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The partition function of the Ising model of ferromagnetism is
examined in the limit of high density in the anticipation that in
the limit of infinite density one recovers the Weiss molecular field.
The formal parameter of expansio'n is 1/e where s is the number
of spins in the range of the exchange potential (not restricted to
nearest neighbor interactions). In the absence of long-range order,
only ring diagrams in the cluster expansion contribute. These
give a divergence in the specific heat at kT, =Z:;&,v;; where e;;
is the exchange potential. This is the molecular field value for
the Curie point T,. In the presence of a magnetic field the partition
function is evaluated for fixed magnetic moment Jjt/I in the same
approximation, JI being . determined by minimization. This
results in a susceptibility differing from the molecular field theory
and hence an inconsistency in the theory.

The inconsistency is traced back to the observation that the
acceptance of ring diagrams is equivalent to the gaussian model
of Kac and Berlin which violates the sum rule Z; P pP=Ã.
Here p; is the "spin" per particle and E is the total number of

particles. This condition is reinstated by insuring the sum rule.
The result leads to the spherical model. Thus, a. consistent high
density approximation to the Ising model is the spherical model.
Below the -Curie point or for fixed magnetic field, M is again
held fixed and only the Fourier components of the spin density
with nonvanishing wave vector are "sphericalized. " The result .

leads to a physically acceptable model which becomes the molecu-
lar field theory at low temperatures or high fields and deviates
in O(1/e) in general. Formally, the results are simply expressed
in terms of a temperature dependent Weiss field. These results
differ from the ordinary spherical model which is physically unac-
ceptable below the Curie point. However, a molecular field modi-
fication of the spherical model due to M. Lax yields the same
result when properly interpreted.

It is shown that the above results are also valid (to the same
approximation) in the quantum mechanical Heisenberg model, for
temperatures above the Curie point.

I. INTRODUCTION magnets. 4 In the present paper, the Ising model is
studied and some quantum mechanical results are
given. The full quantum theory is reserved for a sub-
sequent study where the present work will be related to
spin waves.

Straightforward evaluation of terms of O(1) and
O(1/s) amounts to a summation over ring diagrams in
the cluster expansion. This is akin to the random phase
approximation in the theory of correlation due to
Coulomb forces. ' In the present case one finds a singu-.
larity in the specilc heat at that temperature given by.
the Curie point calculated from molecular field theory.
However, the susceptibility remains Rnite at this point
having a singularity at some lower temperature, More-
over, the theory in this lower temperature range is
undefined. It is therefore seen that the simple random
phase approximation fails.

It is a simple matter to discover the difhculty. We
define tt; as the s component of the sth spin, (taking on
the value &1), together with the Fourier transform

HE molecular field theory of ferromagnetism
founded by tA'eiss has all in all been remarkably

successful in the interpretation of ferromagnetism. ' The
origin of the molecular field is, as is well known, due to
the exchange interaction among spins. However, in
order to get the molecular Geld theory out of an
exchange interaction model, seemingly drastic ap-
proximations must be made in the statistical mechanics
of the model. Various re6nements introducing short-
range order have been introduced in the past by Bethe
and others, ' and exact moment expansion have also
been used to attack the statistical mechanical problem. '
In all of these theories, it is always remarked that in
the limit that the exchange potential becomes very
long range (s ~ oo where s is the number of spins in
the range of the exchange interaction), the molecular
6eld theory is recovered as a limit. This indicates that
the evaluation of the partition function could be studied
with profit by adopting 1/s as an expansion parameter—or alternatively to develop the free energy in a power
series in the inverse density.

It is the purpose of this paper to present the leading
(first two) terms in such an expansion through the use
of @ systematic cluster development of the free energy
developed by the author in the study of random ferro-

*This work has been supported in part by the Office of Naval
Research.

t Part of this work was done by the author as a consultant for
the Bell Telephone Laboratories.' See, .for example, C. Kittel, IntrodmctiorI, to Solid-State Physic
(John Wiley Bz Sons, New York, 1956), 2nd ed. , Chap. XV. Als
W. Bragg and E. Williams, Proc. Roy. Soc. (London) A145, 69
(1934); W. Heisenberg, Z. Physik 49, 619 (1928).' H. A. Bethe, Proc. Roy. Soc. (London) A166, 552 (1935).' J. G. Kirkwood, J. Chem. Phys. 6, 70 (1938), W.i Opechowski
Physics 4, 181 (1937).

tt(%)=(1/V&) Z tt'e p(stl 1) (11)
where q is a wave vector in the first Brillouin zone, i
the position of the ~th spin. The lattice spacing is unity.
From (1.1) follows the sum rule

(1.2)

Now, it is the essence of the random phase approxi-
mation to treat each Fourier component p~ independ-

s
o 4R. Brout, Phys. Rev. 115, 824 (1959), hereafter referred to
9 as I.

5 J. E. Mayer, J. Chem. Phys. 18, 1426 (1950};M. Gell-Mann
and K. Brueckner, Phys. Rev. 106, 364 (1957); N. Hugenholz,
Physica 23, 533,(1957);K. Sawada, K. A. Brueckner, N. Fukuda,
and R. Brout, Phys. Rev. 108, 507 (1957).
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ently which, therefore, violates Kq. (1.2). In order to
repair this damage, we still maintain the essence of
the random phase approximation but impose (1.2) as
a restraint. This amounts to the introduction of a
LaGrange multiplier or a new parameter in the theory
which is determined by (1.2). It then turns out that
above the Curie point one recovers the spherical model'
which theory is consistent in that the susceptibility and
specific heat anomalies occur at a common temperature.
This theory is presented in a different notation from
reference 6, in such manner that the analogy to molecu-
lar field theory is made clear. It also becomes obvious
that as s becomes large one approaches molecular field
theory.

