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Electron Spin Relaxation in Ferromagnetic Insulators
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Bell Telephone Laboratories, 3furruy Hill, Neer Jersey

(Received September 2, 1959)

A phenomenological description of electron spin relaxation in
ferromagnetic insulators is developed using the rate of energy
transfer between the uniform precession, the spin waves, and the
lattice. This leads to an equation of motion containing T&0, the
relaxation time of the uniform precession to the lattice; T~q, the
relaxation time of the uniform precession to the 0th spin wave;
and T», the relaxation time of the kth spin wave to the lattice.
Experimental measurements at 6200 Mc/sec are made on single
crystal spheres of yttrium iron garnet to determine these times.
In addition to measurements of resonance line width and high
power saturation, these measurements include a frequency

modulation method for measuring relaxation times. The theory
provides an excellent Gt to the experimental data over a range of
surface roughness which varies the line width by a factor of 7.5.
This enables the volume property, T», to be determined experi-
mentally in the presence of large surface scattering. The other
volume property, T&0, is determined on the smoothest surface and
is found to constitute the lower limit for reducing the line width
in the present materials at room temperature. The theory and
techniques described should facilitate a better understanding of
the basic relaxation mechanisms.

I. INTRODUCTION

HE purpose of this paper is to obtain a phe-
nomenonlogical description of the electron spin

relaxation in ferromagnetic insulators and to present
experimental data from which, using this description,
fundamental relaxation parameters may be determined.
In our description we will follow the general procedure
of Bloembergen and Wang' by using the rate of transfer
of energy between the main precession, the spin waves,
and the lattice, but will modify their formulation in
the light of the conceptions of Clogston et alt,'.,' of
coupling to spin waves by means of inhomogeneities in
the magnetization, in a manner similar to that used by
Callen. ' We depart from the treatment of Bloembergen
and Wang by treating each spin wave state separately,
not necessarily in equilibrium with other spin wave
states, nor with the uniform precession, nor with the
lattice.

The experimental data were obtained on single
crystal spheres of yttrium iron garnet (YIG) because of
its high state of magnetic order and because the
relaxation could be readily altered by varying the
roughness of the surface. 4 Measurements were made of
(1) the ferromagnetic resonance line width, (2) the
critical rf magnetic field for saturation of the resonance,
(3) the transverse relaxation time, and (4) the longi-
tudinal relaxation time. The quantities (1)—(3) were
obtained using modifications of existing techniques.
Measurement of the longitudinal relaxation time,
however, required the development of a rather refined
modulation scheme in order to obtain sufficient sensi-
tivity and accuracy.

IL DERIVATION OF EQUATIONS OF MOTION

To describe the relaxation of the magnetizatiorI it
is convenient to consider the rate of transfer of energy as

' N. Bloembergen and S. Wang, Phys. Rev. 93, 72 (1953).' A. M. Clogston, H. Suhl, L. R. Walker, and P. W. Anderson,
J. Phys. Chem. Solids 1, 129 (1956).' H. B.Callen, J.Phys. Chem. Solids 4, 256 (1958).

4 R. C. LeCraw, E. G. Spencer, and C. S. Porter, Phys. Rev.
110, 1311 (1958).
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FIG. i. Schematic diagram of the transfer of energy between the
uniform precession, the spin modes, and the lattice.

depicted in Fig. 1. Here, we divide up the total energy
TV into the amounts in each of the independent modes
of the system. 5'0 is the energy of the principal mode
directly excited by the rf field while 8"I, is the energy of
the kth spin mode. The term spin mode will be used
for magnetostatic modes, inQuenced by sample shape,
as well as for shorter wavelength modes, infIuenced by
exchange forces. We use spin mode rather than spin
wave to emphasize that we are dealing here with a
normal mode of the system rather than just a component
in the Fourier expansion of the magnetization. The
former will contain a component of the magnetization
along the magnetic field whose average is nonvanishing
even for high order spin modes, while the latter does not.

