
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where We may consider f&, s as a wave functiori for the pair in
momentum space. Rewriting (19) in the form

Z fs p([&o,vs o*vsr'g —vs o*vsr*&o}l0) =~),
p~c/ep 1 yyyi

dg . (13) and then making a projection into the two-body Pock
yy' (~+sr)' (y—+y')' space, we get an integral equation for fp, s.

with x=es/ep, x =es+q/ep, y=(Ã'+1)&, and cp=Q/ep.
From the expression (12) we suppose

Az(Q)=(a K)(Q K)E 'A(Q, O), (14)

as in the static case discussed by Rickayzen. Substi-
tuting this into (9) we get the equation for A (Q,Q):

[1—G(QQ) jA (Q)Q) =3croE(0) V(op/ep)L (Q&), (15)

where
p' dp

G(Q,Q) =—4soX(0) V —p'(1 —lu')
~ g2

Z(+ ~ l[&o,v o*~ *jl0)f, =Ef .

Now the commutator has already been calculated with
the random phase approximation. Substituting (5) into
(20) we find

Vg) (Q)m(E,Q)P m(k, Q)fs+q, s+ p Q V(k,E)

&«(~,Q).(k,Q)+~(~,Q)I(k,Q)}f ..
= (E Ez E—z+q) f—z+q, z (21)

1+Xx )
dxl 1+

The dispersion relation for this type of transverse
collective excitation is hence given by

fz+q, z=l(&,Q)(E Ez+q Ez—) 'Fzpq—,z) (22)

we rewrite Eq. (20) in the form
(17)

-', N(E,Q)Q V(k,E)e(k,Q)l(k, Q)(E—Ep —Es+q) 'Fs+q, p

1—G(Q,Q) =0.
IIL BOUND PAIR STATES

with the help of Eqs. (2).
A bound state is possible only for transverse waves,

that is, for fz+q, z proportional to the component of K
y+y' perpendicular to 0, for which the first direct term

X . (16) vanishes, and the left-hand side of (21) is negative.
(PP+sr)) (y+y ) Introducing a new quantity defined by

Before going into the calculation of the absorption of
electromagnetic waves due to the transverse collective
excitations, it would be desirable to get some physical
understanding of their nature. Anderson pointed out
that the transverse collective excitations could be re-
garded as bound pairs of the Cooper type in excited
states. ' In order to see this somewhat more clearly, let
us consider a pair of quasi particles and set up an
equation of the Bethe-Salpeter type for the pair.
Starting from the quasi-particle vacuum

l 0), that is the
BCS ground state, ~ we construct states with a pair of
quasi p'articles present:

+'p)=~'o*~ pi*I o) (18)

Let 8) be an eigenstate of the Hamiltonian with eigen-
value E (the energy of the ground state is taken to be
zero):

+~(&,Q)[p Z V(k,&)P(k,Q)

X(E Ep —Es+q) —'F p+q, s Fz+q, zj=0—, (23)

where we have omitted the direct term. Let us make the
following ansatz for F~+q, ~.

Fz qz=(e'K)(0 K)"& " 'Q "F (Q) (24)

where ei (X= 1, 2) are the unit, vectors perpendicular to
(}.As we shall see below, v=0 corresponds to p wave
and tp= 1 to d wave (that is the same form as considered
in Sec. II). For this form of Fz+q, z one can show that
the first term in (23) is zero to order Q/kg (correspond-
ing to Bz(Q) being negligible). Therefore we are left
with the equation for F (Q):

[1—-', P V(k,E)P(k,Q)(ei k)

&oe)=m').
0') can be expanded in terms of 4'p s) as

(19)
X(0 k).k-.—Q-.(E-E.-E +q)- lF.(Q) =o (»)

+)= Q fs, p+p s).

r When the collective excitations. p(Q), Az(Q) and Bz( ) are
taken into account, the true ground state is defined by p; 0)=0
where p s are the normal modes including the collective excitations
(see reference 6), and is no longer the BCS ground state. However,
for the purpose of this section we may approximate it by the BCS
ground state.

