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The first of these is readily integrated using Eq.
(11),and the second term equals or (p,/b)' where p, is the
classical impact parameter corresponding to 0, as
tabulated in reference I. The result is

a/&'= («'/)(')L 'tt'/(L 'tt'+1)+~(P /&)' (16)

For b/K(1 the total cross section is given entirely
by extending I1 from 0 to m, and the well-known
result is

o/b'= (4«4/X4)/(1+4a'/9). (17)

The total cross sections are shown in Fig. 3. The
solid lines are those in which 0, was chosen as the transi-
tion angle, and the dotted lines have 0b as the tran-
sition angle. At the top and the left edge of the
6gure all lines have slopes —2 on log log paper and may
be extended without limit.

5. LIMITED TOTAL CROSS SECTION

The limited total cross section 0- is defined here as
the cross section for scattering to angles in excess of a

specified angle o.. Experimental measurements of
scattering cross sections must have a lower angular
limit because of the finite angular resolution of the
apparatus and the impossibility of differentiating
between an unscattered particle and one which has
been scattered through a negligible angle.

A study of Table I shows that 0, and 0b are very small
angles, much less than one degree for large values of
b/K. Thus the classical solution is often valid for angular
regions which can be measured experimentally.

The limited total cross section is found very simply
fi.Om

&7~= 7I P(P)

where p is the classical impact parameter corresponding
to scattering through an angle n as found in reference I.
For convenience in comparison with experiments Fig. 4
plots values of this cross section as it depends on b/a
and the specified angle n.
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In this paper the expression for the transmission coefficient, which was derived formerly by Muller for
field emission, is integrated by making certain approximations. The formula for the efficiency of field ioniza-
tion could then be integrated. Furthermore the supply function is calculated by regarding the molecule as
moving in a central field of force. The main object of the paper is that of deriving analytical formulas which
give a better picture of the dependence of the field ion current on the various parameters.

1. INTRODUCTION

'ULLER' has shown that, in a field up to 500&&10'
- ~ volts/cm, the mechanism by which fmld emission

of positive ions takes place in the field ion microscope
depends upon the supply of molecules and their field
ionization probability.

As the molecule approaches the tip from the low-field
region where the ionization is negli. gible, to the high-
Qeld region near the tip, the ionization will increase due
to a reduction in height and breadth of the potential
wall which binds the electron and will reach a sharp
limit when the ground level of the molecule sinks below
the Fermi level of the emitter.

MQller" has calculated the ionization probability
for a molecule approaching the tip from a distance L A
up to (L 1) A with a speed —depending on the field Ii

*For this investigation, H. Fiedeldey received a bursary from
the Council for Scientific Industrial Research, Pretoria.' E. W. Muller and K. Bahadur, Phys. Rev. 102, 624 {1956).

2R. H. Good and E. W. Muller, Encyclopedia of Physics
(Springer-Verlag, Berlin, 1956), Vol. 21.

and the molecular polarizability. He has taken the
effective potential of the escaping electron to be

U(x) =
—e e e

+Foe +-—
L x4x L+x—

t Setttq '*
t

*' 2

D(L)= p —I, I „' U() —~L+U.——d*
& trt' ) 4I.

for the penetration probability of the electrons where
t/'z is the ionization potential.

In a rough approximation for the three dimensional

in a one-dimensional approximation of the problem. The
The terms on the right are, respectively, associated with
the Coulomb attraction between ion and electron, the
applied field, the image of the electron in the metal
(tip) surface and the image of the ion. A wave me-
chanical calculation leads to the formula
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penetration probability A(L), Muller finds ]s
V(x)-E

6(L)= —D(L)/lnD(L). (3)

Finally Muller obtains the formula

.X~0-8
P(L) = h(L) in A ',

F(n/M) &

(4)

for the ionization probability where v is the frequency
of the bound electron and 1/F(M/a)& the time taken

by the ion to move through 1 A with a radial velocity I'IG. 2. The potential barrier.

depending only on dipole attraction.
The formula (4) was integrated graPhically by factor 2 only and can be written down by comparison'4:

Muller. '

2. THE INTEGRATION OF D(L) D(L,) =exp—
4(2m)& ( e' ) I

I
eVz ——

I e(y),
35eF ( 4L)

The contribution of the image potentials in formula

(1) can be neglected for large values of L. By keeping
the term —e/4I. in formula (2) the e8ect of the image

potentials is not entirely neglected. With this approxi-
mation Eq. (2) reduces to

2(e'F)'* si eVz e'/4L—
y= I-1~ (1—y') j',

eVz e'/4L, s—2 2eF

(Smq & I'" t'—lnD=I I, I
eFx-

&a'J &., &

e2 e' p
~

eFL+e—Vz I
d&—. —I—s 4L)

j.
e(y) =—I-1+(1—y')'I'LE(k) —(1—(1—y')')&(k) j,

On substituting

(5) Z and B are the complete elliptic integrals of the first
and second kinds defined by

W=4(eVz e'/4I. ) s=—L rand F—s ',F——-

Kq. (5) becomes

~Sm'I '* t'*&( e'
—l D=2I

I I

—F,.—+w
I
d.. (6)

( k')

4x ' L+x

e
0 W & % ~ ~ Wl OA "M M M M "Wl W m IW

0 X

L

This integral diGers from the corresponding expression
for the field electron transmission coe%cient2 by a

~ m/2

E(k) = and
(1—ks sin'q )1

~/2

E(k) = t'
(1—k' sin'y)&d p

2(1—y')'*
k2=

1+(1—y')'*

The function e(y) has been evaluated for representative
values of y by Burgess, Kroemer, and Houston. 4 For
sufficiently large values of I., e'/4I- becomes small com-

pared to eVz and can be neglected. In this region D(L)
will be denoted by D„(I-).