The principle assumptions we will make are as
follows: (1) We assume that the level of excitation of
the spin system is low enough that the equations of
motion can be linearized. The concept of describing
the total motion of the system in terms of the super-
position of spin modes is applicable only for such low

levels of excitation. (2) We assume that the rf field

couples to only one mode of the sample. For our experi-
ments this mode will be the uniform precession. How-
ever the resultant equations should be equally applicable
to the direct excitation of magnetostatic spin modes by
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dWI, 8'p 8 I,.

dt T2A, T»
(2)

From these, the equation for the total energy,

W= TVp+Qp Wt,
is given by

dS" 8'p 8 g=I'
~io

Although these equations have exact solutions for
many transient problems of interest (e.g. , sinusoidal
drive or free decay), further simplification results for
the physical situations in which T&z is reasonably
constant for those spin waves which are excited (those
with small Tsi). Under these circumstances, Eq. (4)
reduces to

)1 1q W=I' Wpi-
E Tip Tlk) Tlp

In the remainder of the paper when T~~ appears without
a P p before it, this implies that the above assumption
has been used.

In order to relate these energy equations to the
equations of motion of the magnetization, it is ex-
peditious to make three additional assumptions: (4)
We assume the principal mode, which is to be excited

' R. L. White and I.H. Solt, Phys. Rev. 104, 56 (1956).
P J. F. Dillon, Jr., Bull. Am. Phys. Soc. 1, 125 (1956).
r C. Kit tel, Phys. Rev. 110, 1295 (1958).' F. Bloch, Phys. Rev. 70, 460 (1946).

nonuniform rf 6elds such as observed by White and
Solt, ' and by Dillon, ' and by the type of spin wave
"pinning" discussed by Kittel. ' (3) We assume that
the spin modes, once excited, do not react back on the
principal mode. This back reaction is a second-order
eGect and becomes important only at high levels of
excitation where saturation sects set it.

Consistent with the first assumption we can introduce
characteristic coupling times. Thus T~p is the relaxation
of the principal mode directly to the lattice, and T2„ is
the coupling time from the principal mode to the kth
spin mode. The subscripts one and two are used because
of the close relation of these times to the Tj and T~
appearing in Bloch's equations describing paramagnetic
relaxation. ' Similarly the time T» is the net time for
the 4th spin mode to relax to the lattice. It may do this
either by relaxing directly, or by coupling into other
spin modes which can in turn relax to the lattice. If I'
is defined as the net power per unit volume absorbed
by the sample, the energy transfer equations described
by the above assumptions and definitions and depicted
in Fig. 1 are given by

dWo

where B is the dc magnetic field applied in the s-
direction along the axis of revolution of the spheroid,
M, is the saturation magnetization, M, M„, M, are the
components of the magnetization averaged over the
sample, E„E„,X, are the demagnetizing factors, and
Zp and Dp are the exchange and demagnetization
energies, respectively, of the 0th spin mode. The
departure of M, from its lowest energy value, M„we
will call —63E,. This will be composed of the sum of all
the longitudinal magnetizations, —63f,~, associated
with the spin modes, together with the uniform pre-
cession, —A)V, O.

&M,=M. M.=&M,p+—Q~ ~.p. (7)

The energy of the uniform precession is thus given by

~p= (& N,M.)~M,p—+ ',N, (AM, p)'-
+,'N pe, '+-Nts„M-„. s(8)

Since for each mode of the system the magnitude of
the magnetization at each point is equal to M„we And

for the uniform precession

(M,—hM, )'+pM, '+M„'=M,',

which for small excitations reduces to

M,'+M„'= 2M,AM, p. (10)

With this relation, Eq. (8) can be written in either of
the alternative forms

or
W p= &a+ (N, —N.)M,)(M.P+ M„s)/2M„(11)

Wp= PI+ (Nr —N, )M,]AM, p. (12)

The part of ~, associated with each spin mode,
63f,l„can be found from the requirement that 3f, is
conserved as main precession energy is converted to
spin mode energy. Thus, consider in Eq. (6), that
Ep+Dp for a particular spin mode develop from a

' T. Kasuya, Progr. Theoret. Phys. (Kyoto) 12, 802 (1954).

directly, is the uniform precession. (5) We assume that
the uniform precession couples to the spin waves by a
process which conserves 3f, and the total energy. This
assumption will be valid for the type of coupling
treated by Clogston et al. ,' but will be invalid for the
type of thermal scattering of spin waves considered by
Kasuya. This assumption can be shown to be equiv-
alent to assuming only those spin modes are excited
which have the same frequency as the main precession.
(6) We assume the sample to be a spheroid so that
1V,=E„. This last assumption is necessary to be
consistent with the fifth since otherwise M, is not
constant for the motion of the uniform precession.

