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A self-consistent, semiclassical treatment is given for the attenuation of a sound wave by a free-electron gas
in a positive background which supports the sound wave. Emphasis is placed upon the kinds of magnetic-Geld
dependence which can be found under a wide range of values for the magnetic Geld, frequency, and mean
free path. Applications of the general formalism include propagation parallel and perpendicular to the
magnetic field. The special phenomena studied include geometric resonances, cyclotron resonances, and
magneto-plasma resonance. A qualitative physical interpretation of the various e6'ects found in the detailed
calculations is also presented.

I. INTRODUCTION

HE first experimental evidence that electrons in
metals could contribute significantly to the

attenuation of megacycle sound waves was uncovered
by Bommel' and MacKinnon. ' The importance of the
electronic system was indicated by the observed change
in attenuation upon crossing the superconducting
transition. Various theoretical discussions of the con-
tribution of the electrons to the attenuation in normal
metals were put forward, ' ' but the first complete
theory was that developed by Pippard' for the free-
electron gas. Pippard's theory has successfully ac-
counted for the major experimental features of the
attenuation.

By this time Bommel' had found that the attenuation
showed nonmonotonic dependence upon magnetic field
in tin at helium temperatures. The fluctuations in
attenuation appeared at magnetic fields inconsistent
with either cyclotron resonance or deHaas-van Alphen
oscillations. Pippard' proposed that such oscillations
could arise from a matching of the diameters of electron
orbits in a magnetic Geld and the wavelength of the
incident sound wave, an explanation which subsequent
work (including the present) has shown to be correct
in its essentials. Nevertheless, a detailed quantitative
theory of the dependence of the attenuation upon
magnetic held has been much slower in coming forward
than was the original zero-field theory of Pippard.
During the period of theoretical silence a number of
experiments were performed which amply confirmed
Bommel's original experiments and Pippard's suggestion
that the oscillations provided a new tool for studying
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the Fermi surfaces of metals. The principal experi-
mental investigations have been those of Morse and
his collaborators on copper'" and tin" and that of
Reneker on bismuth. "The experiments of Morse et al. ,
were carried out with the magnetic field perpendicular
to the direction of propagation of the sound wave;
Steinberg" and Harrison" have discussed some aspects
of the observed behavior. Kjeldaas, " on the other
hand, has provided a theory of the attenuation for a
magnetic field parallel to the direction of propagation,
which is valid for currently employed experimental
conditions.

More recently Rodriguez'6 attempted the solution of
the problem of attenuation in a transverse magnetic
field. His formulation of the problem was correct in
most respects, but most of his results were invalidated
by inadvisable physical and mathematical approxi-
mations. In particular, he found no oscillations in the
attenuation of the type suggested by Pippard and
observed experimentally. The absence of oscillations
derives from the mathematical procedures employed
by Rodriguez, but more fundamental difhculties were
that his treatment of the electric fields was not self-
consistent and that the collision-drag eGect' was not
included adequately. A more careful treatment by
Kjeldaas and Holstein" has subsequently shown that
salient features of the experiments are understandable
in terms of the free-electron model. The work of
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Kjeldaas and Holstein relates primarily to the range
of conditions embraced by the existing experiments of
Morse and collaborators. The emphasis in their work
has been on the numerical and analytical aspects of
the theory. There remains the task of providing an
overall theoretical survey of the dependence of the
attenuation upon magnetic field under a wide range of
experimental conditions. Such a survey is the subject
of the present paper.

In the following, therefore, we give a self-consistent
semiclassical treatment of a free-electron gas in a
positive background supporting a sound wave. In
Sec. II we develop a general formulation of the theory
of the attenuation. Starting from the Boltzmann
equation we develop a constitutive equation giving the
response of an electron gas to the electric field, the
collision drag, and the electron density gradient which

accompany the sound wave. From the constitutive
equation in conjunction with Maxwell's equations we
derive a general formula for the attenuation. In our
formulation, the conductivity tensor plays a central
role and is studied in detail in Sec. III. In the sub-
sequent sections we apply this formulation to cases of
magnetic 6eld perpendicular to and parallel to the
direction of sound propagation. We consider wide
variations in magnetic field, frequency of the sound
wave, and electronic mean free path. In Sec. IV we
consider the oscillations observed experimentally (which
we term "geometric resonances" ).'s In addition, we

discuss the low-field limit, including a detailed quanti-
tative theory of the cyclotron resonance first proposed
by Mikoshiba. "Finally we discuss the behavior of the
attenuation at very high fields. All calculations include
high- and low-frequency limits. In Sec. V we extend
the parallel-propagation case treated by Kjeldaas to
higher fields and frequencies than considered by him.
Our concluding section, Sec. VI, contains a qualitative
physical interpretation of the various eGects found in
the detailed calculations.

II. FORMAL THEORY OF THE ATTENUATION

A. The Constitutive Equation

In place of a real metal, we consider a gas of Np

electrons per unit volume moving through a uniform
background of positive charge of the same density.
The discreteness of the ion cores in real metals is
unimportant when the sound wavelength greatly
exceeds the interatomic separation. A sound wave of

propagation vector q and frequency co manifests itself
as a velocity 6eld u(r, t) ~ exp/i(g. r—&ot)) in the

positive background. In the present model, interactions
between particles are replaced by interactions of
individual particles with a self-consistent electro-

'9 This work on geometric resonances was carried out indepen-
dently of the work of Holstein and Kjeldaas; we are in complete
agreement with their results wherever there is overlap.

"N. Mikoshiba, J. Phys. Soc. Japan 15, 759 (1958).

magnetic field derived from Maxwell's equations. The
latter can be reduced to

(4s i/oi) (v,/c)'j i
B,i= (4a/i-oi)j «, Ci=

1—(v,/c)'
(2 1)

where 8 is the electric field and j the total current
density accompanying the sound wave, and both vary
as exp)i(q r—o&t)$. The subscripts

~~
and J in (2.1)

refer to components parallel and perpendicular to q,
respectively, and e, is the sound velocity.

The total current density contains a contribution
from the electrons, j„and one from the positive
background, Neu,

j =j.+Eeu. (2.2)

The electronic current j, excited by the sound wave
obeys a constitutive equation analogous to Ohm's law,
which has already been given correctly by Rodriguez. "
For completeness and convenience, we rederive the
constitutive equation here. Because the sound wave-
length is much longer than the electron wavelengths
and the atomic separations, all further developments
can be carried out in macroscopic terms.

The electronic contribution is given by

j,(r, t) = evf—(r,v, t)dv, (2.3)

where f(v, r, t) is the distribution function in phase space
(ti-space) for electrons of velocity v and position r.
When no sound wave is present, the distribution
function reduces to the thermal equilibrium Fermi-
Dirac function fs(v, E&'), Era being the Fermi energy,
and does not depend explicitly on the static magnetic
field Hs (Bohr-van Leewen theorem). When a sound
wave is present, the distribution function is determined
from Boltzmann's equation

(2 4)

In (2.4), F is the Lorentz force,

F= —e(s+ (v/c) && H], (2 5)

where the magnetic Geld H includes a part Hi associated
with the sound wave in addition to H, .

For the collision term on the right-hand side of (2.4)
we make the relaxation time ansatz

(2.6)

The meaning of (2.6) is that f(r,v)/r electrons are
scattered out of a unit volume of phase space around
(r,v) in unit time and f, (v, r)/7 are scattered in. Here
r is the relaxation time and f, the distribution of
electrons after scattering. When the impurities are at
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rest, the electrons scatter into an isotropic velocity
distribution centered about the impurity velocity,
namely zero; f, is simply fs(v, Et'). When the im-
purities are moved by the sound wave, the electrons
scatter into an isotropic velocity distribution centered
about the impurity velocity u. Further, the scattering
is local and cannot change the electron density. We
therefore have

f, (r, v, t) =fp(v —u(r, t), Er(r, t)), (2.7)

for the distribution after scattering, where the Fermi
energy Ep(r, t) is chosen to give the correct electron
density N(r, t).