Below the Curie point, we develop the theory for a
fixed long-range order which is fixed by minimization
of the free energy. It then follows that the molecular
field theory is correct at low temperatures (for the
Ising model), deviations setting in as one approaches
the Curie point. The specific heat turns out to be con-
tinuous at the Curie point having a cusp there which
is approached by a function having an infinite deriva-
tive.

Above the Curie temperature these results are
quantum mechanically valid in the same approximation
as the classical theory. Below the Curie point, the situ-
ation is not clear and further work remains to establish
the correspondence with spin-wave theory.

Thus we regard P e;;p;44' as a random variable dis-
tributed according to the law that the p, s are a set of
S independent random variables of value &i. chosen
with equal probability. Equation (2.2) is of the form
in&expPX) where X is a random variable. The expansion
of this function in a power series in P is called the semi-
invariant expansion. The defining equation of the M„s
1s

ln&expPX) =QL(P) "/44!]M„. (2.4)

The 3II„'s have the following simple, but extremely
important property. If X, 7 are two iN&IePenderrl random
variables and M„&~~, M„(~', and M„&~+~~ are the
semi-invariants generated by X, F, and X+V, respec-
tively, then

(2.5)M„&x+r&=M„&x'+M„&"l,

We now consider the first few 3f 's

M i=Q &lib 'lr ') =0. (2.6)

This result obtains because any odd power of p; has
an average =0 and the p s are independent.

Ms=+ P v, ,vl, &$(p,I4;ysl4&) (p&I4;)&14«1—4&)j. (2.7)
i&j k&1

The second term on the right-hand side of Eq. (2.7)
is zero for the same reason that M~=0. The first term
is nonvanishing only if two indices are paired. Hence

II. GENERAL CLUSTER DEVELOPMENT Ms=2 (&'4)'(~ ~41 '~4) =2 (s'i)' (2.8)

In this section, we review for completeness the cluster
development of the Ising model presented in I, special-
ized in the present case to a fixed array of spins on a
lattice. For variety, we present a slightly different
version of the derivation which may further one' s
understanding of the existence of the "dotted line"
diagrams cn I.

We first work out the complete partition function
with no restriction to long-range order. We must
evaluate

We diagram this term in Fig. 1(a). The notation is the
same as in I. M3 follows the same pattern. The only
nonvanishing term is the cycle term given in Fig. 1(b).

Now consider 3f4. Two obvious diagrams are the
cycle given in Fig. 1(c) and the ladder in Fig. 1(d),
corresponding to which are the semi-invariants

1s. cyclezV4 = Z Vz&V&yVI&;~v~»

M lsdder Q e 4/& 4 4) 3( s s)sg 2 Q s 4

lnZ=ln P exp[j9
{~s} 1&i&j&N

(2 1)
We must also consider the reducible cluster given by

z(')'( )'t& "J ' ' ')-( "J ')( ' ')3=0 (29)

1nZ=ln(expp g v;;lr;p;)+X ln2,

where the symbol &O((y, ;))) means

(2 2)

p;=+1 and the summation over (p;) means that one
sums over all configurations of p, s. v;; is an arbitrary
function of i—j whose Fourier transform is assumed to
exist. As it is convenient to use the notation of prob-
ability theory, Eq. (2.1) is rewritten

v;;v, ~V~ p~;, (2.10)

Thus reducible as well as unlinked clusters vanish when
a complete trace is taken. This is in contrast to the
case where long-range order is present as discussed in I.

Let us now go back to the diagram of Fig. 1(c).
Here there is the combination

&0((l ')))=—(1/2 ) r. O(fu')). (2.3)

4 T. Berlin and M. Kac, Phys. Rev. S6, S21 (1952). See also the
general reviewer article on the Ising model by G. F. Neme11 and
E. Montroll, Revs. Modern Phys. 25, 353 (1953).

FIG. 1. Cluster diagrams contributing to lnZ in the
absence of long-range order.
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(1/E) Q p;=R. (2.12)

where it is speciGed that none of the indices i, j, k, l
may be equal. As this is an inconvenience on summa-
tion, add and subtract the terms with k=i or j=l, or
both. Now sums are free and the new terms are given
by the diagrams Fig. 1(e) and Fig. 1(f). Here we have
inserted the dotted line convention of I. A dotted line
symbolizes the short-range spatia/ function (—8,;). All
sums over indices in a diagram are now free (except
that the indices attached by a bond are unequal).

The complete diagrammatic description is then the
following. An even number of solid bonds emanate from
each vertex. All irreducible linked graphs are allowed
as such LFigs. 1(a), (b), (c), (d)j, as well as all graphs
generated from them by dotted line insertions LFigs.
1(e), (f)j. No reducible linked graphs or unlinked
graphs occur. To each graph there corresponds an M
which in general is not trivial and must be worked out
in each case.

Before studying this cluster development in detail,
we Grst turn to the corresponding expansion in the
presence of long-range order. For this case we are
interested in the expression

inZii=ln P' exp+ P v,;p,p,,$, (2.11)
i&j

where the prime over Q means a sum over all con-
6gurations {p;}such that

Fig. 2, all nonvanishing diagrams are included up to
M3 inclusive. These diagrams are more numerous than
for the case of vanishing long-range order, as now one
may have an odd number of bonds emanating from a
vertex and reducible graphs of solid bonds do occur if
they are irreducibly connected by dotted lines. In
addition each diagram represents a more complicated
expression than for the E=O case since the entire semi-
invariant now enters. For some detailed examples, see
the appendix of I.