The total energy is given by

W= (H N,M,) (—M. M,)+,'N—,(M, -M,)'—
+,'N~, '+-,'N„M„'+-Q (E +D ), (6)
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d M,o (1/——NrM, ) (Eo+Do). (14)

Thus the total energy associated with the kth spin
mode, i.e., the sum of magnetic, exchange, and de-
magnetizing energies, is

Wg ——(H N,M.—) (EM.I,)+El,+D,
which with Eq. (13) reduces to

Wo= fH+ (Nr N.)M—, j(AM, y).

(15)

(16)

The total energy of the sample from Eqs. (12) and
(16) is

W =$H+ (Nz N.)M,j(M—, M,). —(17)

Thus we have an energy equation which does not
explicitly contain spin mode parameters. Physically,
this means that when energy is coupled from the main
precession to the spin waves, transverse demagneti-
zation energy due to M,'+M„' is converted into ex-
change energy and spin mode demagnetization energy.
By expressing these latter as a particular fraction of the
potential energy in the external field, we obtain an
expression not involving EI, and D~.

With the relations (11) and (17), the equations of
motion (1) and (5) become

change in M,'+M„o keeping W and M, constant:

Eo+Do ——', N—r—o(M,'+M„')
N—rM, 85M, o N——o M,BM,o, (13)

ol

Relation to Other Equations of Motion

(a) The B/och Equations

The Bloch equations, introduced as a phenomeno-
logical description of paramagnetic relaxation, have
been used also in ferromagnetic relaxation. ' Equation
(21) is exactly Bloch's equation for transverse relaxation
providing that

1 ipi 11+~
To 2 ETio»oo&

(23)

Equation (22) differs in general from the Bloch equation
for longitudinal relaxation because of the presence of
the second term on the right-hand side. In the event that
T&O=T», both our equations become identical with
the Bloch equations,

It is interesting to note that even when T~o and T~~
are not equal, that the Bloch equations give a descrip-
tion of the motion of the system which has most of the
essential features provided we find the appropriate
expression for T&. This expression is most easily found
by examining the steady-state expression for the total
energy, W'*. From Eqs. (4) and (1),

d(M. —M,) (M,'+M„')
=+~(MXH.).—

Ch 2M,

t
1 1q (M,—M.)

X ]
—

I

— (22)
k Tlo Tlk )

2M, I'
1+P, (Tgo/T, o)8"'=I'

(1/Tio)+ Po (1/Too)

—(M,'+M„') =
dt H+ (Nr N, )M. — (24)

p—(M,—M,) =
dt H+ (Nr N, )M, — To (Ti=—

(
1+2

2L. ~ T„i (25)M'+M„'( 1 1 ) M, —M.
(»)

&To T„) T» %hen T» is constant and equal to T&0 this expression
reduces to T~=T~O as was noted before. %e have
examined. the time varying solutions of (21) and (22)
for a sinusoidally varying I' and for a free decay. For
both these conditions the Bloch equations give a
reasonable approximation using the relation (25) pro-
viding first, that T» has a minimum over which T» is
relatively constant and second, that the condition

In the absence of relaxation the torque equation is

= —~(MXH.), (20)

where H. is the eGective magnetic field at the sample
and p is the absolute value of the gyromagnetic ratio
for electrons. Making this consistent with Eqs. (18) and
(19) yields the basic equations of motion:

Tio«po (1/Tw, )«Ti~ (26)

does not app1y. The latter condition is exceptional and
probably not met in physical situations normally
encountered.

It should be noted in Eq. (25) that in the absence of
spin-spin coupling, T~ increases to 2T~ and not to T»
as has often been assumed. The factor of two is required

dM, y = —~(M&&H,).,„
M,„1 1)+~

2 KTlo o Too~

(1 iy
(M~'+Mo ) I + ~ ~~ (1@ By equating this with the steady-state energy I'T&~ Tlo o To&~

given by the Bloch equations and using Eq. (23), we
find that
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in order to conserve M. It is also interesting to note that
T2=2T~ even in the presence of spin-spin coupling
for the special case Qs (Tip/Tss)«1. This is the
condition in which the spin modes decay more rapidly
than they are excited, which also conserves M.

(b) Callee's Dyttami cat Fquatiol

A dynamical equation obtained from quantizing the
spin waves into magnons and treating the problem
quantum mechanically has been presented by Callen. '
His equation is given in the form

dM/dt=nM —y(MXH) —XMX (MXH) (2/)

where n, y, and )t are complicated scalar functions of M
and H. Although the quantum mechanical approach
used by Callen is diA'erent from the present paper, the
underlying physical assumptions are the same. We
would therefore expect to arrive at the same equation of
motion. In his derivation, by using the magnon concept,
Callen restricts the range of applicability to low levels
of excitation in the same way as the present treatment.
In this limit Callen's equation can be reduced to the
form of Eqs. (21) and (22). It is believed that the
energy balance approach in the present treatment has
the advantages of conceptual clarity and simplicity
which have led to an increased usefulness in interpreting
experimental data.