The problem of deriving the constitutive equation
for j, is now completely specified. We must solve the
Boltzmann Eq. (2.4) with the collision term given by
(2.6) and (2.7), and then we must substitute the
result into (2.3). The Boltzmann equation is readily
solved by a method due to Chambers. ' A particle
contributes to the distribution function f(r,v, t) only if
it is at the point (r,v) in phase space at time t. The
particle will have been on the single trajectory T
which passes through (r,v) since the time t' at which it
was scattered onto T at (r', v'), Fig. 1. The number of
electrons scattered onto T in dt' is f, (r', v', t')dt'/r, and
the probability that an electron will not scatter again
before reaching (r,v) is exp[—(t—t')/r7. The distribu-
tion function is therefore given by

we obtain"

Bf
[v' (—ea'+mu'/r)

BE oo

Bfs ir mu)
ft(r, v, t)= ——J(v) (

8—
BE ( er)

where

(J(v),X(v)) = (—ev', 1)

2''
+ E (v)Nt , ('2.11)

32Vov

&(exp jt[q (r' —r) —td(t' —t)]
—(t—t')/r) dt'. (2.12)

+( )Et —Nt'/iVsr7e &' "&t'dt'. (2.10)

In (2.10) r' and v' now lie on the trajectory Ts followed
in the absence of the sound wave. The electric field 8
was introduced into (2.10) by expressing fs(v', Ets)
—fs(v, E&s) in terms of the energy change along the
trajectory and then integrating by parts. The quantities
8', u', and Nt' are all proportional to exp[i(q r' —tet')7
so that (2.10) may be rewritten in terms of 8, u, and N»

f(r,v, t) = f, (r', v', t')e &' "&t'dt'/r. (2 g) By substituting (2.10) into (2.3) we obtain the
desired constitutive equation

Expanding f to first order in u and quantities propor-
tional to u,

f=fs(v&Et')+fr) N=No+Nr

j.=rr (8 mu/er) RNtev, —. —(2.13)

In (2.11), e is the magneto-conductivity tensor for
frequency te and wave number q,

rr = dv ( ev) J(v) ( B—fs/BE), —
J

(2.14)

FIG. 1. The trajectory T of an electron in phase space under
the combined influence of the static magnetic Geld H0 and the
sound wave. An electron which contributes to the distribution
function f(r,v, t) must have been scat tered onto T at some previous
time t' at the corresponding point (r',v') and have followed T
without scattering until it arrives at the point (r,v) at the time t.

' R. G. Chambers, Proc. Phys. Soc. (London) A65, 458 (1952);
A238, S44 (1957).

2Ess
p (Bfo)R= vX(v)

i
idv.

3Nsrv, &BE
(2.15)

"One can see from (2.10) or (2.11) the close relation between
Chamber's method20 and the idea of a local Fermi surface
employed by Pippard. ' The change in the radius of the Fermi
surface Dv(r, t; vz) considered by Pippard is simply the integral
in (2.10) divided by me+.

"G. Dresselhaus and D. Mattis, Phys. Rev. 111, 403 (1958).

and as such enters all time- and position-dependent
transport phenomena; e.g., the Azbel'-Kaner eGect. 23

Collisions with moving impurities have the effect of
adding an apparent drag mu/r in (2.13) to the forces
acting on the electrons. The magnetic field Ht associated
with the sound wave does not enter explicitly. The
third term in (2.13) arises from diffusion of the non-
uniformly distributed electrons, the vector R being
given by
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j,(r, t) = ecV dr' dt' X(r—r', f —t') 8(r', t'). (2.18)

Taking the Fourier transform of (2.18) leads back to
the corresponding part of (2.13)

j.r(q, ~) =e(q,~) 8(q,~), (2.19)

but with e(q, ro) expressed as

e(q, po) = " ds X(q,s)e'"',
0

(2.20)

where s=t—t . Proceeding similarly with the diffusion
current, we start with the general relation

There is a relation between J and E obtained by
integrating by parts on t' in Eq. (2.12),

iJ q= —e(1—L(1—i&or)/r)E), (2.16)

which leads directly to an interesting and useful relation
between e and R,

ie q= —L3Npe'v, (1—sror)/2ErP]R. (2.17)

In order to develop the significance of Eq. (2.17), we
consider the generalization of (2.13) to arbitrary
position and time dependence. The current induced by
the electric Geld is

Kubo's generalization of the Einstein relation'5 was
limited to q=0. It is curious that (2.25) differs from
the usual Einstein relation only through the factor
(1—uor) despite the finite wave number.

B. The Attenuation CoeRcient

The sound wave feeds both kinetic and potential
energy into the electron system as it propagates. The
electrons dissipate this energy to the positive back-
ground through collisions. An individual collision is a
local event so that only kinetic and not potential
energy is changed after a collision. By straightforward
manipulation based on the Boltzmann equation one
can show that the average rate of loss of electronic
kinetic energy via collisions is (j, 8)A, per unit volume.
Not all of this kinetic energy is dissipated as heat, a
part being coherently fed back into the sound wave.
Because the average electron velocity (v) before collision
in general differs from that after collision u, there is a
net force exerted by the electrons on unit volume of
the positive charge equal to Epm((v) —u)/r. Energy
is fed back into the sound wave at an average rate
(u'%pm((v) —u)/r)A, and the net power dissipated per
unit volume is

Q=-,' ReLj.* 8—u* Epm((v) —u)/r], (2.26)

and obtain

j„(q,~) =eD(q, ~) iqXi(q, ~),

(2.21)

where we have used complex quantities as in the
previous section for convenience. The correction to the
j,* 8 term is related to the collision drag eGect con-
sidered by Holstein. " It is of importance for the
attenuation primarily at high frequencies or magnetic
fields.

Equation (2.1) can be conveniently rewritten as

D= ds P(q, s)e'"'.
(2.22) j=—~0~ s, (2.27)

The diffusion coeflicient D(q, po) is directly related to R
Lsee Eq. (2.13)],

iD(qto) q= —Rv, . (2.23)

A mobility tensor can be defined as usual

a(q, &o) =Epee(q, po). (2.24)

Comparison of (2.17) and (2.23) shows that (2.17) is
equivalent to a generalization of the ordinary Einstein
relation to hold for nonlocal, time-dependent processes
occurring in constant magnetic fields, 24 8=W Xpeu/op. (2.30)

where the tensor 8 has the principal components
i(—y, p, p) relative to axes defined by q and two trans-
verse directions; o-0 is the dc conductivity; and

P= poc'/4pro pt as y=P (e,/c)' (2.28)

after the (v,/c)' in the denominator of (2.1) is neglected.
The above expression (2.26) for Q can be transformed to

Q= —s RePlpeu* (I+B) 8], (2.29)

with the aid of (2.2), (2.3), and (2.27). The electric
field 8 must be linearly related to u,

eD (q,ro)

tp(q, co) = (1—i(or).
2Es P/3

(2.25)
After (2.30) is inserted for 8, (2.29) becomes

Q=X, (-', m~u~'/. )a S a (2.31)
'4 The foregoing argument is incomplete. We can conclude from

comparison of (2.17) and (2.23) only that

LD —(-;)Zrotp/e(1 —i~r)g @=0,
or

D=[(3)E» tp/e(1 iver)]+Db, —
where D& q vanishes. However, from (2.22) a term like D& cannot
give rise to a diffusion current and may be disregarded.

where

S=—ReL(l+B) W] (2.32)

and 4 is a unit vector in the direction of the

26 R. Kubo, Can. J. Phys. 34, 1274 (1956);J. Phys. Soc. Japan
12, 570 (1957).
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m]u/'
Q'=&p

27.
(2.33)

polarization. The three independent directions of
polarization 4;, i=1,2,3, form the coordinate axes in
which B has already been expressed and in which W
and S can also be. We choose ut along q and 6s to lie
in the plane of g and Hp, Fig. 2. For a particular
polarization the power dissipated Q; is

)~, Hp

I
l

I
I

I
r

X
I

.l

so that our problem amounts to calculating a diagonal
element of the tensor S. One would have expected the
factor Ep(—',m~u~'/r) to establish the scale of Q from
simple dimensional arguments alone, which suggests
that S;; does not ordinarily differ from unity by more
than a few orders of magnitude.