This determines the eigenvalue E for each value of Q and
F„(Q)is a delta function. This is a consequence of the
random-phase approximation. It should be noted that
this equation is slightly different from the one for A z(Q)
[Eq. (10) without the driving term); because of our
approximate ground state the pole, E= —(Es+Es+q),
is missing in (25).
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(ex k) (Q k)" l (k,g)
X

kn+1gn
F-(Q) (26)

The wave function for relative motion is simply

P„(r)=C P exp[i(k+Q/2) r]

If we introduce the center-of-mass coordinate
R= p (xi+xo) and the relative coordinate r= xo—x,
where x~ and x2 are the positions of two quasi particles,
the wave function for the pair in con6guration space is
given by

1t'„(r,R) =exp( —iQ R)p exp[i(k+Q/2) r]

harmonics, they are just linear combinations of Fi+'(8, po)

and Y&+'(8, y), respectively. We may note that the p-
wave state does not con'tribute to the absorption of
radiation since the matrix element of current density in
terms of the quasi-particle operators is

{~-I j (Q) I 0)

= -ncaa(2k+Q)p(k)g){+.
Iva+qo*vpi*lo), (30)

which vanishes for rt= 1 because of the factor p(k, Q)
that is proportional to k Q for a small Q. In general only
even parity waves contribute to the absorption of
radiation.

IV. CALCULATION OF SURFACE RESISTANCE(eg. k) (Q .k)"
X

k n+1Q o

l (k,g)
In this section we shall calculate the correction to the

"+q BCS paramagnetic current due to the transverse col-

where E(g) is the solution of (25) for a given gang C is lective excitation Ax(g) and determine the surface

a constant. In the limit of g ~ 0 the p and d wave take resistance of a bulk superconductor for frequencies less

the following forms, than the gap.
The paramagnetic part of the current density is

(ei r) ( r ) (1 d y sinker
y, (r) =C,

I

—
I I

——
I f(r),

r Ekrl t r dr) krr
(2g) j.(Q) = — Z(2k+Q)p(k, g)(7 *v *—7 + v o)

(e&, r)(ep. r) ( r ~
' (1 d q

' sinkrr From Eqs. (5) one can easily derive the expression for
pz(r) =Co

I

—
I I

——
I f(r), (29) the current density to first order in a(Q,Q) (see refer-

r' t kr) Er dr) kyar ence 6):
where ep ——Q/Q and j (Q f3) = —4n' P (2k+ Q)a (Q,Q)

f(r) =
~ o

dx [(x'y1)&—E(O)/2ep]-' costx

with t=r/m$p Note that. th. is is a function similar to the
one appearing in the correlation function of electrons of
opposite spin in the BCS ground state. ' Following the
same argument as in the case of the correlation function
one can show that for large r the function f(r) falls off in
the same way as

' J. Bardeen, L. N. Cooper, and J.R. SchrieGer, Phys. Rev. 108,
117$ (1957), Appendix D.

I(r)= dx [(x'+1)&——E(0)/2ep] ' costx
~ o

—

~ t q
1 E(0)- " If.„&,(t)= (or)' 2

& 2j 2e . r[(e+1)/2]

where E„~o(t)is a modified Bessel function. It can be
shown that I(r) falls off like exp( —t[1—(E(0)/2ep)')&)
for r))x $p, whereas the correlation function behaves like
e '. From this one can see that the bound-state wave
functions spread out as E approaches 2ep. For finite Q
the wave functions are deformed and the corresponding
energy eigenvalues become larger.

If we expand it'i(r) and 1t'o(r) in terms of spherical

Eo+Eo+q
~ kp'(k, Q)

(0+i'd)' —(Eg+Eg+ q)'

+-',cn Q (2k+ Q )A i (Q)

eo(ep —e~q)
X

Ea+E~q
, (33)

EoE~q (0+i') (Ey+E~—q)'

where the x and s axis are chosen in the directions of a
and Q, respectively. Let us define the kernel relating
j,.~ ~ and a as

3 oii(Q, Q) = —(c/4or)E„ii(Q,Q)a(Q, Q). (34)

po(pi —e~q) Ei,+Eo+q
X . (31)

