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The theory of Bardeen for the electron shielding of the perturbation potential arising from lattice vibra-
tions is extended to cover exchange and correlation eGects. The method is to set up a self-consistent set of
one-electron equations, and calculate the eGect of the perturbation in the charge densities. The exchange
term is corrected to conform to the results of the Bohm-Pines theory, but the plasma wave function is
assumed not to be disturbed by the lattice. With this approximate model, a solution to the problem can be
obtained. For small-angle scattering, the results do not return to the original Bardeen values. The interaction
potential matrix element depends on the initial electron wave vector k as well as on the difference between
initial and final state wave vectors. Hence, to use the results an average over h must be made, and we make
an average over the Fermi surface. The general effect of the exchange hole is to increase the scattering.

I. INTRODUCTION

'HE problem of the scattering of electrons by lattice
vibrations in a solid is complicated by the fact

that both the ions and the particle electrons are shielded

by electron clouds. If the electron cloud around an ion
vibrated rigidly with the ion, we would have complete
shielding of the perturbation outside the cell. If the hole
around an electron moved rigidly with the electron, and
did not tend to pick up some of the lattice motion itself,
we would have no exchange and correlation sects other
than the eGect on the equilibrium properties such as the
unperturbed energy functions. The shielding around an
ion was treated by Bardeen, ' and a discussion of the ex-

change and correlation problem was given by Bardeen
and Pines. '

The purpose of this paper is to extend the Bardeen'
method to take account of exchange and correlation
eGects. Bardeen and Pines treated the same problem by
taking the complete system of phonons and electrons,
the latter interacting with the phonons as well as among
themselves, and making canonical transformations which
were designed to produce a Hamiltonian in which appear
"new electrons" which do not interact with each other,
"new phonons, " and a plasma which is roughly inde-

pendent of the "new electrons" and "new phonons. "
They demand also a certain kind of self-consistency re-

quirement, which then yields a new effective electron-
phonon interaction matrix element. This method is
rigorous. But at the end of their transformations Lsee

Kqs. (4.5) and (4.7) of reference 2j the electrons are
still interacting by means of the short-range term in the
Hamiltonian (their EE,., ). It is only by assuming that
this remaining interaction is negligible that these
authors conclude that their present result confirms the
1937 Bardeen result for the long-wave modes. ' The

*This work was done partly also at the Naval Research I.abo-
ratories, Washington, D. C., and at the National Research Council,
Ottawa, Canada.

' J. Bardeen, Phys. Rev. 52, 688 (1937).' J. Bardeen and D. Pines, Phys. Rev. 99, 1140 (1955).' The author is profoundly grateful to Professor Bardeen for a
conversation in which this was pointed out. See however footnote 7.
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short-range term will aGect, however, not just the
matrix elements for large k —k (where k is the initial
state wave vector and k' the final state wave vector for
the electron in the interaction) but rather the matrix
elements for all k —k'. In the present paper we separate
out the effect of H, ., and calculate its consequence on
the matrix element. We do not find the 1937 Bardeen
result even in the limit k—k' ~ 0.

In Sec. III, we treat exchange in the Hartree-Pock
equation, and show that the matrix element is not inde-
pendent of the initial electron wave vector k, even when
free-electron wave functions are used, and even when
the ion part is treated as independent of k. In Sec. IV,
we modify the exchange term of the potential in the
Hartree-Pock equation to conform to the general results
of the Bohm-Pines' theory and thereby construct an
approximate one-electron equation incorporating ex-
change and correlation effects. The basic approximation
involved is that the lattice does not affect the plasma
part of the electron system wave function. The solution
then follows exactly the plan of Sec. III, and the eftect
of the short-range electron interaction is thereby
calculated.

It should be mentioned that the exchange and correla-
tion effects are quite different from the Coulomb e8ect.
(We term the Coulomb effect that which gives the
Bardeen result. ) The Coulomb effect is a shielding of the
positive ion, the exchange and correlation effect is
shielding of the n-gative electron, the two screening
clouds having different charge sign. When the electron
cloud around an ion picks up the lattice motion from the
ion, it tends to shield the ion vibrations, whereas the
hole around an electron, when it picks up the lattice
motion from the ion, will tend to scatter the electron
more. Ke find in addition that the eGect of including
exchange in the unperturbed energy functions is also to
increase the scattering.

4 D. Pines, Phys. Rev. 92, 626 (1953).Reference is aiso made to
D. Bohm and D. Pines, Phys. Rev. 92, 609 (1953).These articles
are abbreviated as PIV and BPIII, respectively.
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II. THE METHOD OF BARDEEN

Starting from a one-electron equation

(PP/2m+V;, +V,~„)P(k,1)=E(k)f(k, 1),

where V;, is the potential from the quiet lattice, and
V.~„ is the electron-electron interaction potential (in
general an integral operator), if we add to the Hamil-
tonian a perturbation 8V;,„of the bare lattice potential
(bV;,„representing the lattice vibrations), then there
will be an associated perturbation 6V,i«of V,i„.
Bardeen' thus considered the matrix element of the total
perturbation

then obtained by substituting (4), (5), and (6) into (3),
multiplying by P(k+s, 1)* and integrating.

v(k&s) =v;.„(k,s)+ P P P(k'&s„)A~+b(k', —s„)Ap
Loco' n

+b(k', s„)*A,+b(l ', —s„)'A,j, (7)
where

r

A, =2e' dr~drp
~
r~—rp~ 'p(k+s, 1)*p(k,1)C;,

~J

C g
——P(k'+s„, 2)P(k', 2)*,

v(k, s) = P(k+s, 1)~SUE(k, 1)dr,

as the sum of two terms v;,„(k,s) and v,~„(k,s):

v;.„(k,s) = f(k+s, 1)*6V;. $(k,1)dr~,

C p
——f(k' —s„, 2)P(k', 2) *,

(1)
C p

——f(k'+s„, 2) ~P(k', 2),

C4 ——f(k' —s„, 2)*P(k',2),

A g
——A 4

——8 p4v. e'/d, s' =XEp(s)b, p,

and where the 2 in A, is from spin. If plane wave
electron functions are used to compute the integrals, we