The quantity of interest experimentally is the
attenuation coeKcient e, which gives the exponential
decay of sound intensity with distance. n is the power
density dissipated per unit energy Aux, or

n=Q/-,'M
~

u~'v„ (2 34)

where M is the atomic mass of the metal being re-
presented by our simple model. From (2.33), we have

mop S,;

Mv,
(2.35)

for o, where l= vgr is the mean free path of an electron
and vp the Fermi velocity. Since n, by its nature, is the
reciprocal of the mean free path I. of the sound wave,
the relation between L and l implied by (2.35) is of
particular interest. For copper, for example, Mv, /mvs
is about 100 so that

L; =100l/S;; for Cu.

Ease of measurement and the general order of magni-
tude of background attenuation require that I. be of
the order of 1 cm or perhaps somewhat less. Thus, with
S;; of order unity, the mean free path / must be of
order 0.1 mm or longer for readily observable attenua-
tion by electrons. There is the additional point that
only with long mean free paths can information about
the details of the electronic structure be obtained rather
than macroscopic properties. These dictate the require-
ments of pure materials and low temperatures; e.g.,
for very pure Cu, v might be as long as 10 ' sec at
helium temperatures and hence L,~4/S;;. There are
two limitations on the maximum value of S,; which
can be tolerated. First, L; should not be very much
smaller than the thickness of the thinnest specimen
which can be conveniently studied, say ~0.1 mm, and
hence for Cu, S;; should not be larger than 10'. Second,
if L; becomes comparable to the wavelength, 0.05
mm for 60 Mc/sec, then a correction to the frequency
or velocity of sound becomes necessary because of the
Kramers-Kronig relations, which imposes essentially
the same upper bound on S;;.

FIG. 2. The coordinate systems utilized for the expression of
quantities like 8, S, and o'. The system (1,2,3) axed to the direction
of propagation q is most convenient for the expression of 8 and S.
The system (x,y,s) 6xed to the direction of the iield Hp is most
convenient for the expression of the conductivity tensor e.

We turn now to the derivation of the tensor W and
the explicit form of S. The equation of continuity
relates X1 to j,l&,

.
j.l 1

= —&1~~' (2.36)

The third term in (2.14) can therefore be written as

Rj„,=R j., (2.37)

where the tensor R has the components

and from (2.17)

Eg =E.;8g;,

ZM7'V p

3o p(1 i(dr)v, s—

(2.38)

(2.39)

We can now simplify the constitutive equa, tion (2.13) to

1.= ~p~' (a—~u/er) (2.40)

by use of (2.37), where

o'=[1—Rj 'o/op (2.41)

is an effective conductivity which includes diffusion
and is measured in units of o p. Substitution of (2.27)
and (2.41) into (2.2) leads to an expression for W,

W= —[~+B1 'D —~'j (2.42)

We are thus led to the sought-after expression for S by
inserting (2.42) into (2.32),

S=Re{[I+8][e'+B] '[I+B])—1, (2.43)

or, in components

S,,=Re{(1+8")'[(e'+B) 'j")—1. (2.44)

Equation (2.44) together with Eq. (2.35) completes the
formal solution of the ultrasonic attenuation problem.
Our results are exact within the limitations of semi-



COHEN, HARRISON, AN D HARRISON

classical transport theory and the relaxation time
ansatz.

Our goal is to use (2.44) as a basis for exploring the
possible kinds of dependence on frequency and magne-
tic field entering the attenuation through e' and B.
The derivation and analysis of convenient expressions
for the conductivity components are carried out in the
next section, and the classification of the field and
frequency dependences entering S is deferred to Secs.
4 and 5. However, it is possible to delimit here the
dependences entering S primarily through B.By com-
bining (2.27) and (2.30) we obtain

j=B W 1Vpeu (2.45)

for the relation between the total current and the
current of positive charge. The latter is screened by
the electron current when j is much smaller than Eoeu.
From (2.42) the conditions for screening are that

(a) IB"I«1* (b) IB"I« l~"'I.

If either or both of these is violated, the screening is
incomplete. The meaning of condition (a) is that
screening occurs when the electric fields generated by
the positive ion motion are strong enough to force the
electrons to follow. This is not possible at frequencies
sufliciently high that

I
B,, l

))1, the high-frequency
limit. On the other hand, (b) means that screening
occurs when the conductivity is large; i.e., when a
large electron current results from a given electric
field. It is shown in the following that e and hence o'
becomes small at high fields; that is, IB;;I)&le; I

in
the high field limit, where screening is incomplete.

For transverse waves, i= 2 or 3, I B,; I
is simply the

P of Eq. (2.28) and equals sts' times the square of the
ratio of the classical skin depth to the phonon wave-
length. In copper, such as that used by Morse et al. ,

' "
p is 10 ' at frequencies of order tens of megacycles.
Thus condition (2) would be satisfied up to frequencies
of order 10 megacycles, or, in high resistivity metals,
to frequencies correspondingly lower. Inasmuch as
ultrasonic frequencies of order 104 megacycles are now
attainable, " we shall treat both the low-frequency
limit, P«1, and the high-frequency limit, P»1, in Secs.
4 and 5. For longitudinal waves, however, IBiil =y
is practically always negligible so that (2.44) may be
simplified to

St,——ReL(o'+ B) '$ii —1. (2.46)

Similarly, the high-field limits p))o ss', o ss' are attainable
for the transverse components, whereas that for the
longitudinal component p(ti, /c)'»o»' is both beyond
reach and in the quantum limit. Nevertheless, we
include the high-field limit because of the rather un-
expected nature of the results.

~ K. N. Baranskii, Doklady Akad. Nauk S.S.S.R. 114, 517
(1957) Ltransalation: Soviet Phys. -Doklady 2, 237 (1957)j;
H. E.Bommel and K. Dransfeld, Phys. Rev. Letters 1, 234 (1958);
2, 298 (1959); 3, 83 (1959). E. H. Jacobsen, Phys. Rev. Letters
2, 249 (1959).

Bfp) 3A'p
I g(v) I

——Idv= dn g(vF),
BE) 87rEpP ~

(3.1)

so that J and J need only be evaluated for ti= vz. We
choose a coordinate system having s along H, x in the
plane of tl and H and y coinciding with our previous
axis 2, Fig. 2. The relation between (r,v) and (r', v') is

ti, '=ti, cosl io, (t' —t)+it],
x'= x+ (ti,/tp, ) (sinLoi, (t' —t)+Pj—sining ),
v„'= ti, sinl pp, (t' —t)+it ),

(3.2)r'=~ —(s / ){cosL~.(t' —t)+43—cos4»,

ti, '=ti, =v cos8, s'=s+v, (t' —t),

vJ.= v sine,

in this system, where

co,= eH/mc (3 3)

is the cyclotron frequency and 8 and it are the polar
angles of v. Substituting this expression of the kinetics
into (2.13), we obtain

(J(vp),E(vp) )

((iev p/X) B/Bitz)
= expl iX sin—8 sing] ietiqB/BX, 1 8'(X,8,$), (3.4)

—evp cose

where

8(X,8,$)= ds exp( —iLX sin8 sin(io, s—it)
p

+q,vi cos8 s—ipse —s/r) (3.5)

after writing X for q vi/cp, and replacing t t' by s. —
Note that A= vs/co, is the orbital radius of an electron
moving perpendicular to Hp with the Fermi velocity.
The integral over s in (3.5) is readily performed with
the aid of2'

eiz sin|1 —P J (s)einP. (3.6)

J„(Xsin8) e'"P
(3.7)

~=~ 1+i(tied, +q, vp cos8 —io)r

27 Eredelyi, Magnus, Oberhettinger, and Tricomi, Higher Tran-
scendenta/ Functions (McGraw-Hill Book Company, New York,
1953), Vol. 2, p. 7.