I ~ vijgiP j.
ig7'

(3.1)

In the case where v;, is very long range we may consider
the following limiting process. Let the number of spins
s in the range of the potential grow without limit and
let the strength of the potential v;; decrease like 1/z.
(This latter in order to keep the Curie point fixed. )
Also, for convenience we take the potential to be a
constant (J/s) up to the end of its range and zero
thereafter. Then the limit of (3.1) as z-+E is

1J 1J
——2 ua =-—(Z~')(Z~i)+O(1)
2 Ãi&~' 2 S

III. HIGH DENSITY LIMIT

We first give the argument why the molecular Geld
theory is a high density limit. The energy is

E is taken to be a number of order unity. Note also
that —1&R&+1.Equation (2.11) is recast into con-
venient form

1V Ã=—JE.'=—E Hm, i)
2 2

(3 2)

1nZii ——ln(exp P v;,p;p;)ii+lnW(R), (2.13)

where

W(R) =
&-'1V(1+R))

(2.14)

(O(fp'))) = P'O((p'))
W(R) (w)

(2.15)

Fxo. 2. Cluster diagrams contributing to lnZ in the
presence of long-range order.

In the form (2.13) we may now use the semi-invariant
expansion. As the steps leading to the diagrams are the
same as before we shall not present the details here.
For further exposition the reader is referred to I. In

where JE is the molecular field, H, i, and we have used
(2.12).
'

The qualitative argument given above is the moti-
vation for choosing an expansion parameter, the
quantity (1/s). It is then anticipated that the rigorous
leading term is the molecular field theory and that
corrections should give a reasonable qualitative de-
scription of the expected deviations, viz. , short-range
order. Furthermore, in real ferromagnets s is indeed
large at least of O(10) so that an expansion parameter
of 0.1 is quite appropriate. Indeed, it would be rather
surprising if the qualitative as well as semiquantitative
features of this work did not correspond to reality when
the correct choice of ~;; is made and the full exchange
coupling is used.

We now classify graphs according to their order of
magnitude in 1/». We first consider R=O and estimate
the order of magnitude of diagrams in Fig. 1. As the
temperature scale is entirely determined by the strength
of the potential we have in the region of the Curie point

Pss=o(1); PJ=O(1/s), (3.3)

where J characterizes the strength of the potential.
Thus every solid bond in a graph is O(1/s). We then
see that there are no terms of O(1) in Fig. 1. The
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leading terms are all of 0(1/s). In particular, Fig. 1(a)
has two solid bonds and one summation and hence is
0[(PJ)2zj= 0(1/z). Figures 1(b) and (c) are also 0(1/s)
whereas Figs. 1(d) and (f) are 0(1/z2) and Fig. 1(e) of
o(1/&2)

It is then seen that the leading terms are of 0(1/s)
and that these are the cycle graphs. We now proceed
to their detailed evaluation. We remark that the same
diagrams correspond to the Debye Hiickel theory in
the case of Coulomb forces so that the same techniques
apply. '

In particular the contribution to M„ from closed
cycles is

gn Q V4142V12~2 ' ' Vinil,

where g„ is a combinatorial factor and the spin factor
is obviously unity. To evaluate g„we fix one index in
a cycle, say i, and ask how many distinct ways there
are to arrange the remaining (n —1) indices which give
distinct graphs. (By a distinct graph is meant one which
contains diferent factors of v,; but which is still a cycle,
e g p 8]pvpg 34v4] is distinct from e~~e~4v4ga~ but is not
distinct from v22V24V41v12 or V14V42V22v21. ) The answer to
this question is (n 1)!/2—since (n 1)!—is the number
of permutations of the (n —1) particles, but half of
these permutations do not produce distinct graphs since
they correspond to the symmetric permutation about
the bisecting diagonal of a graph (this diagonal starting
at 21). The net result is

(n —1) t

(~n)from cycles=X P Vili2Vi242' ' Vinil. (3.4)
2 l2' ' "bn

The intermediate indices in (3.4) may be allowed to
overlap previous indices since this contingency has been
allowed for in the subtraction procedure that led to
dotted line graphs. This is a very important observation
and it is the central reason for the introduction of the
dotted line graphs. It goes without saying that the
indices on a single v;, are always unequal, i.e., i„/2„+1
in Eq. (3.4).

Using Eq. (3.4) we then have from Eqs. (2.2) and
(2.4)

t
Pn—lnZ=-,' P —P [v;„, v;n;,]S R 2 Q b2 ~ ~ ~ tv'

t'1&
+ln2+0~ —

~. (3.5)
Es2 )

We now turn to the evaluation of the nth term in (3.5).
The central remark is that if e;; is considered as a
matrix then the cyclic combination that appears in
M is a matrix product. If the eigenvalues of the matrix
~;; are known then the evaluation is trivial. However,
by translational symmetry of the lattice, e;; is a function
of (i—j) alone. Therefore its eigenvectors are exp(2q j),

where

1 t'1q
Z 1nl 1 Pv(q) j+in2+Ol —

I

2Ã c ! 22)

v(q)=Q v, ; exp[i' (i—j)j. (3 7)

q is in the first zone and we have used the result

+2 V(q)=0. Further, we have assumed that the sum
on e and q are interchangeable. A detailed investigation
of (3.6) is given in Sec. IV.

We now turn to the case where E is fixed. E. is con-
sidered to be a constant of 0(1). Then there exists a
single diagram of 0(1) which is Fig. 2(a). No other
diagram exists of 0(1). Hence, the total contribution
to lnZ of 0(1) is

E
Q v;i(p, ,p;) =—v(0)R',
i(j 2

(3.8)

where v (0) is defined by (3.7) for q= 0 and R' is assumed
to be 0(l). Equation (3.8) is the same as (3.2) as
expected.