(2)

v.„,(k,s) = P(k+s, 1)*8V...,Q(k, 1)dr„ A2=A 3=0, (9a)

where v;, (k,s) is the matrix element of the bare lattice
vibrations and is assumed known and independent of
the initial electron wave vector k, and where v,~„(k,s) is
the associated eAect of the electron-electron interaction
and is considered unknown. The point of the calculation
is to obtain v,~„(k,s). The notation is as follows: s is the
change in electron wave vector in a scattering process.
In a normal process s= e, where e is the phonon wave
vector, and in an umklapp process, s= c+K, where K is
a reciprocal lattice vector. $(k, 1) is the wave function
for an electron in the kth state when the position
coordinate is r&. We shall frequently use just "1"to
indicate "r~" in the argument of a function.

Bardeen used the Hartree potential for U,i„so that

I bpo.„((2)p(k,1)
8VQ(k, i) =8V;,„P(k,1)—e~ drp, (3)

where the eGect in V,i„has been conceived as a per-
turbation in the charge density pt:p„i.

~p o. (2) = —bLe 2 lit'(k', 2) I'3, (4)
&occ

and where 8V;,„ is the perturbation in the potential
caused by the rigid ion motion neglecting any shielding
effects. By first order perturbation theory we get

where the delta function b, o means zero unless E„=E,
and where

Ep(s) =5's'/2m,

X=4pre'/Ds'Ep (s) . (9b)

Here 6 is the crystal volume. Equation (8) can be
rewritten

v(k, s) =v;, (s)—X Q ta, '(k, k')v(k', s)
&ceo

one spin

+b,'(k, k')v(k', —s)*j, (10)

a,'(k,k') = —2Ep(s) t E(k') —E(k'+ s)j—'

b, '(k,k') = —2Ep (s)$E(k') —E(k' —s)]—'.
(10a)

(10b)

a (k,k') = —4Ep(s)LE(k )—E(k +s)$, (11b)

Further, v;, is imaginary, and v;, (—s)= —v;,„(s),
whence it can be concluded that v( —k, —s) = —v(k, s).
(We shall prove this later under more general circum-
stances. ) Thus treating the imaginary parts only, of the
equation, we get

v(k, s) =v;,„(s)—X P a, (k,k')v(k', s), (11a)
&oco'

(6)

where the imaginary part of v(k, s) is meant. Now since~"Lb(k& ")~( +» ) the a(k,k') are independent of k, it follows that the v's

+b(k, —sn)f(k —sn, 1)], (5) also are independent of k, and we get Bardeen's solution

b(k, s„)=v(k, s„)/E(k) —E(k+s„)$—'.

Here s„=c+K„,and the sum over e is a sum over
reciprocal lattice vectors, given e, Bardeen's result is

v(s) =v;..(s)
1+X Q a, (k,k')

&occ

(12)
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III. THE EFFECT OF EXCHANGE

In treating the eA'ect of exchange, we revise equations
(3)—(6) and combine them to form an equation analo-
gous to (7). We may leave (5) and (6) as above if we
understand v(k, s) and E(k) to contain the exchange
effects. (3) and (4) become on the Hartree-Fock model:

To solve (18), we shall separate into real and imaginary
parts. Further, we need write down only the imaginary
equation, for z;,„is pure imaginary. The imaginary part
of v then satisfies the following equation Lobtained
from (18)]

v(k, s) =v;, (s)—X Q $a,'(k,k')v(k', s)

bpc. i(2)4(k, 1)
bUg (k, 1)=bU;.„$(k,1)—e) dr,

1'y —r2

bp. (2,1)P(k,2)
+e~ drp

r1—r2

bp,„(2,1)= hfe—P P(k', 1)P(k',2)*].
ko~'jispins

Substituting (5) and (6) into (13) and (14), we get

v(k, s)=v;, (k,s)+ g g Lb(k', s„)(Ai+Bi)
koeci m

(13)

(14)

ko@o
one spin

—b, '(k, k') v(k', —s)], (21)

where strictly speaking we should have a superscript
"im" on ~ to indicate "imaginary part of." We shall
omit this cumbersome notation and mean from here on
"the imaginary part of v" by "v" itself. It can be seen
that v( —k, —s) = —v(k, s). This follows from the fact
(not proved here) that v;,„(—s)= —v;,„(s). For then
the equation for v( —k, —s) is

v( —k, —s)= —v;.„(s)—X P $a, '(—k, k')v(k', —s)
avoca

+b(k' —
i s„)(Ap+Bp)+b(k', s„)*(Ap+Bp)

+b(k', —s„)*(A4+84)], (15)

where the A's were defined in (7) and evaluated in (9),
and where

8;=e'~t dridrp
~
ri —rpi 'P(k+s, 1)*f(k,2)C,',

C '=f(k'+s„, 1)P(k', 2)*,

C p' ——P(k' —s„, 1)P(k',2) *,

C,'=P(k'+s„, 2)*P(1 ', 1),

C 4' ——P(k' —s„, 2) *P(k',1).

Using free electron wave functions, we get

Bi=7ib,ps'Ep(s) (k—k') '6 ',

82=83=0,
84——Xb,ps'Ep(s) ik+k'+s~ '6 '.