III. CONDUCTIVITY TENSOR

The magnetic field dependence of the conductivity
tensor is implicit in the integral expressions (2.13) and
(2.15). The present task is to exhibit this dependence
explicitly in a convenient form by evaluation of the
integrals. We first note that for arbitrary g(v)
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The results obtained thus far permit us to write the
conductivity tensor e in the form

30p
tr=

n ~

"sin0 cosQ'
dQ ~ sin0 sing ~e '

cos0

( «I—X)0/» Z„(X sin0)e'-P
i 8/BX—
cos0 1+i (ntp, to+ q—,n«cos8) r

(3.8)

The integration over p can be carried out by repeating
the procedures used to obtain (3.4) and (3.8), and we
arrive at the following useful expansion of the con-
ductivity tensor

««/X
'

t«=3o.p g — i0/BX J„(Xsin0). coso .

hold for finite q and H. Simple dispersion relations for
the H dependence of e appear to hold only for q=0
but co still arbitrary, when they are identical to those
found by McClure" for g and or both zero.

IV. PROPAGATION PERPENDICULAR TO FIELD

It is convenient at this point to specialize to particular
directions of propagation in order to simplify the
pertinent expressions. e may be written explicitly for

q J H. In this case our two coordinate systems coincide
with 1 ~ x, 2 +-+ y, and 3 ~ z.

3o.p (1 itpr—)g„(X)
oii —— (1—«p~r) 1—

(f2 )2 ~=~ 1+i (n&o, pi) r—
s„(X)

0'22= 30 p
'o 1+«('stol cp) r

««/X
—iB/BX J„(Xsin0)

cose
sinN8

X (3.9)
1+i (««rp, op+ q,—n«cos0) r

An important property of the conductivity tensor
is displayed by (3.9).

3o p (1—i&or) g.'(X)
O12 021

2ql &=» 1+i (««tp Mr)—

«„(X)
o'ps =3o'p

s=-» 1+«(NM~ —cp)r

&13=031=023=&32=0

(4.1)

ov(H) = (-1)'~J'(H), (3 10) Here

where "u" is the number of times y appears among the
indices i and j. This interchange relation implies that
the components of tr(H) satisfy the same Onsager
reciprocity relations for finite q and co as they do for
vanishing q and co. The system as a whole is invariant
to reQection in the x-z plane and simultaneous change
in sign of H, with the consequence that"

g„(X)=
dp

J„'(Xsin0) sin0d0;

g-'(X) = (d/dX) g.(X);~~I«(4 2)
s„(X)= LJ„'(Xsin0) $' sin'0d0;

Jp

o,, (H) = (—1) o,;(—H). (3.11)

Combining (3.10) and (3.11) leads to the Onsager
relation

m/2

J„'(Xsin0) cos'0 sin0d0

0 —0

1 f' —Irp t(to )d&p

CO G7

(3.13)

Detailed examination of (3.9) leads to the same conclusion
as this symmetry argument.

as stated. Equation (3.12) applies to Z;;(r—r', t—t') as
well, so that we have deduced by detailed calculation
that the Onsager relations apply to nonlocal, time-
dependent phenomena. Kubo's derivation of the
Onsager relations" was limited to the case q=0.

Inspection of (3.9) or the earlier Eq. (2.13) shows
that e=e1—i+2 has no poles in the upper half of the
complex frequency plane and vanishes at infinite
frequency, from which it follows that the Kramers-
Kronig relations

The expressions in the first column have been rewritten
from the form:

I'g„(X)

X = 1+i(««pp cp)r

««g„'(X)

2X p a1+i (««c=p, tp)r—30 pz

which is obtained directly from (3.9). This was done

by noting that P „"g„(X)=1, which follows from
the relation P „"J '(X)=1. We also make use of
the fact that g„(X)=g „(X) and that Xpi,r=q/. The
evaluation of the functions g„, g„', s„,and r is discussed
in Appendix I.

» J. W. McClure, Phys. Rev. 112, 7&5 (&938).
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We may now write the three diagonal components of
S LEq. (2.44)], in terms of the nonvanishing com-
ponents of 0'.

resulting conductivity tensors become:

—32oir (1—io1r) L1 gp(X) ]
q2P[1 —2o1r—ge(X)]

S22= Re

(1+ P)'-
S33——Re

o 22'+iP .

-o 11 o22 + (1r12 ) +2po 11—

(1+2p)2

O22 +ZP+ (0'12 ) /O 11

(4.3)

(4 4)

(4 5)

—3io1rgp'(X)
I

tT12 0 21

2qtL1 —ia&r —ga(X)]

9o'(X)/2]' &
022 $0

1 uor E— 1—2a1r —ge(X) )
3rp(X)

0'33 =
1 287'

(4 6)

In deriving (4.3) and (4.4) we have used the fact that
I
o.ii'I »y for all attainable fields and frequencies.

We now need only evaluate the tensor o' for any case
of interest and substitute into the above expressions.

A. Geometric Resonances

We expect geometric resonances when the phonon
wavelength is of the order of the classical orbit radius;
i.e., when X is of order unity. In this case ~, is much
greater than co (by a factor of order v2/n, ), and if in
addition Ioi,r/(1 2a1r) I2»1—, we need keep only the
I=0 terms in the summations appearing in (4.1). The

The appearance of the Bessel function in the integrals
gp, t'p, and so leads to oscillatory dependence of the
components of e' on H. If the condition

I
o1,r/(1

ieger)

~

2—
»1 is not well satisf'ied, terms with ~22I higher than
zero enter. That these terms of higher e tend to wash
out the oscillations can be seen from consideration of
the relation g „+"J'„2(s)=1 and the slow variation
of the frequency denominator with field in the range
where co,))co.

With Eq. (4.6) substituted into (4.3), (4.4), and (4.5)
we obtain the attenuation when

I
p(op/o. 22) t«1.

q2P ( 1
(4.'/)

3(1+a12r2) $1—ge+(g, '/2)2/g )
.20

.I8

.I6

s„=I
&3I:~o+ (go'/2)'/(1 —go)]

S22= L(1/3ro) —1].

.14

~~.I2-

UJ

i- .IO—
LLI)
i—.08—
UJ
CL .06—

.04—

.02—

I I I I I I

0 2 4 6 8 IO I2
qR

FIG. 3. The 6eld-dependent factor in the attenuation of a
longitudinal wave moving perpendicular to the magnetic field.
The abscissa is the product of the phonon wave number and the
classical orbit radius of an electron moving perpendicular to the
magnetic 6eld at the Fermi velocity. gR is inversely proportional
to the 6eld. The attenuation is obtained by multiplying the
relative attenuation by (1'/pe, r) Pq'P/3 (1+co'r') g. The curve
P(&1 applies when the classical skin depth is much less than the
wavelength; the curve jtII))1, when it is much greater. In both
eases the cyclotron frequency is taken to be much greater than
the electron scattering frequency.

For S11 an additional term was obtained which was
Smaller by a faCtOr Of Order 1/q P=21/(X , 2ro1)2. 2FOr

our approximation X 1 and ~,r))1, so this is dropped.
The expression for S» agrees with Eq. (50) of

Rodriguez" when ql))1. Rodriguez has plotted this
attenuation for several values of gl but did not display
the ripples which are apparent in our plot for large q/.