(c) The Latsdau Lifshits Equ-awol

The Landau-Lifshitz equation of motion" and its
modification by Gilbert" have been used extensively to
describe ferromagnetic relaxation. These both have
the property of conserving the magnitude of the
magnetization during relaxation. Experimental data
will be presented on samples in which the spatially
averaged magnetization is definitely not conserved.
These equations would then be inapplicable. This is
true even though microscopically the exchange forces
keep adjacent spins very nearly aligned, so that locally
the magnetization is conserved. Thus the Landau-
Lifshitz equation may be a reasonable approximatiori
on a microscopic scale, although inapplicable to the
average magnetization.

III. THE MODULATION METHOD

The most dificult quantity to measure has been the
relaxation of the component of magnetization along the
magnetic field. " Our first efforts to measure this
quantity were by a pulsed decay scheme similar to that

' L. Landau and E. Lifshitz, Physik. Z. Sowjetunion 8, 153
(1955).

n T. A. Gilbert, Armour Research Institute (unpublished
reports).

"Measurements of the relaxation of the transverse component
by modulation techniques have been described previously, E. G.
Spencer and R. C. LeCraw, Bull. Am. Phys. Soc. 3, 145 (1958).
See also J. I. Masters and R. W. Roberts, Jr., Suppl. J. Appl.
Phys. 30, 179S (1959).

described by Bloembergen and Wang, ' Damon, " and
Farrar. " However, as the angle of opening of the
uniform precession becomes smaller, as it must to
avoid saturation sects in narrow line width materials,
the signal due to the relaxation of the longitudinal
magnetization decreases rapidly (as the square of the
precession angle). The signal-to-noise ratio in the
wideband detector used to detect pulse decay thus
becomes prohibitively small in materials such as single
crystal YIG. In order to obtain data in these materials a
method for reducing the bandwidth is desirable. To
achieve this a modulation scheme was devised.

The method consists of adjusting the applied dc
magnetic field to resonance and sinusoidally modulating
the microwave frequency at a low angular frequency Q.
We wish to examine the second harmonic components
of the total energy W, proportional to the longitudinal
magnetization LEq. (17)], and Wo, proportional to
M s+Mss [Eq. (11)].Let

(Wp) so =A p cos (20t), (2g)

(A ) ' L1+(2Tis/Ts) —(Tts/Tip) j'+(20Tts)'

1+(20Tis)'
(30)

When normalized in terms of their values at zero
frequency, we obtain

A (20)/A (0)

Ap(20)/Ap(0) -2

1+(20T is)s
2T,s+ (1—T,s/T, o) T,

1+(20Tts)s
(31)

The quantity in brackets on the left will be denoted by
R. The numerator and denominator of R are the
normalized amplitudes of the second harmonic com-
ponents of AM, and 3fz', respectively. They are directly
measurable. Since T~ can be determined from the line
width, the unknown quantities are T» and Tyo. If
Tip ——Tts, Eq. (31) has the simple form

1+(QTs)'
(32)E2=

1+(20Tio)'

where R approaches Ts/2Tip for large 0.
It is also useful to obtain an expression for M '+M„'

in terms of QT& for a frequency modulated rf held
of constant amplitude. In this case the absorbed power
I' does not drop out. By an expansion of the driving

'3 R. W. Damon, Revs. Modern Phys. 25, 239 (1953).
'4 R. T. Farrar, J. Appl. Phys. 29, 425 (1958).

(W)su=A cos(20t+ pp). (29)

By inserting these into Eqs. (1) and (5) and using the
definition of Ts in Eq. (23), we can eliminate F to find
the ratio of amplitudes:
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FlG. 2. Schematic diagram of the experimental apparatus.

field in a Fourier series, in the limit of vanishingly
small modulation amplitude h&o (the peak frequency
deviation), Eq. (21) yields the expansion for the second
harmonic of Mr =M +M

8 1
(Mr' )2D=-

n' L1+(2nr, )'&&

2QT2r 1
)&cos~ 2nt —sin—'

L1+(2nr, ) ]&i 1+(nr, )