(16)

(17)

Ep(s) (
a, '(k,k') =—

~

2—
E(k') —E(k'+s) E

$2

(19)
~k+k'+s~'i

The integrals which are zero are so because they are
proportional to the delta function b(2c+K —K„),which
is zero except for the insignificant states of zero 0- or
some few 0's on the surface of the Brillouin zone. The
delta function 8„,0 means zero unless E=E„.

Equation (15) may be written in a more compact
form as

v(k, s) =v;. (k, s) —X P fa, '(k, k')v(k', s)
koc@

one spin

+b.'(l, l ').(k', —s)*], (18)

—b,'(-k, k') v(k', s)]
= —v;,„(s)—X P a, '(k, k')v( —k', —s)

—b, '(k, k')v( —k', s)], (22)

making use of the fact that a, (—k, —k') =a, (k,k'),
b, (—k, —k') =b, (k,k') and that for every k in the sum
there is a —k. Now (22) is the same equation for the
v( —k, —s) that (21) is for the v(k, s) except that there
is a minus sign before the v;,„.Since the solutions are
linear in ~;, , they must then be the negative of each
other:

v( —k, —s) = —v(k, s), (23)

which is what we wished to show. Use of this in (21)
simplifies that equation to

v(k, s) =v;.„(s)—X P a, (k,k')v(k', s), (24)
koco

one spin
where

a, (k,k') = a,'(k,k')+b, '(k, —k')

Ep(s)

E(k') —E(k'+ s)

g2

X 4— — . (25)
C

The solutions to (24) can be obtained from the theory
of linear integral equations (see Courant and Hilbert). '
However, it must be remarked that the one point k =k'
strictly speaking does not enter the Hartree-Pock sums,
and it should be ruled out in (23). A glance at (25)
shows that a(k, k) actually explodes. If we rule out, as

Ep(s) ( s'
b:(k,k) =-

E(1 ') —E(k' —s) & (k—k'(') (20)
' R. Courant and D. Hilbert, Methods of Mathematica/ Physics

(Interscience Publishers, Inc., New York, 1953), Vol. 1, Secs. III
7 and 9.



ELECTRON —P H ONON SCATTER I N G I N NORMAL M ETALS 9'77

we should, the points k'=k, then it is equivalent to
defining the diagonal elements of a(k, k') as zero. Now if
the term did not actually explode, the contribution to
the sum of one term would be relatively very small since
X is proportional to 6 ', where 6 is the crystal volume.
(Such is the case for the Coulomb contribution. ) The
difficulty may be overcome if we do not seek to find the
rigorous solution to the set of Eqs. (24). There is a
question anyway about whether in our case the numera-
tor and denominator determinants in the solutions in the
reference cited will converge rapidly, for although A. is
small, the density of k states is compensatingly large.

The transport coefficients into which our matrix
element ultimately goes are quite complicated things,
and it is almost beyond question to attempt to use
detailed information on the dependence of w(k, s) on k
[see, however (31)j.Thus in (24), we use an iteration
procedure-for solving, trying for the zero order trial
solution a constant so(s). If we integrate Eq. (24) over
all k, then we can solve for eo in terms of

(a,)=[(4pr/3)kpoj ' dkdk' g, (k,k'),j
and the result is

(26)

sp(s) =n;.„(s)
1+1%,p(a, )

4xe'

Dos'&o(s)

(9n) &
—'r, /a„

&4) u4

(27)

where r, is the Wigner-Seitz cell radius, and I=
~

lo Io'
~

/—
2kp is Bardeen's u. uk is the Bohr radius. hp ——6/X is the
atomic volume.

We arrive then for a zeroth approximation at a form
identical to (12) but containing an exchange term as
well as the Coulomb term, the divergence no longer
appearing because the integrals involved smooth it over.
As a first iteration, we may substitute (22) into the
right hand side of (24), and get

for our first iteration. It should be noted that there are
no Coulomb contributions to any of the corrections
introduced by the iterations, since for the Coulomb part,
the a(k, k') do not depend on k, so that averaging one
way or another over k will have no effect.

where the parameter k, is

A, =Pkp ——0.353(r,/ak) fop, (34)

then the exchange energy should be modified to include
only the second term in (34). This is their conclusion,
and one obtains the one-electron energies taking ex-
change and correlation into account by calculating'

A'k' 1 4m e'
~(&)= +- 2 "4 (k, 1)*if(k', 2) *

2m* 2

&& P (k")—'e'k" &'&-'»P(k', 1)P(k,2)dr, dr,

A2k2 2m'8~

+
2m*

)x'-t') )o,

(k' —k f-' (35)

the ~ entering so as not to count interactions twice.
This corresponds to a simple modification of the ex-
change hole around the electron, the modification not
altering the role of the wave functions, i.e., of the
exchange charge density

p.„(2,1)= —e p lt (k', 1)*if (k', 2), (36)
&oea ((SPiOS

IV. EFFECT OF EXCHANGE, CORRECTED

According to the work of Bohm and Pines, 4 if the
Coulomb interaction between electrons in a solid is
Fourier analyzed into two parts

e2
~

r r
~

i 4+cog—1( P (P )
—oeik" (rg—ro)

&IrCkc

+ g (P«) 2e~k" (rr—ro—)) (33)

3
(a, (k)) = "dk' a, (k,k').

4u, J
(30)

V, P(k, 1)=eh—' I dro p,„(2,1)

(29) but altering only the Coulombic nature of the interaction
law. We conclude that the corrected exchange potential
is then given by

We may then hope that the correction term in the
numerator of (29) is small. We may further refine
the result by averaging (29) over the k's on the Fermi
surface. Denoting such an average by

X Z 4 (~")-"""&"-"&e(k,2), (»)
k»&k,

and that this is superposed on the potential of a uniform
smear of electrons, i.e., on the Hartree potential so that

we And

[(a, (k)))p. s.—= dS (a, (k)),
4~ho' "~.s.