These three results are plotted in Figs, 3 and 4.
Note that the abscissa is proportional to the reciprocal
of the magnetic Geld. We have plotted only the field-
dependent factor, which is contained in brackets in the
above expressions. These are independent of parameters
associated with the material measured provided always
that to,r»1, gl»1, and P«1. Note the strong oscilla-
tions in S» and S». The maxima and minima in S11
occur when go' vanishes. Positions of the 6rst few
extrema in S» are given in Table I. Both S» and S33
drop to zero at fields suKciently high that gE=X((1
but not so high that the condition Po'o/I o22I«1
violated. For this same range of fields the field-
dependent factor in Sii saturates at the value 1/5, a
result which obtains even when q/ is not large.
Combining this result with Pippard's result for the



I N M ETALST E N U AT I ONON I C

h t the saturation
~ 6 e see t a

2
eM. attenuatio

ld alue when Qt& S~
zero

than the zero riel v

han
an sd mailer when g~( „bcome greater t a

f the
The parameter p~o/i "

esonance range i

p itself he large, p»
-

4.3) to (45) yieldssubstitution of the e o

CD

LLJ

i.Q—

q2)2

3(1+QPt ) 1 gp

(4.10) .

8 IO 120 2

qR

in the attenuatIon oof trans-
ti G ld hendicular to the magne

r than the wave engin de th is much larger
ave Is much less than tt q

on scattering frequency. S e a22 colle
lar to the Geld; S, to

p
'

he attenuation is obti d bparallel to it. e a

( (go'/2)'i (
1+a) 7 1—go) i P

522 ——1—

3rD ( 2co7 )
1+~'~' ( p )

=1—
i

1+. (4.12)

Pm/pV, v.

a netic fields (10' gauss),for attainable magnetic e
d to about 10to be lowere o

20-

i8—

would have

ce and Low-Field Limit8 Cyclotron Resonance an ow-
l4

8I—

6

l6-

e on resonance effects when the
~2—

frequency. n
ivit tensors (4.1 cannomina ors

't s in the conductivi y e
i ilit of oscillatory eb havior arises.

]0-

sma Po ' y

'll bX= ("/")( / ~

the asymptotic form for efeei

II it is shown that g

ll H 'f tk
for „X,e c.,

the

4 6 8 ip I2

t ea P" "'
r of the form o e

0 2 4

we mpf a make an error oor in the attenuation of a

n„X) 1
much less than the wavele

scissa is the product o p
d'or, —or T

dius. S22 corresponds to po

oo

2 2

o the Geld; S corresp

'+n'cup r

t t t o obtto the Geld. The attenua io

2X n=x (1—@or

Em/pV, r.

the extrema of whichws oscillations, the ex
co e

»show osci a ory
ecometh fildd d ttin ig.I'i . 5. Otherwise,

e ual one. rovisma
al like copper,

n be met. When w as
SX10 " for a metal

has the valuef oscillation caor
'

ions are satis eSX10 " the condition
d decreases in

)

the value of or require
1 h h XTo bring or down to va uproportion. o r

Maxima

0
4.04
7.27

10.45
13.61
16.77
19.92
23.07

Minima

2.94
6.04
9.16

12.28
15.41
18.55
21.68
24.82

de of X at ExtreIIIa of S11.TABLE I. Magnitude o
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00 1 s 1 oo 1
-+2z g~=~ 1+z(rzrp, ra) r —1 i&sr z— ~=i z'+I'zr'

s coths

1—ico7'

The last term may be estimated by replacing the
summation by an integration over I and the term is
found to be of the order of 1/q'P whereas the first is of
order 1/ql. We are interested in the case rpr large;
hence, we may take ql to be very large and retain only
the Grst term which may be evaluated directly, noting
that"

2.5'-

C)
I—~ 2.0-
IJJ
I
I—

w
I—

l.0

I

I.5
I

2.5

where
z= (1 irpr)zr/rp, —r= (1—i car)zrX/ql. (4.13)

Then, using (2.41), we obtain the limiting expressions
for the ~'.

3 men 7 coths
ZM7

FIG. 6. The ratio of the attenuation of longitudinal waves as a
function of magnetic 6eld to that at zero field as a function of the
ratio of phonon frequency to cyclotron frequency. co/co, is in-
versely proportional to the magnetic Geld and is numerically
equal to gR(p. /pz). The product of the phonon frequency and the
electron scattering time, car, is taken equal to ten.

of these will be dominant and (4.16) becomes
q2$2

Ssz=sps=1+(3zr/qlps) Re cothz, (4.18)(4.14)a„'= ~„'=O(X I(qi)-

apz'= app'=3zr/(4q/) cothz.
showing resonances similar to those for longitudinal
waves. Such a case would be obtainable in copper if
the scattering time were sufficiently long that the
cyclotron resonance were observable.In the expressions (4.3) and (4.4) for Sii and Sps a is as],

'

will always be negligible in comparison to the terms we
are keeping in o-11'r22'. Noting also that the expressions
for the transverse waves become identical, Eqs. (4.3),
(4.4), and (4.5) for ql))1 become

C. High-Field Limit

S»=«t (1/a»') —1j,

The conductivity components (4.1) have the limiting
behavior

(4.15)

(1+zP)'
$22=533=Re —1 .

rrss +z-p
(4.16)

a'p (1 zGDr)—

ap 2 (ql)'
a 22 + (1 zrdr)

(cp,r)z 51 irar—
azr a jp —as/Mgr~ ass —as/(1 —z&ar)~

1

(cp,r) z+ is (ql) z/car

a'zs = (ass/a'p)+is (ql) /ppr(1 i&pr)—

We note that as the field goes to zero, z= (1 ippr)zr/ra—,r
becomes infinite and coths and tanhs approach 1. The
above expressions then become the same as those
derived for zero-Geld by Pippard' for the case gl&)1.

For the magnitudes of field of interest in cyclotron leading tp
resonance, coths will be of order unity. Thus we may
drop terms of order rar(cothz)/ql and terms of order
1/(ql cothz) in comparison to terms of order unity.
Then (4.15) becomes

(4.19)

mq/
Re coths.

6
(4.17)

X f(cp r)

+is�

(ql) /air5 i (4 2O)—

I
&12 0 21

(pp.r)'+i ', (ql)'/rdr-This expression is displayed in Fig. 6 for cur=10. As
cov is decreased, the oscillations are damped out for
lower ca/rp, . a „'=1/(1 irpr), —

Similarly, (4.16) becomes simply S»=S»=1 unless

p is sufficiently small that terms of order cothz/qlp and
cothz/qlp' become appreciable. In this case, the last

"E. T. Whittaker and G. N. Watson, A Course of 3foderrI,
Arlulysis (Cambridge University Press, Cambridge, 1950), fourth
edition, p. 136.