Terms of O(1/s) are given by Figs. 2(b), (c), (d),
and (e). Generalizing to arbitrary order, one sees that
included in 0(1/s) are all closed cycles of solid bonds
as well as all open chains of solid bonds whose ends are
attached by a dotted line. In eth order there are ob-
viously e more of the la,tter than of the former corre-
sponding to the e places where a dotted line may be
inserted into a closed cycle of e bonds. The contribution
to M„/n! from these diagrams is then

(n-1)!
{ P [Vili2 ' ' ' Vin&1]~n; cl

2 &2' ' '~$

—n P [Vili2 ' 'Vinin+15in+]i]]Sn;pp j, (3.9)
&2' ' '~2V+1

where S,i and S,~ are the spin contributions to the
mth semi-invariant from the spins arranged in the closed
and open chains, respectively. The spatial part is the
same as in (3.5) and hence we have

(n —1)!
iV P [v(q)]-[S„,„—nS..,..]. (3.10)

2

For orientation we calculate the S 's for the first
few n's

S, =((pip )')—(p p )'=1-R',
S2;op=(plp2p2p2) (p1p2)(p2p2) R (1 R )t

with eigenvalue v(q) where v(q) is the Fourier transform
of e;;. Here q is a vector in the reciprocal lattice space
and may be taken to be restricted to the 6rst Brillouin
zone. For simplicity we have assumed one spin per
unit cell. The net result is that Eq. (3.5) may be written

1—InZ= p p —Dlv(q))" +ln2
S 2S~=& e e
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S2.,1
—252, ,v

——(1—R')'

S3;01= (pl»42»42»43»48»41) 3(p lp 2) (p2p 3p 3»41)

+2(pl 2)(usp8)(pspl)
= 1—3R4+2R',

S3;op —(pip 2p 2p 3p3p 4) 2 (»lip 2) (p 2»43»43»44)

(»42»4 8)(»4 l»42»48»44)+ 2 (»4 l»42) (»42»48) (p8»41)
=R' —2R4—R'+2R'= R'(1—R')'

Ss, ,i—3S3 .v
——(1—R')'.

We shaH now prove that S„.,i—23S,,v=(1—R')".
This may be done in two ways: by recursion relations
and induction or by trickery. We give the latter since
it will turn out to be essential to further understanding
We assert that the expression

no other linked contributions in (3.15) since this would
involve contraction over more than e indices and hence
would give terms of O(1/Ã). Recalling the definition
(2.15) we thus have shown thatr

E
InZn =—v (0)R'+-', Q ln(expPv(q) p,*p,)18

2 (AM

+!nW(R)+O(1/s2). (3.17)

Equation (3.6) is included in (3.17) by putting R=O
and including q=0 in the second term.

Equation (3.17) is remarkable when it is noticed that
the original problem is the evaluation of

!n(exp2 gq pv(q) pq*pq).

In fact we have

where
ln(exppv(q) p,,*p,),

pq= P p, , exp(iq i)

(3.13)

ln exp — 8 Q p& p&
2

is the same as +$(p) /28!1LM j,v,«' where pM„),r,tq'

is given by the qth term in Eq. (3.10). To see this, first
expand (3.13) in p

ln(expPv(q)pq*pq)=g„gv(q) j"/33!M ("q*"q . (3.14)

Using the definition of pq and 3f„we have by direct
substitution

l!f-'"q*"q'= 1/& 2 ((» 'lp»1" p'-p»-)
$1 ~ ~ ~ $

0

2n

—(P~1P11)(»4'2»4»2»4~.P».)—

+(—1)" '~(p'u»1)" (p'-p». ))

XexpLiq (il—&1+ +i„—j )]. (3.15)

The exact structure of sums and differences in Kq.
(3.15) is unimportant. What is important is that the
unlinked terms that come into (3.15) are cancelled out
by the semi-invariant structure, by virtue of (2.5). We
must then examine the linked terms only. Of these, the
closed cycles of which there are cV")&(33—1)!/2 giveS,i. Open chains give

n!—S„., P expLiq (il—j„)j
AT~ ~ ~ ~2 iV &&' ' '422s

2n +&&

=—S„,„PexpLiq. (i—j)7. (3.16)
2

The inequality j~i arises from the fact that we are
taking open chains. Now P;expgsq (i—j)j=0 for
TWO and hence P;~; expLiq (i—j)g= —1. Therefore,
(3.16) contributes —(23!/2)S„,,v. Thus, (3.10) is con-
tained in (3.14). Finally, we point out that there are

= —, p ln(exppv(q)»4q*»4q)+O~ —
~. (3.18)

E.s'

Equation (3.18) is the analog of the random phase
approximation in the Coulomb problem' and it arises
for the same reasons. The high density limit (restriction
to ring diagrams) effectively decouples the various
Fourier components of the (spin) density fluctuation.

The evaluation of (exppv(q)pq*pq) is effected by the
calculation of the moments ((pq*pq)"). This is carried
out in the Appendix where it is shown that

((pq*pq)")= (pq*pq)"

(p,*p,)= 1—R' —=e.

(3.19)

(3.20)

Equation (3.20) is a consequence of the sum rule

pq (»4qepq)=X when it is recognized that for qWO,
(pq*pq) is independent of q and ~»43~2=1VR2, Hence we
get

(exppv(C)pq*pq)=
1—Pev(q)

(3.21)

Substituting into Eq. (3.18), gives

Ã
1nZn ———v(0)R' —-', P in/1 —Pev(q)$+lnW(R), (3.22)

2 qM

1 Equation (3.17) may be rewritten more concisely by using
S 0= (&)'&

lnZn = 8 Zq ln(exppv(q)»4q*pq)+inW'(E).

where we have again used P v(q) =0.
Equation (3.22) is the central result of this section.

However, we should also call attention to Eq. (3.1'7)
as an interesting by-product of the analysis leading to
(3.22). We point out parenthetically that for the
problem of Coulomb correlation in the Debye-Huckel
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limit one makes the approximation

lnZ—= ln(1/0) ~r' exp( —P P v;;)dr," ~ dr„

l Z»(e pP (q)p.*p ),
where

p =P e'q"' and v(q) = v(r, ,)e'q"'~ dr, ,
'

i

((p.'p.)")=~ l

IV. THERMODYNAMIC CONSEQUENCES
AND DISCUSSION

(3.23)
1 C„C/2 1 C

1V k (x—1)i 2 (T/T, 1)i— (4.7)

It is thus seen that retention of all terms in 0(1/z)
yields a singularity in the specific heat at the Curie
point calculated by molecular field theory.