EoEi+q (f3+i')' —(Ei,+Ei+q)'

The erst term yields the BCS paramagnetic current
density which, together with the London diamagnetic
current, we write

jp(Q, Q) = —(c/4z)E (Q,Q)a(Q, Q). (32)

Substituting Az(Q) given by (14) we can calculate the
second term:

k,'k
»(g,a) = —2cna(g, n) QA (g,n)g

a jp
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With the aid of (15) we get

9m' ( $p ) ' I.'(g,Q)
E„ii(g,Q) =— aN(0) V~

—
~
g', (35)

16 &)I.l,) 1—G(g,Q)

brought into the following form,

G(g,Q) = o
'—(15/4) o'N (0)VI (q,a&)

—(3/14) o'N (0)V(q/(o)', (40)

where o'=o/5, q=spg/ep, M=Q/ep, and
where $s——vo/1rep is the correlation length and Xz,'
=mc'/4rrrw' Be.cause G contains an imaginary quantity
ir), the kernel E„»has an imaginary part given by q'

g J
9m'

ImE, »(g, Q) = .N(0) V~
—

[ g I. (g,Q)
16 EXr,)

BG
X ~[0—0(g)], (36)

80

where 0(g) is the solution of,1—G(g, Q) =0.
Let us assume for the sake of simplicity the boundary

condition of specular refl.ection. Then the instantaneous
field inside a bulk superconductor is given by the
spectrum

~(g,Q) = —LH(0)/ ll g —0'/o'+E(g, Q)j ', (37)

where H(0) is the magnetic field at the surface. Because
we are interested in the infrared region we can neglect
0'/c'. Furthermore, for our purpose of crude estimation
we may neglect E„»in the denominator'; in other
words we consider the field inside the superconductor to
be largely determined by the ordinary kernel Ep. The
rate of absorption of a wave with frequency 0 is equal to

2(2rr)' Re[j(g 0) E(g,Q)]dg
f

Qx 2qpx+ q'li' —aP
X

~ „yx'+qfix+ (q'pp —oo')/4+up/(roe —q'Ii')

In deriving this expression the use has been made of the
relation N(0) V sinh '(ro,/eo) = 1, and the limits of
integration in I(q,co) are extended to infinity from
+co./es, which is allowed in the weak coupling case.
Although the first integral over x can be carried out
explicitly, it is rather complicated and we are compelled
to make an approximation that is valid only for small
values of q. Since, as we shall see below, the collective
excitations with frequencies below 26p can occur only
for small values of g, it will, at least partly, serve our
purpose. If q«2 and q'«4 —oP, we get

4 co GO

I(q,oi) =—— sin '—
15 (4—io')' 2

2g ~ 4 07]
+ + sin '—'. (42)

35 4—oo' (4—ro')& 2 I

In this case the dispersion relation of the excitation is
given by

20 CO CO

Im[E(g, Q)a'(g, Q)7dg. (38) P = sin '—
X ~p (4-oP)& 2

Substituting (37) for a(g,Q), one can find the resistance
E,(0) of a superconductor for 0(2es'.

3 |1 1 4
q

' + +
14 oP 4—oi' (4—ro')&

sin '—
I, (43)2'

20
1

" ImE„ii(g,Q)
E,(0) =—— dg.

s. ~ p [g'+Ep(g, Q)]'

where p is defined as

P—= (1—o ')/o. 'N (0)V. (44)

In particular the minimum value of cu corresponding to
q=0 is simply given by the solution of

P = ioo(4 —ohio') & sin —
'(&oo/2). (45)

The value of cop depends rather sensitively on the value
of o, the parameter of the angular dependence of V(fi).
For small 0., the frequency cop approaches very close to 2,
where the continuum of single particle excitation starts.
It may be noted here that the maximum value of g for
which co=2, is determined by

The problem now is to evaluate the integrals G(g,Q)
and I.(g,Q). By suitable transformations G(g, Q) can be

15m 7
P — 1+ q

2

8(mgx
(46)

if q is still small compared to 1. Unfortunately, for a

' Strictly speaking, this procedure is not correct because E„»
contains a singularity. In order to avoid this difhculty, we have to
start from the Maxwell equation for the vector potential with the
boundary condition of specular reQection:

LQs+Eo(QD)+ftooii(Q, D)jo(Q,D) = ff(O)//~. —
Let us take an average over a small range of Q around Q(D), a
solution of G= 1, assuming o(Q,D) varies smoothly with Q. If, for
sufficiently small aQ/Q,

(Q'+Xo)dQ~nQ/Xr, '&& f' ff:.,n(Q D)dQ—EQn J—aq.2

holds, we may neglect X„»in determining the 6eld. One can show
that this is the case here (The above inequality reduces to
nQ/Q»(4nr/5)gP'/cd) g (, Lsee Eq. (48)g.}
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reasonably strong angular dependence q, would not be
within the limit of applicability of our approximation.

For small values of q the integral L(Q,Q) can be ex-
pressed in terms of I(q,a&); the lowest order term is just
(2/rd')I(q, pp). Hence, for Q and 0 such that G(Q,Q) =1,
we get

I.(Q,Q) —8P/15oi', (47)

because of (40). If we substitute this into (36) and
rewrite the expression, expecting an integral over Q, we
find

0.08

„"x('„)'
0.06

0.04

Pe I
0 0.8

, ~'q' ~LQ-Q(~)j
ImE„ii(Q,Q) =-,'.

)i r, gpoi g(q, od)

(48)
0.02

8 Xr,' q'(op)
R, (n) =—P'ep

Sir Pp op'gLq(cd), rdj
(49)

The ratio of this to the resistance of normal metals in
the extreme anomalous limit,

R„(Q)= 3+ (pp)j, r/4) &(p4p

is equal to

R, (Q) 32 (XI,) & q'(o))

R„(Q)

Sir�

(4%3)& 4 Pp i or""gLq(op), &uj
With the help of (42) we can evaluate this ratio for
frequencies not too close to 2eo. The result for various
values of 0 is shown in Fig. 1.

V. CONCLUSION

The observed data of Ginsb erg, Richards, and
Tinkham seem to indicate that the absorption in the gap
starts from a frequency near half the gap frequency and
its maximum lies around ~ of 2eo. According to our
calculation, in order that the absorption due to the
transverse collective excitations can occur considerably
below the gap, the angular dependence of V(k, k') must
be quite strong; in our model coo

——1 requires a 4.
Otherwise they fall very close to the gap. As one can see
from Fig. 1, the ratio R, (Q)/R„(Q) obtained here is ap-

where Q(Q) is the solution of G=1 for a given 0 and

g(q, op) is defined as

g(q,~)—= ,o'E(0)V Bq

For small q&(2 the denominator of (39), Q'+Ep(Q, Q),
can be approximated by 1/Xrs. Then, we get from (39)
and (48) an expression for the surface resistance due to
the transverse collective excitation:

I.I 1.2 1.5 1.4 I.S 1.6 1.7
Cd =0/po

FIG. i. The ratios of the surface resistance for a superconductor
to the normal resistance in the extreme anomalous limit,
R, (Q)/R„(Q), as a function of frequency, calculated for various
values of p= (1—d')/d'N(0)V, where d' is the parameter of the
angular dependence of V(k,k').

parently too small to account for the observed structure,
although it shows a maximum for a frequency below the
gap. For example, if we take $p/)ir, for lead equal to 4,
the maximum value of the ratio is only about 0.02,
whereas the observed bump is at least of order 0.1.
Therefore it seems unlikely that within the framework
of the weak coupling theory the transverse collective
excitation can explain the observed structure in the gap.
However, we cannot exclude the possibility especially
because of the fact that lead and mercury, the only
metals so far known to possess this anomaly, have both
relatively small values of eD/T„so that our calculation
based on the weak coupling limit is probably inade-
quate. It is possible that corrections due to the strong
coupling would enhance the eGect of the collective
excitations.

It may be added that according to the expression (50)
the absorption due to the transverse collective excita-
tions is not likely to be observed in superconductors
with large values of $p/Xi. . This is consistent with the
fact that the structure has not been found in aluminum. "
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