(an)'
S22=S33=—

1+(a)r+ 1/P)s
(4.21)
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S11=
1+L(P '+~-)+V(~. r)'3'

(4.22)

for the high-field limits of the transverse cases, a more
precise result than that obtained above when terms of
the order of (4.21) were omitted. The attenuation of
longitudinal waves at very high fields is somewhat
more complex. In the low-frequency limit p(&1, Sii
first saturates at (1/15) (q/)'/I 1+(cur)') provided that
(&o.r)'»-', (q/)'/(or. Then, as (co,r) becomes comparable
«1/p a term p'(~.r)' appears in Sii. In the high-
frequency limit p))1, on the other hand, no saturation
occurs, and one passes from geometric resonance
directly to an Hz dependence: Sii= (o&,r)'/L1+ (cor)'j.
In both cases, the attenuation continues to increase as
B' for all attainable fields. However, if one imagined
6elds sufficiently large that 7(cg,r)' is of order unity,
the H' dependence would pass into

We obtain

where

0~' = 0~/ 0 0
——(0'zz+ za'zz) /00 =G

sin'gd0
6+ 3

1+i (&cd,+qni cosg —co)r
(5 1)

cos'0 sinede
3
2

"0 1+i(q/ cos9—cur)

cose sinode1- (q//(or)-',
1+z (q/ cos8 —&or)

(5 2)

The quantity 6+ is precisely that obtained by Kjeldaas.
We note that

I
6+

I
(1and that G+ —+ 0 as the magnetic

fields becomes infinite.
For the transverse wave we obtain for the

attenuation,

Equation (4.22) shows that there is an enormous broad
maximum in the attenuation when

(1+iP)'

G++iP
(5.3)

I 1+( /cq)'1 (4.23)

V. PROPAGATION PARALLEL TO THE FIELD

e for this case may be obtained from (3.9) by taking
the limit as X goes to zero. In addition, it is convenient
to let the transverse currents and fields be circularly
polarized in the x-y plane, following the treatment of
Kjeldaas. '5 The correspondence between the two co-
ordinate systems is now 1~s, 2 ~ y, and 3~ —x.

of width in co, comparable to the value at maximum.
Here &o~ is the plasma frequency, ~~'=4zr1Voe'/Nz. The
maximum value of Sii is ~(~„/~)'/I 1+(~„/cq)'$ and
is of order 10io when 1/p))iver. Finally, at Acids beyond
the maximum, S11 saturates again at unity.

The high-field limits for the transverse waves occur
at fields both experimentally attainable and at which
the present theory applies. For the longitudinal waves,
however, the high-field maximum just described occurs
at unattainably high fields for ordinary metals, which
fields are also well beyond the limits of validity of the
semiclassical transport theory used here. A completdy
quantum mechanical treatment of the magneto-plasma
resonance is required. Further, the attenuation is so
enormous that from the Kramers-Kronig dispersion
relations it follows that the elastic constants must
depend strongly on magnetic Geld when p(~0,r)))1.
The 'amplitude of the maximum may decrease by
orders of magnitude when this eGect on the sound

velocity is included. Qur calculation, therefore, is quite
unrealistic, and our purpose in reporting it is solely to
call attention to the possibility of such eGects in metals.
Moreover, in semimetals with low eQ'ective masses and
low carrier densities, such behavior may well occur at
attainable fields.

For the case treated by Kjeldaas, for which p can be
neglected, we obtain his result,

S+=«L(1/G') —lj «r P«» P« IG'I (54)

It should be noted that the condition p« IG+I will

always break down at suKciently high magnetic fields
since G+ can be made arbitrarily small by increasing
the field. Thus the equation (5.4) should be supple-
mented with a high-field limit. We take the high-field
limit for G+, which is obtained from (5.1) by letting
co.r become large.

G+= 1/(1+ice,r).

This may be substituted into (5.3) to obtain

(p~.r)'
Sp= P«1, high fields. (5.5)

(1mp~d, r)z+pz

We see that after the initial drop in attenuation dis-
cussed by~Kjeldaas, the attenuation again begins to
rise, reaches a peak value for S+ of ~,'r' when the field
is su%ciently high that cu, r is equal to about 1/p and
then drops to a limiting value of unity. S, on the
other hand, asymptotically increases towards unity.

The condition P« IG+I will also break down at
sufficiently high frequencies; thus when cur becomes
large, 6+ becomes small, and S approaches the constant
value unity and becomes independent of field.

These departures from the behavior discussed by
Kjeldaas arise from the breakdown of the screening of
the ionic current; as H becomes very large, the elec-
tronic current begins to lag the ionic current, causing
a rising attenuation. Ultimately these currents drop
to zero so the attenuation drops to the residual value
which may be associated with the viscous drag of the
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electron gas on the scattering centers. The high-
frequency behavior results from the breakdown of
screening at all fields. When P))1, we obtain

5'=Re(1—G+); P&)1. (5.6)

In this case S increases smoothly to unity as the Geld

goes to infinity. This amounts to only a very slight
increase in attenuation if q/ is large, but as g/ goes to
zero, the zero-field attenuation (more precisely, the
attenuation at fields such that ~co,=co) goes to zero.

It should perhaps also be noted at this point that
the zero-field limit for transverse waves can be obtained
directly from the above expressions. We may set
co,=0 in the expression for 6+ and if we drop terms of
order Mr/ql=v, /wp, we obtain

3 (1+q'P
G=

)
arctan q/ —1 ~,

2(ql)'& q'P
(5.7)

VI. DISCUSSION

An effort will be made in this section to present a
coherent physical picture in terms of which the many
diverse cases which have been treated may be under-
stood. For the sake of clarity, this picture has been
somewhat oversimplified; in particular, complications
associated with the relative phase of currents, fields, and
lattice velocities are largely overlooked, except where
they become of primary importance. Furthermore, the
intricacies of the screening problem will be discussed
in a grosser fashion than is really warranted. Thus the
picture presented should be regarded as an interpreta-
tion of the results of a careful calculation rather than
an explanation of the phenomena in question. It would
have been quite difGcult to develop such a picture in
the absence of the detailed calculations which appear
in the preceding sections.

The physical eGects associated with propagation
parallel to the magnetic field have been covered in
some detail by Kjeldaas" and in Sec. V, and will

and (5.4) and (5.6) lead to thecorresponding expressions
(23) and (26) of Pippard. 6 These also agree with our
expressions (4.17) and (4.18) for the zero-field limit.
In addition, we have the high-frequency limit of unity
for S when co~((1, in agreement with Pippard.

Finally we consider the case of a longitudinal wave
propagating parallel to the magnetic field. In this case
the field does not enter, and we reproduce the results of
Pippard. ' From equation (2.46) we find that

S„=Re'(1/ »') —1'.
We then obtain, in agreement with Pippard, the
attenuation

q'P arctanq/
Sip= 3

q/ —ar etang/

for all values of P.

not be discussed further here. We restrict attention to
waves propagating perpendicular to the magnetic field.

Before considering the oscillatory phenomena in
detail, we should perhaps indicate again the origin of
each. The geometric resonances in the attenuation are
associated with the Bessel functions in the conductivity.
tensor. These have to do with the strength of the
interaction between the particular orbits and the
electric field rather than with resonant absorption of
energy. In quantum-mechanical language geometric
resonances correspond to variation in the matrix
elements rather than in the resonance denominators
also appearing in the conductivity tensor. It is the
cyc/otroe resonance which corresponds to the variation
of resonance denominators; i.e., to the resonant
absorption of energy from the sound wave. A third
oscillatory phenomenon, the de Haas-van Alphen
oscillation, is associated with variations in the density
of electron states at the Fermi surface. It is precisely
the same phenomenon as the more familiar oscillations
in magnetic susceptibility and has nothing to do
directly with the interaction between the electrons
and the lattice wave. This corresponds to the fact that
it is the one oscillatory phenomenon which does not
scale with frequency. Although Reneker has observed
de Haas-van Alphen oscillations in ultrasonic attenu-
ation, "we do not discuss the phenomenon here because
it lies beyond the reach of semiclassical transport theory.

The geometric resonances can be understood in quite
simple physical terms at least for the transverse waves
polarized perpendicular to the field at low frequencies.
The attenuation is given schematically by

e=(Nm/p5 T) Re'(o'p/0 ii) —1j (6.1)

where O.,qg stands for the appropriate combination of
components of the conductivity tensor. The important
point is, of course, that the conductivity appears in the
deeomimator. This is because with nearly complete
screening, we have a constant cmrreet system rather
than a constant vo/tuge system, the electron current
being forced to equal Xoeu. Let us now consider two
values of magnetic field corresponding to (a) 'orbit
diameters equal to a half wavelength {or an odd
number of half wavelengths) and (b) orbit diameters
equal to an integral number of whole wavelengths.
These are illustrated in Fig. 7, where the vertical
arrows correspond to the self-consistent electric Geld
associated with the lattice wave. Since the wave fre-
quency is much less than the cyclotron frequency,
"=(e,/v')&u„we may regard the wave as fixed.