To characterize the nature of the singularity we use
Lax's work. ' He shows that in the region x)I that

F(x) =F(1)—C(x- 1)&.

From our analysis it is seen that F(1)—1=0(1/z). C is

a constant —0.8 for Lax's three cases. Thus near the
Curie point we have

E P BlnZ

1V BP

P (q)

2X q 1—Pv (q)
(4 1)

where (0),„„bl,,„means the ensemble average of 0
as distinct from (0). Then identification with (4.1)
leads to"and the specific heat is

We 6rst investigate our results in the absence of a We now interpret this result in terms of short-range
magnetic 6eld with the assumPtion of no Iong-range order. This is obtained by noting that
order. Using Eq. (3.6) we get

s P v(q)(Pq Pq)ensemble av, (4.8)
q

C. 1 BE P' BE 1 [9v(q)]'
(4 2)

1Vk Nk BT /V BP 2X s (1—Pv(q))' (Pq lSq)ensemble av =
1—Pv(q)

(4 9)

The functions arising in (4.1) and (4.2) have been

studied by Lax' and Kac and Berlin' for nearest
neighbor interactions. One introduces the function F (x)
dehned by

Using the result that

1
Pq*yq = 1+—Q (P,P, )ensemble av eXP[iq. (1—j)], (4.10)

S
F(x)=P

q x-v(q)/v(0)
(4 3) and inverting the Fourier transform, we have

kT, =v(0).

' M. Lax, Phys. Rev. 97, 629 (1955).
s P. W. Anderson and H. Suhl (to be published).

(4.6)

In this notation we find

E/1V (0v) = —[x'F (x)—x], (4.4)

C„/Xk =—[x'F' (x)—2xF (x)+1], (4.5)

where x=1/Pv(0). x is the temperature measured in

units of v(0). F(x) is plotted in reference 8, Fig. 2.
From the forms (4.1) and (4.2) we see immediately

as P —+ 0 (T—& eo) that E—+ 0 since P v(q) —& 0.
Similarly C, —+ 0 like P'. This corresponds to the

breaking up of short-range order as discussed below.

From (4.2) we see that C, becomes singular at P,v(q )
=1 where q is the value of q for which v(q) is a
maximum. In a ferromagnet q =0. In an antiferro-

magnet q is an extreme point at the end of the
Brillouin zone. [E.g. , in a cubic lattice q is at the
corner (sr,sr, sr) if one of the cube corners is chosen at 0.]
Intermediate values of q are also possible in some

models (see Anderson and Suhl). s In this paper we shall

only discuss the usual ferromagnet with q =0. For
this case C, blows up at the temperature T, where

1 Pv(q)
(lS iP j)ensemble av = exp[iq (i—j)];

q 1—Pv(q)
i 0j. (4.11)

For
~

i—P large, one can estimate (4.11) very simply

by writing v (q) —v(0) [1—nq'] where n =0 (z&). In-
serting into (4.11) and carrying out the integration

gives

1 exp( —.Ii—jI)
(P;Pq)ensemble av= fOr (1—3 ~))1, (4.12)

where s=n &[T/T, 1]&. As T~ T.—, le~0 and the
correlation length becomes infinite at the Curie point,
i.e., short-range order becomes long-range order at
T= T'

We now examine the susceptibility by assuming the
existence of long-range order E. To the free energy
one must add SyEH where y is the magnetic moment

per spin and H is the magnetic Geld. R is determined

by minimizing the free energy with respect to it.
[Equivalently, one may sum on R and carry out the
integration by steepest descents. This adds a negligible

"Alternatively (lsq*lsq)ensemb)e av =8 lnZ/SPv (9).
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Equation (4.14) is suggestively written

R= tanhgyH, ii),

S(~, )-
H, ii =H+ v(0) —— R,

7- P
where

Pv(q)
S(~, )=——Z

N p 1—Ppv(q)

(4.15a)

(4.15b)

The deviation from the usual molecular 6eld is then

(1/y)S(P, p). This is a temperature dependent effect
which vanishes at high field (p ~ 0) or high temperature

(~ o).
For small fields Eq. (4.15a) can be expanded out and

solved to give the susceptibility (defined as magnetic
moment per spin)

x= lim
~-P H 1—Pvp+S(P; 1)

(4.16)

term of O(lnN) to F.) We then have from (3.22)

E
lnZ(H) =—v(0)R' —p P in|1—Ppv(q))

2
+in W(R) Ny—RH, (4.13)

with R determined by

1+R 1 Pv(q)
—,
' ln =+ Pvo ——Q R=PyH. (4.14)

1—R N p 1—Ppv(q)

or alternatively
Q pz=N (5.1b)

It is immediately seen that the ring diagram approxi-
mation, of which Eq. (4.9) is a consequence, leads to a
violation of Eq. (5.1). This is not surprising since it
was shown at the end of Sec. III that restriction to ring
diagrams is equivalent to assuming that the all the
p,~ s are independent, a clear violation of the condition
(5.1). It thus appears that a straightforward expansion
in powers of 1/z fails because of the violation of (5.1).
We therefore abandon the original plan and modify
the term in 1/z in order to assure that (5.1) is satisfied.
At this point we can no longer claim that the answer
obtained is a rigorous high density limit, though the
author feels that this is the case. This feeling is based
on the fact that the sphericalization introduced below
still keeps the Fourier components of the spin density
fluctuations as independent as possible. Hence, one
stays as close to the random phase approximation (sum
on ring diagrams) as possible. In the Coulomb problem
this approximation gives a valid limit since the density
fiuctuations remain bounded l lppl' 1/(q'+~')). In
our problem, the free random phase approximation
leads to unbounded fluctuations ( l

@pl�'=

1/l 1—Pv(q)))
and hence a restraint is necessary. It is possible that a
formulation of the problem in the grand ensemble may
lead directly to the results of this section, but we have
not carried through such a proof.