1+&o((+ ) [(~ (k))jr.s.)
[si(k,s)jp.s.='U; (s)

1+)p(a.)

(31)

(32)

' The periodic part of the lattice potential could be handled by
transforming a la Hubbard (reference 12), but we shall suppose
that this part of the potential may be taken care of by use of an
effective mass (see footnote 15 of reference 2). Hubbard derives an
alteration in the exchange term also, but we neglect this. See the
paragraph at the end of Sec. V below.
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we may construct a new one-electron equation by
writing

Now we return to the solution given by (27) and (29)
and calculate the average a' s. Let

A2
t uo-i(2)

Pg(k, i)—e ' P(k, 1)drp
2m* &

i ri —rpi Then

x=k'+s.

+eh 1 dr p (21) Q 4s(k")-'e'"" ~'I-'»
P') t,

(4s
(8.)=i —kpp

(E3 )
Eo(s)

E(k') —E(k'+ s)

XP(k, 2) =Eke(k, l). (38)

a =4.~- " " p ."'(-")
aJ aJ k")ko

X(k") 'P(k+s, 1)*P(k&2)C dr&drp. (39)

The remainder of the derivation is the same as in Sec. III
and yields the same Eq. (24) except that

8,(k,k') =— Ep(s)

E(k') —E(k'+ s)

s'/
f
k+s+k'(' ~ [k+s+k'J )k,

tX4—
O".

f
I+syk'i &k.

s'/ik —k'i' ~ ik —k'i )k. t

(4o)o" /I -k'(&k,

We are here not deriving but constructing by a
plausibility argument an equation which will have the
correct physical interpretation (in the sense that an ex-
change hole superposed on a uniform smear is a good
model), which will reproduce the correct one-electron
energies (in the sense that the article of Pines' provides
the correct expression), and the set of which, for all the
electrons, is self-consistent (in the sense that the set of
Hartree-Fock equations is self-consistent). To (38) we
must add the electron-lattice interaction. The correct
way is to add the total electron-lattice interaction to the
system Hamiltonian, and work from there. What we do
here amounts to neglecting the inhuence of the electron-
lattice interaction on the plasma part of the total elec-
tron system wave function and vice versa. We thus are
isolating and then calculating the inQuence of the short-
range exchange-correlation term. We can describe our
model in more physical terms, as follows. The long-range
correlations, described by the plasma (in its lowest
state) provide a "correlation hole" around each particle
electron in addition to the "exchange hole" which is the
interpretation of the short-range or exchange term in the
Hamiltonian. Our approximation is that the "correla-
tion hole" does not tend to pick up the lattice vibrations
in contrast to the exchange hole, which does. We call
this the "rigid correlation hole approximation. "

We may now perturb the Coulomb and exchange
charge densities. We get an equation like (15) except
that

(4pr

&3 j
(4s—

i

—kp'
I( 3 ) ~ fk-k'f &ko

$2

dk
J
pp+k J'

$2

dk . (42)
ik —k'i'

Using the notation of Pines' (Appendix I)

W(K) =
I

dk', (43)
8~' ~i +k i». l~+k'I'

we have

(4s i —' t. Ep(s)
(8,)=—

(
—kp'

)
dk'

E 3 ) ~ E(k') —E(k'+s)

3x' $
&& 4+— (W(x)+W(k')) . (44)

2 kp'e'

1 3x' $
k(x) =—— — W(k)

12N' 2 kp'e'

=f(x) pO&x&1 —p—

p 1—x' 1+x
=4——+ ln

2 4x P

3x' —1+P'
1—P(x&1+P

=f(x)" 1+p&x&3,

1—x' 1+x
f(x) =-,'+ ln

4x

where we have used W(—k)=W(k). Our W's difFer

from Pines' only in that k may be as large as 3kp. The
two regions that Pines distinguishes, 0&K&kp —k, and

kp —k & K 4 kp may have the second extended to kp —k,
(K(kp+k, . The third region kp+k, (K(3kp we intro-
duce causes no difficulty at all, for in that region there
is no restriction on the sum, and we get a Bardeen type
expression. We summarize the results. Let x=k/kp.
Then
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Thus

3 t Ep(s)
dk'

4z-kp' ~ E(k') —E(k'+s)

) lk'+sly
x 4—12N' Itl —l+hl l

. (46)
kkpJ ( kp )

2.5

2.0

l. 5

Similarly we find

l (a, (k)))Fs = dk'
3

E ch 4~ko'

Ep(s)

E(k') —E(k'+ s)

l.o

.5

where

lk'+sl )
x12N' a'l —l+a'l

l (47)
( kpi 4 kp

I.o l. 5 2.0 2.5 5.0

1 1+x—ln
6x 1—x

h'(x) =
1 1+x—ln

6x p

0&x&1 —P, 1+P&x&3,

1—p&x&1+p.

(48)

V. DISCUSSION AND SUMMARY~

We have presented a calculation of the exchange and
correlation effects on the scattering of electrons in a
normal metal. Our model supposes that the electron-

Note added in proof Dr. D. Pines (pviva. te communication) has
shown how the Bardeen-Pines paper (reference 2) can be reconciled
with the preceding paper. In efFect our approximations correspond
to the adiabatic approximation which in Bardeen and Pines'
terminology (which we use in this Note) is characterized by
setting their g (k,K) =0, and letting cog =0.Then to de6ne vs, I, let

f(k,K)=vs, KLEK—EK t,+WE—WK s$ '
where Ek is the free electron kinetic energy and W& is the exchange
energy L(BS) of footnote 2j. Then Eq. (B4) is identical with our
results, for the exchange effects.