We shall now discuss the case where the image po-
tentials cause an appreciable lowering of the potential
barrier. This is possible only when the width of the
potential barrier is greater than 2/3L (see Fig. 1).

In Fig. 2 the dotted curve is a representation of
V(x) Ewhen the image poten—tials are not taken into
account. The full curve represents the real potential
barrier. eB denotes the energy of the tunnelling elec-
tron, where E=FL Vz+e/4L. —

The image potentials cause a displacement of the

FIG. 1.The image potentials.
3 L. W. Nordheim, Proc. Roy. Soc. (London) A121, 626 (1928).
4 Burgess, Kroemer, and Houston, Phys. Rev. 90, 515 (1953).
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classical turning point xj to x3, but do not effect a
notable change in the position of the other classical
turning point x2. Denoting the distance from the tip
surface to the border of ionization zone by Lp, it is seen
that @3=0when L=Lp. Thus the width of the barrier,
which changes slowly, is approximately equal to Lp.
Hence a lowering of the potential barrier can only be
expected when L&3/2Lp. The lowering will be appreci-
able when L&5/4Lp. The evaluation of D(L) in the
interval (Lp, S/4Lp) requires a known value of sp

——I.—xp.
In order to calculate s~ we approximate the image
potentials in the region (O,L/3) by (3P/L)x —P, where

eP is the work function of the metal (see Fig. 1). This
approximation is justifiable because the image poten-
tials are not well known in a region of 2—3 A from the
metal surface.

Hence V (s) F.= —(F+—3@/L)s+ Vz+2ztz, and

(8)

When L=Lp the ground level of the atom, which is
given by FLp Vz e/4I. ,

—be—comes equal to —V, so
that I.p=(Vz ztz)/F —Substit. ution of this value of Lp
into (8) yields sp=Lp, as one should expect. This con-
firms that the approximation (8) is a good one in the
interval (Lp, S/4Lp).

An approximation for D(I.) in this interval can now
be obtained by neglecting the image potentials in the
expression for V(x) F., but integra—ting between the
limits x3 and x2 shown in Fig. 2, this becomes in terms
of s:

feV(s) eF]'ds=— feV(s) eF]ld—s
Z2 J„

get

4(2~)-:(eVr —"/4L, ) &

Dp(L) =exp v(y)
35eF

where

4(2m)l ) Fs,q & ) Fs, ~
I

+ («.): I
1-

3I'zeF 4 Vz ) ( Vz )

Vi+2/
S3- L, sg=

FL+3p

eVz e'/4L-
L1+(1—y') '],

p
2e(eF)'*

(9)
e Vr e'/4L—

For values of L in the interval (5/4Lp, 3/2Lp), P) is a
good approximation, while for values of L greater than
3/2Lp the formula

D„(L)=exp—
4(2m)'

(eVz)av(y) where y=
358P

2(e'F) &

e t/r
(10)

is a good one. The corresponding formulas for P(L)
can be obtained by using Eq. (4). The values of P(I)
obtained from those formulas are in good agreement
with the graphically calculated values of Muller.

3 THE INTEGRATlON OF Jiz" P(L)dL

In the intervals (L,p, 5/4Lp), (5/4Lp, 3/2L p) and
(5/2L p, po ) P(L) is successively denoted by P, (L), Pz (L),
and P„(L).First we calculate J;"P„(L)dL.P„(L) can
be written in the form

1

P (L)=A p expL (Bp/F)v(y)]~ y=CpF'z (11)

EeV(s) —«]'d& where
zz 3X10 '&

Ap= Bp=6.83X10~(eVr) ~,

(n/M) ~Bpv (CpF.&)

(12)
/. 58X10 4

Cp=

where P„(L) is expressed . in A ', F in volts/cm and
eVr in electron volts.

Although A p is not a constant it changes so slowly in
comparison with expL —(Bp/F)v(y)] that it can be re-
garded a constant. We define the function

II(F)= (Bo/F) L1—v(y)]. (13)

Because -,'$t(y)+s (y)]= 1,' where t(y) = v(y) —2/3ydv/
dy and s(y) = v(y) —-', ydv/dy it follows that:2(2~) z t, zi

( eFs+eVz) &ds-
4Z8 (14)v(y) =1—y"".