IV. EXPERIMENTAL PROCEDURE

The apparatus shown schematically in Fig. 2 is used
for all measurements. A low Q klystron operating at a
center frequency of 6200 Mc/sec is frequency modulated
at a frequency F=n/2m by applying a sinusoidal
voltage to the repeller. The frequency deviation of the
klystron closely approximates a linear function of the

&&cos~ 2nt —2 sin ' ~, (33)
$1+(QT )'i&)

where 8= 2M, T2(d ~)'P/H. At vanishingly small
modulation frequencies, Eq. (33) yields

(Mr') 2D=O
—— BT2' cos2Qt. —(34)

The normalized ratio of amplitudes of (MT')qo from
Eqs. (33) and (34) can be used in a modulation-type
measurement of T2 which should agree with T2 as
determined from line width measurements.

repeller voltage up to maximum frequency deviations
as large as 10 Mc/sec. The maximum frequency
deviation used for any of the data is 8.5 Mc/sec.

The klystron output is fed through isolators and a
precision attenuator into the H-plane arm of a matched
hybrid junction (magic T). Between the 6rst isolator
and precision attenuator there is a directional coupler
for monitoring the power which is not shown in Fig. 2.
Half the input power is incident on the sample, which
is mounted on the narrow side wall of the waveguide,
with about 0.08 in. of dielectric material between it and
the wall. The other half is attenuated, phased properly,
and reflected to null out the residual signal in the
E-plane arm of the T when the dc field is oG resonance
and the klystron is unmodulated. Thus only the power
rejected from the sample in the vicinity of the resonance
line is detected, this being proportional to Mz .

%hen the dc held is on resonance and the klystron
is frequency modulated at frequency Ii, the signal
reflected. from the sample and hence incident on the
detector is amplitude modulated with its principal
component at 2'. The signal at the detector is of course
also frequency modulated at frequency Ii. However,
the crystal mount is broadband and sensitive only to
the amplitude modulation.

The detector output is fed to a narrowband vacuum
tube voltmeter (VTVM). The bandwidth of the VTVM
for measurements of Mr' is 5 kc/sec at all modulation
frequencies. The crystal is carefully selected and biased
to be square law to within better than one percent,
hence the detected signal is proportional to power or
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Mrs. From Eq. (11) it is seen that Wp ~ M&', hence the
2F component of Mz' is proportional to Ao. This
component is measured as a function of 2F, yielding the
quantity Ap(20)/Ap(0) iii Eq. (31).
yjThe quantity A(2Q)/A(0) is obtained as follows: the
spherical sample is wedged into a thin quartz tube with
a wall thickness approximately six-tenths the radius of
the sphere. The tube is then mounted on a small
polysty2'ene slab 0.065 in. thick which in turn is mounted
on the narrow side wall of the waveguide. The inside
dimensions of the waveguide are 1.59)&0.795 in. A one
turn coil of one mil enameled wire is wound about the
quartz tube with the plane of the coil perpendicular
to the dc field, as shown in Fig. 2. One end of the coil is
soldered to the waveguide and the other goes through
a short piece of coaxial cable to a low noise preamplifier.
The exact geometry of the coil is important and was
experimentally optimized to produce minimum inter-
action with the sample as far as Mz is concerned and
yet have sufhcient pickup of AM, . Excessive interaction
with Mz results in broadening of the resonance line.
The optimum diameter of the coil is about 1.6 times
that of the sphere. The coil should be kept in the plane
perpendicular to the dc Geld and should be centered
about the equator of the sphere.

The design of the low noise preamplifier is also
important. Two stages of wideband transformers are
used before the erst cathode follower tube to insure that
the noise voltage of the resistance in the pickup coil
circuit ( 0.5 ohm) is dominant. Another wideband
transformer is used between the cathode follower and
the VTVM, again to insure that the noise of the input
circuit containing the sample is dominant. The band-
width of the VTVM for AM, measurements is 500 cps
from 0.1 Mc/sec to 1 Mc/sec, and 5 kc/sec above 1
Mc/sec. Since the d3E, signal has a factor which varies
directly as the modulation frequency, the 500 cps
bandwidth was unnecessary above 1 Mc/sec. The
minimum signal-to-noise ratios were encountered at
2F=0.1 Mc/sec and were about 10 to 1.To obtain these
good ratios, the peak deviations of the klystron from
its center frequency were approximately phh' in
Mc/sec, the widest deviation being use for the widest

line width. The VTVM used was a selective micro-
voltmeter made by the Rhode and Schwarz Company,
with bandwidth settings of 500 cps and 5 kc/sec.