In case (a), the component of field in the direction
of electron motion is always positive, and therefore the
electron speed increases with each passage. On the
other hand, the speed of an electron following an orbit
displaced by a half wavelength decreases. In both
cases, there is a significant increase in the current in
phase with the Geld. This corresponds to a large
current response, a large conductivity, and hence a low
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FIG. 7. Schematic representation of a transverse wave moving
perpendicular to a magnetic 6eld pointing into the plane of the
paper. The polarization of the wave is also perpendicualr to the
6eld. The case (a) represents an electron orbit corresponding to
high conductivity (low attenuation); the case (b), an electron
orbit corresponding to low conductivity (high attenuation).

attenuation. In case (b), the electron is alternately
accelerated and decelerated and has no net increase in
speed per cycle. This corresponds to a small current
response, a low conductivity and a high attenuation.
A geometric analysis like the present one was first
proposed by Pippard, ' who inferred from it, however,
an erroneous resonance condition.

Now all electrons at the Fermi surface contribute to
the attenuation, but electrons moving nearly perpen-
ducular to the magnetic field and hence having large
orbital diameter are heavily weighted. Over half the
electrons, in fact, have orbit diameters within 13% of
the maximum. Thus the oscillations in the attenuation
through minima and maxima correspond to variations
of the field which take the maximgnz orbit diameter
alternately through the conditions (a) and (b) above.

%hen a transverse wave is polarized parallel to the
field, on the other hand, the electrons with maximum
orbit diameter move perpendicular to the electric Gelds
and cannot contribute to the conductivity. Thus a
much wider range of orbit diameters become important,
and the oscillations tend to wash out.

An argument such as that given above applied to
longitudinal waves gives no speeding or slowing of any
electrons around an orbit when only the longitudinal
component of the field is considered, since they all
move in a conservative field. In this approximation
the conductivity is zero, and it becomes essential to
include the transverse electric fieMs self consistently.
A study of the orbits then shows a nonvanishing current,
but one which is out of phase with the electric fields
and gives zero attenuation. It therefore becomes es-
sential to include the eR'ects of scattering as well, which
is indicated by the appearance of the q'P factor in the
attenuation of longitudinal waves. The physical picture
is complicated considerably by the inclusion of scatter-
ing and will not be attempted here.

The curve for p(&1 in Fig. 3 and the curves in Fig. 4
show these geometric resonances for the usual situation
of nearly complete screening. The location of the first
few maxima are seen not to occur precisely at the
values of gR= ex indicated by the simple picture, but
the change in qE. between maxima is seen to approach
m quite rapidly (see also Table I).

The fact that these curves are limited to the case in
which the cyclotron frequency is much greater than
the electron scattering frequency must be kept in mind
when these curves are compared with experimental
curves. This condition will always break down at
suKciently low fields; that is, at sufIiciently large qR.
At qR larger than this break-down value, the curves
should depart from the calculated curves and go to a
constant equal to the zero-Geld attenuation. This is
illustrated by the earliest experimental curves given
by Morse, Bohm, and Gavenda' for which the break-
down occurs at qg of the order of 2. In these curves
only traces of the oscillatory behavior remain, and
agreement with the theoretical curves is obtained only
at the highest fields. More recent data on longitudinal
waves in copper by Morse and Gavenda" show very
good qualitative agreement with the curve in Fig. 3.
Seven maxima are discernable, and the drop in at-
tenuation with increasing qE. is apparent at the high
fields. It shouM be mentioned, however, that the
period of the oscillations they observe yields smaller
orbit radii than are consistent either with a free-
electron sphere or the Fermi surface proposed by
Pippard. " The source of this difhculty has not been
determined. The effect of the breakdown of the condi-
tion ~,7)&1 is also nicely illustrated by the calculations
of Kjeldaas and Holstein, "who have calculated the
attenuation for the same free-electron model but for
intermediate scattering times.

There is another feature of the earlier work by
Morse, Bohm, and Gavenda' which is anomalous with
respect to what has been found here. This is a prominent
peak in the attenuation for the case S33. It is dificult
to reconcile this peak with our calculation. Further
experimental work is needed to see if this peak is
associated with a geometric resonance or whether it
arises in some other way.

The curves associated with very large P are also of
interest, although, as has been indicated earlier, they
correspond to experimental conditions which have not
yet been achieved. In the qualitative discussion above,
it has been assumed that the ion currents are almost
completely screened. This is always true for longi-
tudinal waves except at the highest magnetic fields.
(Note that the only appreciable differences between
the P))1 and the P&(1 curves in Fig. 3 occurs at very
small qR.) This "quasi-neutrality" (almost complete
screening) can break down for transverse waves, on
the other hand, in three distinct ways: (1) At suKciently
high frequencies p becomes large and the electric fields

drop to a low value simply because the wavelength
becomes short, and ion currents moving in opposite
directions become quite close together; (2) o'er can
become large, and the relevant conductivity tensors
become small. These two points were first made by
Pippard', (3) At sufficientl high fields the conductivity

s' A. B.Pippard, Phil. Trans. Roy. Soc. A250, 325 (1957).
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tensors become small. The third condition is related to
the only condition under which quasi-neutrality is
violated in the case of longitudinal waves. Under any
of these three circumstances the transverse electron
current tends to drop to a low value, and the attenua-
tion becomes small. The high-6eld limit will be discussed
later; we consider now the conditions (1) and (2),
appropriate to transverse waves.

Both p and Mr become large as the frequency is
increased; their relative magnitude depends primarily
upon the scattering time. Consider 6rst the case in
which the scattering time is sufficiently short that p
becomes large while cow remains small. The electric
6eM then drops to a low value, and the only observed
attenuation may be associated with a viscous drag on the
scattering centers by the stationary electron gas. This
tends to give an attenuation independent of 6eld, but
with suitable orbit-wavelength matching it is still pos-
sible for the scattering alone to bring the electrons along
with the lattice. This partially restores quasi-neutrality
even though the electric field is negligible and hence
reduces the attenuation associated with the viscous
drag and gives rise to the rather weak oscillations seen
in Fig. 5.

If, on the other hand, the scattering time is suKciently
long that &or»1, while again p»1, the scattering
becomes ineffective in restoring quasi-neutrality, and
the attenuation is simply a constant. The final case
which must be considered is that appropriate to a good
metal in which &er becomes large before p does. This is
of particular interest with regard to cyclotron resonance
and will, therefore, be discussed in that connection.

In this case of cyclotron resonances, as we have
indicated, variations of the interaction between the
electrons and the lattice become unimportant, and we
focus attention upon the energy denominator. These
resonances will be observable only when co7 is large, so
we consider only that case. For longitudinal waves, a
prominent resonance absorption is found as indicated
in Fig. 4. The peak absorption occurs at resonance as
expected physically; the constant-current arguments
which have been used in discussing the geometric
resonances are not relevant, since the large currents
generated are out of phase with the ionic current in
resonance absorption. For transverse waves no cyclo-
tron resonance is observed if p is large, since the
relevant components of the conductivity tensor have
become so small that any effect is swamped by the
constant attenuation associated with viscous drag on
the scattering centers. If, however, p remains suKciently
small, the electric fields remain large enough that an
observable resonant absorption is superimposed on the
viscous term.

We turn finally to the high field behavior of the
attenuation in transverse 6elds. At 6elds such that
qE(&1, the electric 6eld associated with the sound
wave is effectively constant over an electron orbit.
Thus for cr» where the electric and magnetic fields are

parallel, the conductivity takes on a value appropriate
to a uniform-electric 6eld in the absence of a magnetic
field, Eq. (4.19). For the remaining components 0»,
o-~2, o-2~, and 0-22, the situation is that of crossed, uniform
electric and magnetic 6elds. The electrons drift in a
direction perpendicular to both at a rate proportional
to 1/H. Thus o2i and a.i2 are proportional to 1/H,
whereas 0» and 0» fall o8 more rapidly; i.e., as 1/H'.