Furthermore, Pines and Bardeen have shown that our results
for the "modi6ed exchange" problem can be obtained by using a
different canonical transformation from the one used in reference 2.
Starting with their Hamiltonian (4.5) neglecting electron-plasmon,
phonon-plasmon, and phonon recoil terms, one employs the trans-
formation generated by

S=i Z f(k,K)gt, CK*CK
Kk

such that

i[S,H)= —Z (vg' —iMg, Ue}gyp' —Z vp~qpps,
k& ko k&kc

where
II= Z EKCK*CK+-', g ~k'pg*pg

X' k&k

In the LS,Hg commutator, one keeps the exchange terms as in
Appendix 3 of reference 2. It then follows from the above equa-
tions and from the de6nition of Nk from the self-consistency re-
quirement that one obtains our screened Hartree-Fock expression
for vk It-„.

The author is grateful for Dr. Pines' permission to include this
note.

The rest of the calculation is in Appendix A. Figure 2
shows xh(x) and xh'(x) for r, =4tts. (46) and (47) are to
be substituted into (32), which is the basic form of our
solution.

FIG. 1. Approximate energy functions. e is de5ned from
E= (it'k'/2nt) (r,/aa) pe. The full curve is the accurate expression,
the dashed curve is the approximation used for calculations, and
given by (81). The dot-dashed curve shows the nearest that a
parabolic form would achieve. All this is for r,/as —-4.

plasma oscillations are not altered by the lattice vibra-
tions, but form a "rigid correlation hole" about each
particle electron, which hole does not pick up the lattice
motion. However, there is a modi6ed exchange hole
about the electrons (the modification being a deviation
from the Hartree-Fock term, and in Pines' terminology'
constituting a "correlation effect"), and this hole does
pick up the lattice motion, and will help scatter the
electrons.

With this as starting point, we have extended the
1937 Bardeen method, which is applicable since we still
have a set of self-consistent one-electron equations for
the electrons. The results are expressed in terms of
integrals involving the usual energy denominators
E(k)—E(k+s) but we must use the one-electron ener-
gies including exchange and correlation effects. This
makes the integrals quite formidable, although still
straightforward in principle. To gain numbers, we have
approximated the proper E(k) by a curve of the form
given in Eq. (A1) of Appendix A. Figure 1 shows how
such a curve 6ts the true function for r,=4aI„, corre-
sponding to sodium. From there on, the details are
carried out in Appendix A, where for future reference,
some of the recurring integrals are tabulated. Computa-
tions for a one-electron energy function with different
coefficients p and I7 can easily be made from the tables.

The results are conveniently described in terms of the
shielding factor S, where v(k, s) =Sv;. (s). S is written
out in (32) and at the end of Appendix A and is of the
form S „ /Sa, , where the numerator differs from 1
only through the fact that the matrix element depends
on k, and where the demoninator corresponds to the old
Bardeen term, but which now includes the exchange
correction.

D. Pines, Solid State Physics, edited by F. Seitz and D.
Turnbull (Academic Press, Inc. , New York, 1955), Vol. I, bottom
of p. 373.
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FIG. 2. xh(a) and xh'(x), de6ned by (50) and (53). In the calcu-
lations for xh'(x), the regions x&1+p and x(1—p give some
errors. At x= 1+p, the error was to continue the x&1+p type of
region down always to x=1.6. At x=1—p, the error was to
extrapolate the curve from the x&1—p region down to x= 0. Both
these errors were estimated and found to give corrections in the
third signiiicant figure of G(l,h') and were therefore neglected.

Our 6rst general result, as emphasized before, is that
the matrix element is not independent of the initial
electron state wave-vector k. The effect is to decrease the
matrix element (i.e., s, is less than 1). The effect
fortunately is already quite small in the erst iteration.
This can be seen from Fig. 2, where if h(x) and h'(x)
were the same, we would have S„„=1.It is evident
from the figure that the curves do not differ tremen-
dously. The numerical values can be seen in Table III.
In the limit I—+0, this e8ect does not vanish (see
Appendix A). Our second result is that in the limit of
vanishing e, we do rot get the 1937 Bardeen result, both
because S does not approach 1 and because the
energy denominator in S&,„rejects the exchange term.
Otherwise we would indeed get the old result, for in the
limit as I approaches zero, the exchange terms in (44)
go to zero faster than the Coulomb term. (See Appendix
A for the limit I~ 0.)

The eGect of the exchange correction is to make Sq,„
much smaller than previously, and thus to increase the
matrix element. And this arises not only from the fact
that the exchange hole perturbation unites with the ion
vibration to help scatter the electron, but also because
the one-electron energies including exchange decrease
the magnitude of the Coulomb term itself. This can be
seen from Table III, for the quantity F(N) there
corresponds to the free-electron f(sl), and is always
smaller than f(N) It is t. o be noted that by itself the
eGect of the exchange hole is to give "antishielding, "as
has been mentioned several times before. There seems
to be nothing preventing this eGect being larger than the
shielding of the ions. What it would mean is that the
electron is scattered more by the hole around it than it

t.0—

po
0

I

i.o

FIG. 3. The shielding factor S. The labels ASHES mean S for
r,/us=3, 4, 5, respectively. LSee Eq. (826).j

is shielded from the ion by the cloud around the latter.
Ke And in fact that for r, =3a~, and I=1, there is
"antishielding, " but of such a small amount that it is
within the calculational error.