From Eq. (17) it is seen that W~EM„hence the
2F component of AM, is proportional to A. This
component is measured as a function of 2F, yielding the
quantity A (20)/A(0) in Eq. (31).

The third directly measurable quantity, T2, appearing
in Eq. (31) is obtained as follows. It is well known that
the line width dZX between the points of half maximum
absorption is related to Ts, as given in Eq. (23), by

AH =2/yTs. (35)

Assuming a circularly polarized applied rf field, it is
easy to show that Mr, and hence the power reflected,
varies with the dc field in the same manner as the
absorbed power. It is worth noting here that although
the rf field applied to the sample is linearly and not
circularly polarized, it can be considered as the super-
position of positive and negative circularly polarized
6elds, with the interaction of the negative circularly
polarized field being negligible.

Thus T2 is determined from the dc field between the
points of half maximum reQected power, keepting the
incident power constant. No frequency modulation is
applied during the measurement. A number of points
other than the half-maximum points were measured to
check the line shape. It was found to fit Eq. (21), which
is Lorentzian, very closely. To complete the relaxation
measurements, T2 was also obtained using the modu-
lation scheme by fitting measured values of (Mrs)» to
Eq. (33).

The critical rf field H„;~ for onset of saturation
e6'ects can also be measured with the apparatus shown
in Fig. 2. The original form used to determine AHI, is
given by"

H„;g=EH(b,Hs/4n3I, ) &, (36)

where AH~ is the "line width" of a s-directed spin wave,
which we may write as 1/pT», to conform to our
present nomenclature, and H„;~ was presumed to be
the value of rf Geld for the erst observed decrease in
x".Suhl recently has shown' that the presence of line

TAI3LE I. Surface treatment, diameter, line width and relaxation data on single crystal spheres of yttrium iron garnet at 6200 Mc/sec
along the L111j axis. Surfaces 0—3 are for the same sample. Surface 4 is on a different sample from the same batch, measured to indicate
the reproducibility of samples from the same batch. An estimated error on T10 is not given for surface 4 since complete curve fitting of
the data to Eq. (31) was not done. The numbers in parentheses were determined for surface 3 and assumed to be independent of surface.

Surface
Number

Surface
treatment

Mean pit Diameter
size (p) (inch) dH (oe)

From line
width

T2 (mpsec)

From
From modulation Horit Tlkz

T& (mp, sec) T» (mpsec) Tj 0 (mp, sec) (mpsec)

Linde A
2/0 emory
4/0 emory
Linde A
Linde A

0.3
10
3
0.3
0.3

0.036
0.032
0.028
0.027
0.014

0.44&0.01
3.56&0.05
2.07~0.04
0.47&0.01
0.49&0.01

258&5
32~0.5
55&1

242~5
232~5

31~1
54&2

242~5
224~5

102~2
89a2

137&5
132

(137)
(137)
137
132

(35)
(35)
35
34

'5 H. Suhl, J. Phys. Chem. Solids 1, 209 (1957).
"H. Suhl, J. Appl. .Phys. (to be published).
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broadening due to inhomogeneity or impurity scattering
alters the picture somewhat, and H„;~ no longer
coincides with the Grst observed decrease of x". It is
necessary to curve fit the fall oG of x" es applied rf
power to a set of curves for diGerent ratios of intrinsic
to scattered line width, and thus obtain a more correct
value of B„;t.Only for an infinite ratio of intrinsic to
scattered line width does H„;~ in the new approach
coincide with the point of first observed decrease in x".

A plot of x" es applied power is obtained as follows.
It has been pointed out previously that the absorbed
power (proportional to x") varies as Mr', which is
proportional to the power reQected from the sample.
With the dc Geld on resonance and the modulation
turned oG, a reference level is set for the detector
output. The two precision attenuators are then varied
simultaneously in one db steps, with one decreasing
and the other increasing in attenuation. (See Fig. 2.)
Since the detector is accurately square law, its output
at each pair of attenuator settings "plots" out x" ~s

the applied rf power. The absolute values of rf magnetic
field in the waveguide are readily calculable. The two
attenuators are of identical design and are calibrated
both separately and against each other.