The electronic currents are small at high fields because
the components of the conductivity tensor are, and
hence S» and S» have a small limiting value, Eq. (4.29),
according to Eq. (2.26). For longitudinal waves, the
longitudinal electric field produced by the ion cores is
enormous, and the tendency towards complete screening
is very strong. The component of j, in phase with 8 is
correspondingly small. As the components of the
conductivity tensor decrease with 6eld at high 6elds,
the magnitude of j, decreases from Foel, but the com-
ponent of j, in phase with 8 increases enormously.
Finally the magnitude of j, decreases to the point
where the attenuation is again small.

The maximum in S~~ at high 6elds can be better
understood in terms of the magnetoplasma oscillations
of the electron gas. The conditions under which (4.22)
holds are such that diffusion is negligible, that 0.22 is
also negligible, and that relaxation efIects may be
treated as perturbations. A Drude-Lorentz type of
treatment is therefore indicated. We consider the elec-
trons in a magnetic field, but without the sound wave.
Their equation of motion is

mdv/df =—e(8+ (v/c) &&H), (6.2)

co 4co 2/L1+ (Q7 /cg)2]~%2
Sii=

(u„'+(o,4/t 1+ (co /cq)']'(u'7'
(6 4)

Thus the maximum in S~~ at high 6elds is associated
with the field dependence of the low-frequency tail of
the magneto-plasma resonance, aP(((co„m

In passing from the free electron gas to a real metal,
modi6cations may be expected to arise from a deforma-
tion potential which need not be the same for all

where 8 now arises solely from the electronic current
—Xoev via Eq. (2.1). We now suppose there to be a
density fluctuation of wave number g perpendicular to H
and solve Eq. (6.2) to find its natural frequency. The
result for the frequency of this magnetoplasma oscilla-
tion, M„, is

=co '+co,2/t 1+(~ /cq) j. (6.3)

The longitudinal electric fieM generated by the sound
wave excites this magnetoplasma oscillation. The
electronic current excited is proportional to L~„2—~2j—i

but out of phase with the electric field. When relaxation
effects are included, an in phase component and
hence an attenuation occurs; one expects a result for
Sii much like (4.22). This becomes obvious upon
rewriting S~~ as
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electrons and from the averaging over orbits on a non-
spherical Fermi surface. As has been shown in the
discussion of 833 the averaging over orbits has a
profound effect on the strength of the geometric
resonances. The kinetic arguments are similar, however,
and a generalization of the present work should be
possible along the lines of Blount's general theory of
the zero Geld attenuation. "
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APPENDIX I

The numerical evaluation of the functions, g„(X),
s„(X), and r„(X) can be greatly simplified by making
use of a few mathematical identities.

First, using the relation"

X gp(X) -,'gp'(X) sp(X)

0
0.5

1
1.5

2
2.5

3
3.5

4.5
5

5.5
6

6.5
7

7.5
8

8.5
9

9.5
10
10.5

11.5
12

1
0.9197
0.7129
0.4625
0.2562
0.1431
0.1177
0.1364
0.1531
0.1391
0.1067
0.0763
0.0645
0.0703
0.0800
0.0803
0.0688
0.0537
0.0452
0.04668
0.05291
0.05566
0.05102
0.04206
0.03536

0—0.1545—0.2445—0.2409—0.1634—0.0641
+0.005S
+0.0234
+0.0026—0.0255—0.0353—0.0225—0.0014
+0.0105
+0.0065—0.0063—0.0152—0.0132—0.0033
+0.00526
+0.00571—0.00091—0.00780—0.00889—0.00382

0
0.0315
0.1073
0.1822
0.2142
0.1891
0.1266
0.0642
0.0312
0.0330
0.0522
0.0653
0.0604
0.0421
0.0250
0.0203
0.0274
0.0366
0.0386
0.03128
0.02102
0.01568
0.01806
0.02419
0.02754

0.3333
0.3171
0.2734
0.2148
0.1567
0.1107
0.0815
0.0669
0.0608
0.0573
0.0529
0.0472
0.0416
0.0374
0.0350
0.0335
0.0320
0.0301
0.0279
0.0260
0.02464
0.02378
0.02302
0.02208
0.02097

TABLE II. Values of gp(X), —,'gp'(X), sp(X), and rp(X) for X (&12.

00

J„'(s sin8) sin8d8= —P Js +Q +1(2s),
g m=o

we may write

The integral may be evaluated by substituting in
Bessel's differential equation and integrating twice by
parts. We obtain

QO

g.(X)=—2 Js +s+i(2X)
Xmm

(A1) g„(X)
r„(X)=

1
J,„(2X)+

8X' 8X dX
This expression may readily be evaluated using tables
of Bessel functions. '4 Furthermore, using the familiar
Bessel function identity, 2J„'=J„&—J„+&, we 6nd

(1—4ps')
XJs„(2X)+ Js„(2g)dg.

8X'

Now

g-'(X) =(1/X) LJ -(2X)—g-(X)j. A2
But from (A1) we may obtain" the relation,

r„(X)=
Jp

x/2

J„'(Xsin8) cos'8 sin8d8
fQ X

g.(X)=— Js.(2x)dx,
X~p

(A3)

g (X) 1—4ps' 1
r„(X)= + g„(X)— Js„(2X)

2 8X' 8X'
8r„(X) 1 3

=—g-(X)——r-(X),
BX X X

We difFerentiate this with respect to X and perform a so we have Qna]ly
partial integration to obtain

from which
~X

X'r„(X)= pp'g„(x)dx
~o

+ Js (2X). (A4)
8X dX

(A1) is used to expand g„(X) in the integrand; we
integrate term by term by parts and obtain Q.nally:

g„(X) 1
r„(X)= —

~

x'J,„(2x)dx.
2 2X' ~p

PP E. I. Blount, Phys. Rev. 114, 418 (1959).
"See reference 27, p. 91 and errata.
'4 T. Kjeldaas has pointed out that, noting the form for g„(X)

given in (A3), we may Gnd Xg (X) tabulated directly, at least
for m=0.

In order to obtain s„(X),we differentiate the integral
expression for g„(X) given in (4.2) twice with respect
to X and use Bessel's differential equation.

g-"(X)=2s-(X) —(1/X)g-'(X) —2I:g-(X)—r-(X)i
+ (2e'/X') g„(X).

We then evaluate g„"(X)from (A2) and solve for s„(X)

s„(X)=3r„(X)—(1—n'/X') g„(X). (AS)

35 We also need a relation given in reference 27, p. 45, Eq. (3).
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The numerical values for go, ~go', ro, and so which order of
have been calculated by these procedures are collected
in Table II.

and

APPENDIX II

1
(vrx)

—«cosxdx=O(X-l)I
g„(X)—(1/2X)+0 (X:). (A6)

(X)=O(X «).

Further, from (A4), (A5) and (A6) we obtain

The asymptotic formulas for g„(X),s„(X),and r„(X) It follows also that

may be determined from relations given in Appendix I.
(A3) may be rewritten" in the form

(A7)

g„(X)= (1/2X) —(1/X) ~ J2„(2x)dx.
X

If X is somewhat greater than n, we may use the
asymptotic form" for J'& (2x) so the integral is of the

"See reference 27, p. 92, Eq. (30).
"See reference 27, p. 85, Eq. (3).

r„(X)—s„(X)—(1/4X)+O(X—
**),

for X greater than m.

If e is somewhat larger than X the Bessel functions
become small, and g (X), g„'(X), r„(X), and s„(X) go
to zero. It is certainly possible to derive these expres-
sions in terms of the Weber and Lommel functions
used by Kjeldaas and Holstein. "The foregoing method,
however, has been found convenient.