The results are shown graphically in Fig. 3, where the
subscripts 3, 4, 5, refer to r,/as=3, 4, 5. The comparison
with the Bardeen' theory is shown in Fig. 4. We see that
as anticipated in the Introduction, the new curves
augment the matrix element significantly. The matrix
element always appears squared in the transport coeffi-
cients, and we 6nd, for example, that e(s)s for r,/as ——4,
and I= 1 is 1.7 times the Bardeen value. The balance of
the umklapp region with the nonumklapp region
has far-reaching consequences in the thermoelectric
powers "

We have used plane-wave wave functions to obtain
the selection rules in the A's and 8's in (15) and (39).
Brooks" has shown how to extend the calculation to the
case of modulated plane waves, and his approach,
slightly modified, can be applied to the present formula-
tion of the problem, including exchange eGects. We have
not sought to see what alteration this makes, but we
take the opportunity here to mention that the theory is
not restricted to plane wave functions. The mathe-
matical complications that ensue may be summed up by

' M. Bailyn, Phys. Rev. 112, 1587 (1958).
'0 M. Bailyn (to be published). This is a detailed calculation of

the thermoelectric power based on the expression derived in (7).
"H. Brooks (private communication). Professor Brooks in-

forms me that these corrections seem to be rather large.
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calculation presented above. Thus if Fletcher and
Larson's second order energy could be approximated by
the form in (A1), we would merely have to change the
numbers of some of our coefficients in calculating the
new matrix element. "
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Fro. 4. Comparison with the Bardeen result (B4) and the result
of this paper (A4) for r,/as=4. The Ggure, owing to the scale, gives
the impression that as u approaches zero, the curves join. This is
not so. See the discussion at the end of Sec. V.

saying that instead of (24), which represents rt equations
in I unknowns, v(k, s), k=kt ~ k„, we would get ntts

equations in tstm unknowns, v(k+K, s), k=kt ~ k„,
K=Kq ~ K, where the K's represent reciprocal lattice
vectors. By restricting the K's to nearest or next-
nearest neighbors, one can get a manageable result.
However, if one were to make corrections of this sort,
one would do better to treat the unperturbed lattice
more rigorously than we have done, and to start from
perhaps the Hubbard" formulation of the problem.

Finally a word about a consistent taking account of
exchange and correlation effects in the calculation of the
transport coeKcients. The simplest consistent calcula-
tion is to neglect exchange eGects and to use an effective
mass approximation for the energies. The "erst order"
exchange and correlation correction would then consist
of two parts: (1) the correction as originally conceived
by Blatt" and most recently calculated by Fletcher and
Larson" which reRects the erst order change in the
energy function and (2) the corrected matrix element as
described in the present paper. A "second order" correc-
tion wouM use the second order energy correction of
Fletcher and Larson, and would require the use of this
same corrected energy function in the matrix element

"I.Hubbard, Proc. Phys. Soc. (London) A67, 1058 (1954). See
in particular Eq. (50)."J.G. Fletcher and D. C. Larson, Phys. Rev. 111,455 (1958).
See references cited there.

where

Eo(e)

E(k') —E(k'+s)

(~/ko)'
(A2)

Spq Afs'+Bts+C

p=k
A =2x'I',
B=(—(1/2q)+x+4u faux,

C=
L
—(1/2q)+ x'+ 2u'ju',

(8' 4AC) f =—xuf(1/2q) x'j—
(A3)

There are two types of integrals in (46) and (47), one
where (A2) is multiplied by a function of k', and for

TABLE L Quantities from (B1), (B21), and (B22).

U1 Ug U3

3 1.800 0.0377 0.380 —0.136 0
4 1.325 0.0180 0.300 —0.060 —0.025
5 1.200 0.0069 0.192 0 0

—0.003 0
0 0—0.0105 0.013

r,/ug W g Up' Ug' U2' Wo' W 1'

3 0.360 0.097 0.107 —0.0100 —0.027 0.423
4 0.360 0.070 0.115 —0.0133 —0.027 0.420
5 0.322 0.050 0.120 —0.0170 —0.027 0.420

'4 Note added eN proof. A detailed calculation of the transport
properties of the alkali metals including these corrections will be
published soon.

APPENDIX A. CALCULATION OF THE AVERAGE a' s

We seek here to finish evaluating the integrals in (46)
and (47). We shaH use an energy function of the general
form

E(k') = const+ (k'kos/2m) (Px' Pqx4)—
x= k'/k, (A1)

where p and q are numbers chosen to make a good fit to
the true energy function. An example of the fit we
obtain is given in Fig. 1 for r, = ras The va.lues of P and

g are given in Table I for various r,.
The energy denominators become with (A1)
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which the t|' integral is written

)1 1

J~dk = 22l'kp x dx dp~
p 4

(A4)

The results are

(a,)c.„,——12''(u),
(a,)E«h =—12u'G (u; h),

(A8)

(A9)

p1

~(u) =
2up p 1 2qx

1ngp

where
the other where (A2) is multiplied by a function of
)k'+s~. The latter is performed by changing to the
variable x= ~k'+s~/kp. In terms of x, the energy
denominator becomes

(A10)

E(k') —E(k'+ s)

(s/kp)' 3u )1+2+

(A5) G(u; h) =-
8pq A@2—By+C 2p 1—2u

1ng
dx xh(x), u(0.5

1 2'
lngp3u -

)1
—2m

2p J,
and the x integral becomes dx xh(x)

1—2gs1 2'4 1

p 1+2u lng
+ dx xh(x), u) 0.5 (A11)

1—2u 1—2gx1+2tc

+J
1—2Q

where

x+u 1—qp( —)
gp=

x—u 1—qp(+)
(A12)tips+1 1

=22rkpp) x'dx t dp, u)0.5,
2v—1

(A6)