The eGects of radiation damping on the observed
line width and hence on T2 should be considered in
measurements on narrow line width materials. '~ For
the size samples used, the effect is negligible for all but
the most highly polished surface state. Here the error
was only 4% (surface 3) and was determined experi-
mentally by measuring the ratio of the reQected to
incident power on resonance with no modulation. This
ratio, when converted to fields, indicated a 4% reduc-
tion in the rf magnetic Geld applied to the sample
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Fro. 4. Same measurements and sample as Fig. 3, for surface 2
with mean pit size of 3 microns.

compared with the incident Geld, and hence a corre-
sponding error in line width. This correction has been
applied to the data in Table I.

V. EXPERIMENTAL PROCEDURE

In order to obtain maximum correlation between
data corresponding to diGerent surface states, all
measurements were made on the same sample of single
crystal YIG (except for one additional sample from
the same batch included to study sample reproduci-
bility). Also it should be noted that for all data except
II;~, the applied rf Geld was maintained at least 3 db
below the point of first evidence of saturation effects.

Initially the sample was ground and polished by the
air-jet, tumbling technique to the smoothest polish
available (Linde 2) to be certain of the intrinsic
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Fio. 3. The normalized second harmonic (2F) components of
6Jtr, and Mz', when the incident microwave power is frequency
modulated at frequency F, for surface 1 with mean pit size of &0
microns.
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'r R. F.Trambarulo and E.H. Turner (private communication).
Pro. 5. Same measurements and sample as Pig. 3, for surface 3

with mean pit size of 0;3 micron.
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I.O I.O

quality. The line width was 0.44 oe at 6200 Mc/sec, at
room temperature, and along the [1111axis (at which
all subsequent measurements have been made). The
sphere was then placed back in rougher grinders and
ground successively to three diferent states of surface
roughness as enumerated in Table I. The reduction in
diameter at each stage was sufficient to make certain
that the surface was covered uniformly with pits
characteristic of the particular grit size.

After each grinding stage line width, relaxation, and
saturation measurements were made. The line widths
shown in Table I vary by about a factor of 7.5. The
normalized amplitudes of the second harmonic (2F)
components of d3E, and M~' are shown as a function
of 2F in Figs. 3, 4, and 5 for the successive surface
conditions. For these curves the modulation amplitude
(peak frequency deviation) was adjusted to approxi-
mately 74& in Mc/sec. It is apparent from these curves
that the character of the hM, fall off is much diHerent
from Mr', particularly for the roughest surface (Fig.
3), demonstrating the inadequacy of a damping equation
which conserves the average magnetization, such as the
I.andau-Lifshitz equation. As the polishing proceeds,
it is seen that conservation of M is more nearly ap-
proached (Fig. 5).

Experimentally determined values of the quantity E'
in Eq. (31), corresponding to Figs. 3—5, are plotted as
the points in Fig. 6. Theoretical curves, calculated
from Eq. (31), are shown by the solid curves in Fig. 6.
The theoretical curves have used the value of T2
determined from the line width, and values of TU, and

T&0 to fit the points. A summary of these constants is
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shown in Table I. For the two roughest surfaces, the
theoretical curves are insensitive to the chosen value of
T]0 since most of the spin-lattice relaxation is occurring
through the higher spin modes (Ts«2Tts). Thus to ljt
the point E'= 0.24 on surface 1, the value of T~~ varies
only one percent as T&0 varies from T&p= Tpj, to Tjo= Oo.

For the smoothest surface, No. 3, however, the
situation is different. The dashed curve in Fig. 6 is a
theoretical curve calculated with the assumption that
T&0= 00, and T» adjusted to it at the highest frequency
point measured, 4 Mc/sec. A much superior fit is given
for Typ= Ty shown by the uppermost solid curve. The
accuracy indicated in Table I rejects' the estimated
departures which could be tolerated in the curve
fitting. The value of T~o determined for surface 3 is
assumed for the other surface states since Tjo is pre-
sumably independent of surface roughness.
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FIG. 7. Comparison of theory and experiment for the normalized
second harmonic components of 3fz' for small modulation ampli-
tudes ( 0.1yAH in Mc/sec) for surfaces 1—3, with mean pit sizes
of 10, 3, and 0.3 microns, respectively. The solid curves are
theoretical curves calculated from Eq. (33) and Qtted at the one-
half amplitude points.
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FxG. 6. Comparison of theory and experiment for the square of
the normanzed ratio (R) of the second harmonic components of
hM, and Mp' for surfaces 1-3, with mean pit sizes of 10, 3, and
0.3 microns, respectively. The open circles are the experimental
data on surface 1, the triangles are surface 2, and the solid circles
are surface 3. The solid curves are theoretical curves calculated
from Eq. (31).The dashed curve is Eq. (31) for surface 3, with
T&p assumed to be infinite and T&f, adjusted to Gt at 4 Mc/sec.