To show how to introduce the restraint, we review
the steps of Sec. III first in the absence of long-range
order. The original problem was the computation of

(4.17)
&II exppPv(q)I~pl'» (5.2)

where we have used (4.3). From (4.16) it is then seen

that the Curie point, defined as the place where

x ~ pc, no longer occurs at Pv(0) = 1.
This, then, is the dilemma of the present theory.

Whereas C, blows up at T,=v(0)/k, x remains finite.
The difference in the two expressions is that C, contains
terms in O(1/z) only whereas 1/x contains terms in

O(1) and O(1/z) both. If only terms of O(1) are retained
in x, then the divergencies in C, and x coincide. This,
however, is clearly improper on physical grounds, for
the terms in O(1/z) represent short-range order and
should appear in the presence of a magnetic field as
well. Furthermore, it is very easy to show that the
infinity in g does not occur at T)T,(Pvp(1). However,

S(P; 1) is undefined in this region and the theory is
left ambiguous. The resolution of these difBculties is
given in the next section.

V. INTRODUCTION OF THE SPHERICAL
CONSTRAINT

After Eq. (3.20) we pointed out the existence of the
sum rule

(5.1a)

where we have written the Hamiltonian in Fourier
transform space. Making use of pp~=p p and v(q)
=v( —q) (this latter assumes inversion symmetry),
(5.2) may be written

&II exptlv(q) I~pl').
q&0

(5.3)

The essence of the approximation of Sec. 3 is to evaluate
(5.3) as

H (exppv(q)lp, l'&, (5.4)
q&0

which together with

&(I~pl') &= !&l~ I'&" (5.5)

F(( I~pl')) =,„ll expL —
l~p I'/& I~pl'&)

&ls. l'&"p&p

(5 6)

yields the results of Sec. 3. It is readily seen that (5.5)
may be satisfied by adopting a continuous probability
distribution given by
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Evaluating (5.3) with (5.6) obviously yields (3.6) with
(~p»~')=1. This is the Gaussian model of reference 6
and yields the same results. (Recall p, is complex so
that a Gaussian distribution on p; leads to a Poisson
distribution on

~ p, ~

'.)
To include the restraint (5.1) we retain (5.6) but

with (5.1) imposed. For (~ p,„~')=1, this is

F((l~»l')) = ll expL —ls»l'3&(Z ~»' —&)
a

=g—~8(Q p '—cV) 0& ~p '~ (m. (5.6a)

where
pv(0) =F(x),

x= (1+PS)/Pv(0).

(5.12)

(5.13)

As discussed before, x=1 is a singularity in F(x) ac-
cording to F(x)—F(1)—C(1—x)& for small (x—1).
From (5.11) the specific heats is 285—/BT or in terms
of the parameter x

where we have used (5.10) and P» 1=1V. The parameter
8 is determined by (5.10) which is cast into the form
Lusing F(x) defined by (4.3)$

For large 1V, (5.6a) is normalized as it stands since

f
dxi. . dxg 5(Q x; Ã)—=e~

e) p J,

iC, i db i Bx=- 1+Pe(0)—.
klV 2dT 2 Bp

(5.14)

2~i ~ c-i&e

d(P&) II lu. l'«p& —l~ I'
„g&0~ p

+P~(q)l~»l' —P~l~»l'} ~""" (5 7)

Each of the
~ p» ~

integrals is trivial and the last integral
is done by steepest descents resulting in

(1/E) lnZ= ——,
' g» lnL1 —Pw(q) j+-',P5+ln2, (5.8)

where
w(q) = » (q) —h, (5.9)

in the limit E—+ ~. It should be noted that the new

distribution (5.6a) is the analog of the microcanonical
ensemble on p„. whereas (5.6) is the canonical ensemble.
In both cases the subdistribution functions in the limit
as Ã —+ ~, are the same.

Inserting (5.6) into (5.3) and using the integral
representation of the 8 function gives

(expp& (g) ~ jl» ~
)spherical

g&0

At the singular point x=1 it is evident that gx/gp= 0.
We therefore have C„/E= (1/2)k and dC„/dT-+ —~,
corresponding to singular behavior in the slope of C,
just above the Curie point rather than C, itself as in
Sec. 4. The Curie point is given at x= 1 which may be
written

P.w(0) =1, (5.15)

where we have used the deGnition (5.9). The analogy
with the molecular Geld result p,n(0) =1 is evident. We
shall discuss this point at the end of this section

Again one may interpret the onset of ferromagnetism
in terms of increasing the short-range correlation dis-
tance K ' defined in Eq. (4.12). In fact, the entire
analysis (4.9)-(4.12) may be taken over with s(q)
replaced by w(q) since (I p» I )ensembie av= Li pw(q) $-'.
Remembering that w(q) —w(0) =e(q) —w(0)——v(0)nq',
we now have for T&T, K=~ &(1+P,hf &P'/T, 1$&—
where P,b= O(1/s).

When a magnetic Geld is present, we still follow the
development of Sec. 3, considering the partition function
for Geld E., later determined by minimization. The
restraint condition may now be written

and the saddle parameter 5 is determined by

2 1/Li —Pw(q)1= &, (5.10)

IJ,p'= SE.',

Q p '= 1V(1—R') =1V».

(5.16a)

(5.16b)

which is the same as the restraint (5.1) when it is

recognized that ()p» )'),„„~bi«,——1/$1 —pw(q) J. Equa-
tions (5.8), (5.9), and (5.10) are the equations of the
spherical model as given in references 6 and 8 in slightly
different notation (adopted in order to bring out the
analogy with the work of the previous sections). The
analogy with Eq. (3.6) is marked, the whole effect being

the substitution of w(q) for»(q) and the addition. of
the 8 term in (5.8).

The thermodynamic consequences of (5.8) are easy
to evaluate. The energy is given by

@+0

Corresponding to (5.6), we now adopt the normalized
probability distribution for q~0

F(f ls» I')) = (1/~") II expL —
I~» I'/~d&(Z I ~» I'—& ).