4u(x+u) 1—q(1+x') + ~ x&1

—~ ~ x&1
(A13)

1—x' 1—qp(a)

(A14)

where p, is the cosine of the angle at which, for a given
x magnitude, the radial vector x cuts the surface of the
sphere of radius 1 about x=s/kp as center. It is given by p(~) —2x2+4u2~4ux

x'+4u' —1
(A7) The quantity q is rather small, and we have expanded

to first order in q to make the calculations:

where

1 x+u
F(u)~ ' dx x (1+2qx') ln

2up Jp S—I
1 q 1—u' 1+u=—f(u)+— ln +-2'u2+-22,
p p 4u 1—u

3u '+'"
G(u; h)=—

~

dx xh(x)L(1+2qx2)g(x, u)+qR(x, u) j,
2 sp

1—2N I&0 5

0 N)05

(A15)

(A16)

(A17)

x+u
In x& i2u —1i

S—I
Q(x,u) =

4u(xau) + x&1

~ ~ rgb 1
x) [2u —1i,

(A18)

'Sux . x(i2u-ii
g(x u) =~ + -.x(1—1+4u2&4ux+ x' ".x) )2u —1).—~ ~ x&1

(A1V)
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The integrals can be performed once and for all for
the various r, values if we can expand h(x) and h(x)'.
We could of course trace h back to the energy expansion
in (A1), but this is a misleading simplification, since as
x gets large, the energy becomes insensitive to h(x), so
that great variations in h(x) may be altogether neglected
in the energy expression for large x. In fact, h(x) is
rather dificult to expand, and we have been forced to
use two regions. The expansions are of the form

Gg(g, h) Ga(l, h') S3(&)

0.2
0.4
0.6
0.8
1.0

0.591
0.569
0.528
0.462
0.320

0.035
0.159
0.351
0.456
0.485

0.029
0.119
0.253
0.316
0.342

0.117
0.384
0.695
0.887
1.012

0.076
0.254
0.454
0.633
0.800

TABL,E III. Quantities from (B8), (B9), and (B27). The
subscripts 3, 4, 3 refer to r,/as=3, 4, S. The S&e)'s are the corre-
sponding quantities on the Bardeen' theory. The accuracy is at
most to two signiacant figures.

xh(x) = Uix+ Usx'+ Usx'+ Usx' x(1.6
= W ix '+ Wo, x) 1.6,

xh'(x) = U&)'+ Ui'x+ Us'x' .x(1.6
=Wo'+W i'x ', x)1.6,

(A20) 0.2
0.4
0.6
0.8

(A21)

0.773
0.741
0.686
0.593
0.404

0.040
0.148
0,319
0.415
0.432

0.032
0.127
0.268
0.360
0.386

G4(u, h) G4(l, h') S4

0.066
0.264
0.540
0.795
0.987

S4(&)

0.058
0.204
0.385
0.564
0.752

0.834
0.800
0.737
0.636
0.428

a See reference 1.

where the U's are constants appropriate to region 1, and
the S"s to region 2. See Table I for the values. From 04
Fig. 2, we see that for x(1—p, and for x—1+p, there 0.6
are errors, in Is'(x). We have calculated the effect of
these errors and found them to be negligible. With these
expansions, the G's become

Ga(u, h)

0,036
0.136
0.288
0.388
0.426

Ga(N, h')

0.031
0.121
0.256
0.343
0.366

S5

0.051
0.208
0.455
0.713
0.948

S5(&)

0.047
0.170
0.333
0.508
0.707

G(u h) = (3u/(2p)) LU)Si&')+ U'sSs&'&+ UsSs&'&

+UsSo"'+ WOSD"'+W-tS-i"'

+2q(U, S &i&+UsS,&o+ U,S &i)+WoS &

+W iSi&'&)+q(UiTi&'&+UsTs"&+ UTss'&)

+U T &'&+WoTo&'&+W T &'))j, (A22)

G(u)h ) = (3u/(2p)) t Uo So& )+Ui Si& )+Us Ss& )

+Wo'So"'+ W—i'S—i"'+2q (Uo'Ss"'
+UilSs&i)+Us~S4&i)+Wo~S &s)

+W-t'Si")+ q(Uo'To"'+ Ui'Ti"'

+U 'T '"+Wo'To"'+W i'T '")$ (A23)

where

~224+1

T (2)= dx x"R(x,u).

p1.6
S„' = ~ dxx"Q(xu)

$0

2'g+1

S &'&= I dxx"Q(x, u),
1.6

1.6

T &"= " dx x"E(xu}n

(A24)

TABLE II. Quantities from (B23) and (B24). S4& ) was obtained
by graphical interpolation.

The S's and T's are given in Table II.
The combined results in first iteration from (32) give

Spo) S,(I) S,(I) S,(1) S4(') where
vi(k&s) =cion(s)S= t)ion(Snnm/Sinn) &

(A25)

0.2 0.818
0.4 1.609
0.6 2.214
0.8 2.139
1.0 1.743

0.797 0.802
1.452 1.543
1.950 1.863
1.814 1.767
1.423 1.390

0.826
1.611
1.918
1.832
1.442

I Sp(2) S1( ) S2( ) yp(1)

(O.865)
(1.735)
(2.130)
(2.075)
(1.618)

0.913 0
2.037 0.026
2.575 0.063
2.482 0.113
1.974 0.140

S „=1 $(9B./4—)4.'j '(r,/as)-
XLG(u, h) —G(u, h') j/u', (A26)

So,n =1+L (9ir/4) 4j-'(r, /as)
XP'(u) —G(u, h) g/us.