An additional check on the modulation method is
provided by observation of the second harmonic
component of MP at small modulation amplitudes

( 0.1ydH Mc/sec). The measured, normalized ampli-
tudes of (3Es')sn are the points in Fig. 7. Theoretical
curves calculated from Eq. (33) are shown by the solid
curves. These contain one adjustable parameter, T2,
as listed in Table I. The good 6t to the theoretical
curves and the agreement with the line width determi-
nation of T2 lend confidence to the modulation
measurements.

Saturation measurements were made only for the
most highly polished surface, No. 3, because of heating
difhculties. The plot of x" es applied rf power fits
Suhl's theoretical curve" for LTts P (1/Tss)P'= 7 and
H„;t,——0.015 oe for a reduction in x" of 15/q. This gives
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a AXE~ of 1.65 oe or a relaxation time for the s-directed
spin wave, T~~„of 35 mpsec. '

VI. DISCUSSION

The excellent fit of the theoretical curves to the
experimental curves in Figs. 6 and 7 indicate the
adequacy of the present description. For surfaces 1 and
2, the scattering of the uniform precession into spin
modes is considerably greater than the "equivalent
scattering" of the uniform precession due to T~o. If the
assumption is made that the surface pits of surface 1 and
2 excite spin modes with wavelengths comparable to the
pit size, a relatively unambiguous interpretation of
T~~ is obtained for these two surfaces. For surface 3
the scattering into spin modes has been greatly reduced,
so that only about 10% of the uniform precession
energy relaxes to the lattice via the spin waves. Since
this surface is so highly polished, it is likely that the
small residual scattering is volume scattering caused
by a small number of voids of the order of 25 microns
known to be present in the sample. Thus the residual
scattering for surface 3 is probably into modes with
wavelengths greater than the surface pits of surfaces
1 and 2.

With this interpretation we see that T~I, varies
comparatively slowly with surface roughness, but there
is a trend for T~~ to decrease with decreasing wave-
length. The points are shown in Fig. 8. The values of
k for the two middle points were determined using the
reciprocal of the mean pit size. The trend in T~~ with
increasing k number is maintained in the determination
of T~~„ for a 2'-directed spin wave. However the T~~,
obtained by fitting Suhl's curves is probably too small.
Suhl assumed that all of the inhomogeneity scattering
into spin waves goes into the spin wave which is
unstable at the lowest power. In addition he assumed
that the nonlinear coupling term was independent of
k. Further calculations by the authors indicate that
these assumptions cause T~~, in Table I to be approxi-
mately 25% low. The solid curve of Fig. 8 is drawn
through the experimental points. However, it is possible
that there is a minimum in the curve at 0=10)&104
cm ', as would be predicted by an extension of the
analysis of Kittel. " Because of the gap between the
experimental points, the existence of such a minimum
is not tested.

It is worth noting that T~~ obtained even on the

"The b,H& of 1.65 oe obtained by curve Gtting may be compared
with the AHq of 0.1 oe reported on YIG from the same batch,
using the point of 6rst observed decrease in x" to determine
II„-,t,.R. C. LeCraw and E. G. Spencer, Suppl. J. Appl. Phys. 30,
1858 (1959).

'9 C. Kittel, Phys. Rev. 110, 836 (1958).
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FIG. 8. The spin-lattice relaxation time of spin waves of wave
number k, es. k. The point corresponding to surface 3 is not plotted
for reasons explained in Sec. VI. The k scale is changed by a factor
10 at the point indicated.

roughest sample, represents information characteristic
primarily of the bulk properties of the material. Thus
T&I, obtained on a relatively unpolished sample is a
considerably better indication of the intrinsic quality
of the material than is ddt or T2, which depend strongly
upon the surface. The value of T~J, and TM measure-
ments increases as the intrinsic line width of available
materials becomes narrower, because of the increasing
difficulty of obtaining a surface polish sufficiently
fine to cause negligible line broadening.
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VII. CONCLUSIONS

The successful combination of theory and experiment,
here indicates that this approach can be used to separate
and evaluate the various surface and. volume properties
entering into the ferromagnetic relaxation process.
Thus it should be possible to study the physical
mechanisms giving rise to the bulk properties, T~~ and
T&0, as a function of temperature, frequency, and rare
earth" and other impurity content even though the
line width still contains some broadening due to surface
and volume imperfections.