(5.17)
We have for fixed E

(1/Ã) lnZ=-', Pv(0)R'+1nW(R)+PERH

+ln(exp-', P P» (q) ~ p» ('). (5.18)

2
(5.11) The last term is now to be evaluated with the distribu-

tion function (5.17). Going through the same steps as
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those that led to (5.8), we obtain

(I/E) lnZ = -,'Ps (0)R'+lnW(R) +PERH
—s Z»[I —Pew(q)]+sPe3

g+0

=-',Pw(0)R'+lnW(Z)+PERH
——', P in[1—Pew(q)]+-,'P3, (5.19)

Fxc. 3. Schematic
plot of C, vs T. Cy

Tc

where we have used the delnition (5.9). The saddle
parameter 8 is determined by

=Ã
s~ 1—Pew(q)

(5.20)
=Z(I+Pew(q)+Pew(q)]'+" )=Ã.

s&s 1—Pew(q)

Using Q r(q) =0, we then obtain
which is the restraint condition (5.16b) when it is
recognized that (~tt, ~')e», ~b~, , ——e/[1 —Pew(q)]. Fi-
nally R is determined by minimization which gives" limP3=~ P'—P[s(q)]' ie,j (5.24)

where
If.= tanhPyH. ttR, (5.21)

(5.22)

Pew(g)

To obtain (5.22) we have used the saddle condition
(5.20) repeatedly, together with P» 1=1V so that

so that Pb —+0 exponentially. Therefore in the region
T &0 w(0) ~ s(0) and all equations become the
molecular field equations. This must be since a given
spin "sees" an average field at low T, spin Quctuations
being exponentially unlikely.

The Anal remaining point of interest is the specific
heat for T&T.. We take H=O. From (5.19) follows

s [1—Pew(q)] E/1V = ——,'w(0)R' —-', 3. (5.25)

To obtain the susceptibility y, the linear approxima-
tion to (5.21) is used and gives

x=
kT 1—Pw(0)

(5.23)

"I.ax has examined the spherical model under the same cir-
cumstances as the present work. ' His Eq. (2.21) corresponds to
Eq. (5.20) with the identification of the saddle parameter t, as
t.=1/e+iib. His formulas (3.17) (with P&=M'=0 in the ferro-
magnetic case) and (3.18), and (5.1) (specialized to spin ~~) are
the same as our (5.22) and (5.21), respectively. However the
discussion after (3.19) in Lax's paper is in error. In fact, t, should
not be replaced by 'A, but is given by the above equation with 8
determined by (5.20). In other words I ax's equation, Eq. (2.21),
must be taken literally even below the Curie point. I am grate-
ful to Dr. Lax for a fruitful discussion of this point.

in marked analogy to molecular field theory which
contains v(0) in place of w(0). The theory is now
consistent in that the anomalies in C„and I occur at
the same temperature, viz. , P,w(0) = 1.

Equation (5.23) is the standard spherical model Eq.
(8) for small H. For large H Eq. (5.21) is not included
in the original spherical model' but is included by Lax'
when the correction in footnote 11 is taken into account.

For T&T, ; Eqs. (5.19), (5.20), and (5.21) apply. ln
particular the spontaneous magnetization curve is
obtained by setting H=O for T&T,. At very low tem-
peratures, it follows from (5.21) that e~O exponen-
tially. From (5.20) one may then get the behavior of e

so that in the present theory BC,=O at the Curie point.
The qualitative character of C, is sketched in Fig. 3.

The net result is that below the Curie point our
modified spherical model gives the molecular field
theory at low T. As the Curie point is approached,
deviations of O(1/z) from the molecular field theory set
in. A measure of the deviation is the value of the Curie
point itself. In the molecular 6eld theory this is given by

kT,=s(0). (5.25)

In the present theory we obtain

(kT )"h=&(0)-~
where 3&0 so that (kT,)„q&(kT,),l s,M. Quanti-
tatively we have from (5.12)

where

t'(0) f [&(1)—171
kT, = =s(0)) 1—

F(1) & P(1) ) (5.26)

~(I)=—ZE s 1—s(q)/s(0)
(5.27)

C„ is then calculated by differentiation with respect to
T. At low T, 8 —+0 and one recovers molecular held
theory. The only interesting region is the Curie point
itself. A straightforward but tedious diGerentiation
yields

lim C„=1/2k
F~Tc
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F(i) has been evaluated by Lax for face centered cubic
(s=12) body-centered cubic (s=8) and simple cubic
lattices (s=6) for nearest neighbor interactions. The
results are F(1)=1.34(s=12); F(1)=1.39(s=8); F(1)
=1.52(s=6). The correction [F(1)—1) is roughly pro-
portional to 1/s as expected. In the limit of large s we
note that the form,

v(q)/v(o)
F(1)—1=+

» 1-v(q)/v(0)
(5.28)

shows that F(1)—1=0(1/s) since only those q's lying
within a volume of O(1/s) of the origin contribute.

where
(O({S;}))—= trO/tr1.

We now turn to the second simplifying feature. If
each of the scalar products is expanded out in (6.1)
using S~ S» ——S~,S»,+SI+Sp +ST»+ where S~ are the
usual (1/K2) (S,&»S„), then it is immediately seen that
mixed terms do not occur. If one begins with Si,S~,
then one is forced to keep only s components throughout
the product for otherwise the trace vanishes. For sim-

plicity we restrict ourselves to spin ~ so that the S s
are Pauli matrices. In this case we have 0'=1 and
0+o==2 or 0 depending on whether the initial spin is

VI. QUANTUM THEORY

The quantum theory of the Heisenberg ferromagnet
PI=~ P v;;S,"S;) is intrinsically more complicated
than the Ising model. In this paper we shall not give
a complete solution of the high density limit, since for
T&T„one has spin waves which complicate the
problem.