02 0
0.4 0.023
0.6 0.122
0.8 0.228
1.0 0.300

0 0
0.044 0.067
0.226 0.369
0.426 0.789
0.585 1.238

—0.136
0.253
1.228
2.407
3.590

—0.064
0.119
0.681
1.563
2.623

—0.110—0.126
0.076
0.644
1.464

gp(2)

—0.160—0.637—0.649—0.193
+0.640

The numerical results for the G's and the S are given in
Table III.

The limiting case @=0is always of interest. Starting
from (A10), we find

L ~(u) = (1/p) (1+2q),

0.2
0.4
0.6
0.8
1.0

—0.285—1.108—1.817—2.192—1.476

0—0.022—0.160—0.342—0.495

0
+0.087—0.168—0.540—0.920

I.G(u; h) = (1/p) (1+2q)L6h(1)gu', (A27)

I.G(u; h') = (1/p) (1+2q)$6h'(1} Iu'.
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Thus

1-C(9-/4)-:-j-'('/ -)p-'(1+2~)6C~(»-h'(»j

1+C(9'/4)4.$ '(r, /u„) p '(1+2')ts—'

&e p 2
=u' (97r/4)4 — —3(1—-',P)' —ln— . (A2g)

r, 1+2' p

Vile see that the exchange effect does not drop out for
two reasons: (1), the numerator retains a value not
equal to 1 reQecting the dependence of the matrix
element on k, and (2), the denominator, although
allowing 6 to be negligible compared to Ii, has an eGect
arising from the use of one-electron energy functions
diGering from the free electron one through the use of
p/1 and g/0
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Theriaoelectricity antI Resistivity in Metal Alloys at Low Temperatures
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A simple model is proposed for the "resonant scattering" of electrons from foreign atoms in a crystal
lattice. The model assumes the existence of highly selective scattering mechanisms characterized by widths
of the order of 10 4 electron volts and larger; in this sense it is similar to the model of Korringa and Gerritsen
(1953),although the present model makes use of only the general analytical characteristics of the relaxation
time and does not specify the details of the scattering mechanism. Mott's well-known approximation for-
mula 5= (~'k'2'/3e) Pd inn(E)/dE)@=zan for the absolute thermoelectric power of a metal alloy is strictly
valid and physically meaningful only at temperatures kT«a, where 2u is the width of the resonance. At
temperatures kT»u the formula leads to useful and valuable information on the thermoelectric properties
of alloys, but the formula in this temperature region has only a rather arti6cial physical meaning. In the
intermediate temperature region where kT is comparable to a, the Mott formula is entirely invalid. But it is
in precisely this intermediate temperature range that the resistance and thermoelectric anomalies occur,
so that Mott's approximation cannot be used for the treatment of these anomalies. The model satisfactorily
explains many of the details of this anomalous behavior. It is suggested that the solvent metals used in the
experimental studies of these eBects will have to be much purer than those presently available before we
shall be able to specify unambiguously the eBects of a given kind of impurity.

I. INTRODUCTION

'HERE is an increasing interest nowadays in the
electric and magnetic properties of noble metals

and their alloys. ' Among the many interesting and un-
solved problems in this field is that of understanding the
nature of the electron scattering which causes certain
well-known anomalies or departures from the "simple"
behavior exemplified, for example, by Matthiessen's
rule. That these problems are by no means simple is
demonstrated by the fact that it has been found ex-
tremely dificult to explain even the sign of the absolute
thermoelectric power of the pure metals at room tem-
perature. ' Schmitt4 and Vosida' have attempted to ex-

plain the low-temperature "resistivity maximum" in
CuMn alloys on the basis of a spin-dependent inter-
action between the scattered electron and the d elec-
trons of the impurity ion; their work not only supplies
a specific mechanism for the electron scattering but also

' See, e.g., the Report on the International Conference on the
Electronic Properties of Metals at Low Temperatures, Genevu, New
Fork, A Nggst ZS—Zp, 1958 [Revs. Modern Phys. (to be published) j.

'D. K. C. MacDonald, Hundblch der Physik, edited by S.
Fliigge (Springer-Verlag, Berlin, 1956), Vol. 14, Part 1.' M. Bailyn, Phys. Rev. 112, 1587 (1958); M. Tsuji, J. Phys.
Soc. (Japan) 13, 133, 818, 979 (1958).

4 R. W. Schmitt, Phys. Rev. 103, 83 (1956).' K. Yosida, Phys. Rev. 107, 396 (1957).

attempts to connect the electrical with the magnetic
properties of CuMn alloys. However, the work of
Schmitt and Yosida has led only to a very qualitative
understanding of a few rather general aspects of the
problem and furnishes little in the way of details of
the known electrical behavior of noble metal alloys.

Earlier, Korringa and Gerritsen' proposed a "reso-
nance scattering" model which led to a fairly detailed
description of the low-temperature resistivity and mag-
netoresistance of dilute alloys of copper, silver, or gold
containing manganese. While their treatment has some
quantum mechanical basis, their arguments for the
existence of "resonance states" very near the Fermi
level are not very convincing. However, since the trans-
port properties of these alloys are determined primarily
by the scattering of the electrons having kinetic
energies within a few kT of the Fermi level energy EJ,
it would seem tha, t the actual scattering mechanism (or
mechanisms) must be highly "selective" or "dis-
criminating. "This selectivity will probably turn out to
be due at least in part to some kind of spin-sensitive
interaction, 7 as proposed by Korringa, Schmitt, and

' J. Korringa and A. N. Gerritsen, Physica 19, 457 (1953).
7 A recent contribution has been made by A. D. Brailsford and

A. W. Overhauser, Phys. Rev. Letters 3, 331 (1959).A very simi-
lar calculation has also been made recently by A. J. Dekker
(private communication).