However, in the high density limit for T&T„ the
theory is identical to the Ising model. In fact restriction
to ring diagrams leads to two simplifications. The first
is that there is no commutator problem. It turns out
that in the quantum case each ring diagram of the
Ising model is replaced by (1/e!)P[m! orderings of the
e bonds in the ring). Since each S, appears bilinearly
in a ring, the commutator that results from a change
in the order of the factors is linear in S, the trace of
which vanishes. Thus all nf orderings have the same
trace. This simpli6cation does not exist below the Curie

point where the subtrace for fixed S, is taken. It is this
complication that gives rise to spin waves in the present
theory.

Having established that above the Curie point the
commutator problem can be ignored for ring diagrams
we then have

00

ln(exp P Pv;;S,"S,) ~-', Q Q—
q n=1 Q

tr[(S& S&) (S. S&)]
&Pv(V))" (6.1)

up or down. For this simple case we then have

tr[( g a» o„al] tr[ag,' o„,']

2 tr[a,~a,
=3. (6.2)

To arrive at (6.2) we have used the following. The first
term on the right-hand side of (6.2) is 1. The second
term gives a nonvanishing result if the n spins in
question are all up and zero otherwise. There are
2N " such states. But the 2 "factor is just cancelled
by the value of the nonvanishing matrix element which
is 2". The result is that for spin ~~ the sum on ring
diagrams gives

ln(expP g v;,o; o;)= ~3 g» in[1—Pv(q)). (6.3)

The first singularity is at P,v(0) =1 or the same as the
Ising model.

One may then improve on the model by spherical-
ization noting that restriction to ring diagrams is
analogous to assuming the probability distribution (5.6).
The spherical condition would restrict the spins to the
sphere 8(P a,» —31V) which introduces the parameter 8

in complete analogy to Eq. (5.8).
We reserve a full discussion of the quantum calcu-

lation for a future study where the relation of the
present work to spin wave theory will be given. We
remark however, that it appears as if the approxima-
tions of this paper neglect the dynamical interaction of
Dyson. "

VII. CONCLUSION

We present a brief summary of the methods and
results of this paper. A straightforward expansion in 1/s
is given by a selection of ring diagrams alone. This
corresponds to the Gaussian model of Kac and Berlin
in which each of the Fourier components of the spin
fluctuation density are independent. The analogy with
the Debye-Huckel theory is complete except that in
the present case v(q) has an attractive domain in q
space. This latter circumstance gives rise to very large
fluctuations in the spin density leading to Qagrant
violation of the sum rule (5.1). It thus appears that no
expansion in 1/z is possible.

Abandoning this approach, but retaining the funda-
mental spirit of the random phase approximation, we
insure the sum rule is obeyed by introducing it as a
8 function. This leads to the conventional spherical
model above the Curie point. Below the Curie point,
the magnetization is held fixed and later determined by
minimization of the free energy. The Fourier com-
ponents of spin density fluctuation corresponding to
q/0 are now separately sphericalized. This procedure
leads to a magnetization curve describable in terms of

'~ F. J. Dyson, Phys. Rev. 102, 1217 (1956).
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a temperature dependent Weiss field. At low tem-
perature, one recovers the usual Weiss field and near
the Curie point deviations occur of O(1/s). Above the
Curie point the specific heat decreases corresponding to
break up of short-range order. The short-range order
has a range (T—T,) & which shows how ferromag-
netism sets in at T,. Finally, it is shown that to the
same approximation above the Curie point these
results are valid for the Heisenberg model as well.

The difhculty introduced by sphericalization is that
the original program of establishing a high density
limit has not succeeded. Though the approximations
seem reasonable, one has lost control of the original
parameter of smallness. This is the big question mark
of the method given in this paper. It also remains to
6nd an approximate quantum mechanical expression
below the Curie point which will enable one to connect
the low-temperature or spin-wave region to the high-
temperature or Ising model region. At the time of the
writing of this paper an interpolation formula for
&0,+0, ) has been found, but there are still difhculties
in how to use it to find a consistent approximation for
the free energy.

APPENDIX

We prove Eq. (3.19) by expanding the moment (we
take qWO)

&(I~ I')"&=1/&" 2 &i'u
g1 ~ ~ ~ 5+
l&' ' '2n

&&exp[iq (i~—j~+ +i„—j„)]. (A.1)

&p;p, ) had a value completely independent of its indices
(i.e., p, did not Quctuate) we should find &~p, ~m&=0 and
in general &( ~ p, ~')")=0. This is in fact the case at T=0.
It is the special value of the moments (p~~ p~„) which
arises when one has identical indices that gives non-
vanishing values and in fact it must be overlapping of
an i index with a j index from the structure of (A.1).
In particular, in (A.1) a special value of the summand
occurs if each index j& is paired to a particular index i.
This may be done in n~ ways and hence such terms give
a total contribution to &(~ p, ~')") of e!.We now study
the eGect of allowing two indices which were formerly
paired in one of the n I arrangements to become unequal.

This may be done in i ways and hence gives a total

contribution to &(~p, ~')") of

(ny
n!

~ ~

1/&" P 1 Z &~'.y~.& exp(iq(i. —j.)]
sl . 4—I 2n+&n

(n) (n )=e!( (R'P exp(iq j)=—e!( [R'.
E1) (1i

Similarly uncoupling two pairs gives

(~&
+~!]

[R4,
&2i

etc. In this fashion by continuing to uncouple paired
i and j indices it is seen that

In particular

&I~el'&=(1/&) 2 0*~ & expL~q (i—j)]
sl7

a S)
&(~.*~.)"&= ! Z (—)"I

En&)

=„!(1 R')~=~!&~&,~2&"

= 1+(1/1V) g Qys;& exp[iq (I—j)]
iy'j

=1+R'P exp(iq j)=1—R —= e, (A.2)

where we have used p, exp(~q j)=0. Notice that if

which was to be shown. It has been suspected by the
author and later confirmed that the above constitutes
a special case of the central limit theorem. '3

'3 I am grateful to Professor Mark Kac for his con6rmation of
this statement.