4(2zzz) '*

=+ $(eUz eFs4): (eVz
—eFsi) &].— —

3heF
Substituting (14) into (13) we obtain

The first term on the right has already been calculated.
To simplify the integration of Jzp"(eV(s) —eE]'*de we
also neglect the term —% in V(s) which is of the order

e/L in the inte—rval (sp, si). This means that the cor-
rection for the displacement of the classical turning
point from s~ to s3, which is calculated below, is sorne-
what too great. However the lowering of the potential
barrier between sp and s= 2I/3 has also been neglected.
These two opposing errors will partly cancel each other.
The correction applied to —lnD(L) in the interval

(Lp, S/4L, p) is given by:

Denoting D(L) by Dp(L) in the region (Lp, 5/4Lp) we

U(F) D F "' D =B C""
' See footnote 2, p. 187, Table I.

(15)
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ancl

P-(L) =Ao expL —(B /P) U(p)1
Ap expt —(Bp/F)+DpF t j. (16)

It is clear that U(p) changes very slowly in compari-
son with Bp/F, which shows that, to a first approxima-
tion, U(F) can be treated as a constant.

We assume that the electric 6eld is given by the
semiempirical formula

7.75Vrp'

The formula (22) can be approximated by (21) because
U(p, ) is of the order of 10.

In the interval (5/4Lo, 3/2Lo) we have

Pr(L) =A expL —(B/F)+U(F))
=A expL —(B/F)+DF "j. (23)

Since 3.6&&10 P/L«evr for all values of L greater than
Lp (for He and fieldstrength of 4)& 10' volt/cm
(3.6)(10 s/eve)(1/Lp) is equal to 0.03) we may put

Ap,

hence
r3

(17) 3 3.6X 10-s 1-
8 Bp1——

2 eVr L

P„dL=Aoeat~ & '

exp~ — ri ~Idr,
—(18)z i

3 3.6X10—s 1
D Dp 1+— —, (24)

14 eVr L

where r,=ro+a P„ is ex. pressed in A ' and Ap has the
same dimensions as I' therefore r is expressed in A.
Putting t= (Bo/K)rot' and x= Bp/F, Eq. (18) becomes:

where L is expressed in cm.
We are calculating fot tr„"'~oPrdL, so it is permissible

to regard the 6eldstrength Ii as a constant. Substituting

P„dL= eAoBp 'r,p, ie t~ &I'(oo x)4)
a

where F(rr,x)=J;"t 'e 'dt is the incomplete gamma
function. ' The asymptotic expansion of P(n, x) for large
values of x is given by

one obtain

36X10 s 3 Bp 3
+ U—(F—,) —cm,

eVr -2 Il

~b pb
PrdL =10'P„(a) e"'~dL

"a

(25)

tr i(1—cr)„-
r(o. x)=x -'e—* P +0{~x~—"),

o o(—x=)"
(19)

The factor 10s converts P(a), which is expressed in A ',
to cm—'.

The integral can now be written in the form

P„dL= or, (F,/Bp)P„(a) (1 op,/Bp). —

If the numerical values of the constants, for r, in cm,
are inserted, the term op,/Bp is seen to be negligible
and Eq. (20) reduces to:

P.dI.= 1.1r.p.(eV,)-V „(a).
a

(21)

Next we take the variation of U(F) with F into account.
Because U(F) changes slowly one may put e~'r'
=1+U(F) U(F,) and also U—(F)=DF "' in the in-—
tegral which then becomes:

P U(P) &P
P„dL= er, P(a) 1+ ——re —. (22)''B, "

7 'B, l

o A. Erdelyi et al. , Higher Transcendental Functions (McGraw-
Hill Book Company, New York, 1953), Vol.. 2, p. 133.

where (n)„=F(cr+rt)/I'(n), (n)p ——1 and the terms which
are neglected are of the order 1/

~

x
~

~. P (rr) is the gamma
function.

Since the values of x are relatively large, vis. , from
20—50, we may use the asymptotic expansion leading to:

~b t "1
Pz (L)dL = 10'P„(a))t e'dl-

a f2

(e" e "e '
=10'P (a))ti —— dt i-

Ey x ~, t )
where X/L= l, X/a=x, a—nd h/b=y

By using the function' Z*(x)= f,"e 'dt/t th—e in.-

tegral reduces to

~b
Pr(L)dL= 10'P„(a)&

Xl (e"/y) —(e*/x)+~*(x)—~*(y)j, (26)

where X is expressed in cm and P„(a) is expressed in A '.
Finally we calculate Ji p't4 oPp(L)dL. It follows from

(9) that
Bp

Pp(I.) P„(L) exp ——+-
L Fp

( Foes) 1 ( post) '1

v, ) ( v, )
r A. Erdelyi et al. , Higher Transcendental Functions (McGraw-

Hill Book Company, New York, 1953), Vol. 2, p. 143. [See also
E. Jabnke and F. Emde, Tables of Functions (Dover Publications,
New York, , 1945), p. 83.$
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3 6X&o ' 3&p
+ U—(F0),

e~g .-2Fp 14
Bp ( Fos3q &

Po(L)=M exp —+—
~

1—
L Fo( Vz) Bp 9(P)& Vz —y

p—= «o+—7 an«—=-I —
I

Fo 2 ( Vz) Vz+2Pwhere
Bo (3E=P„(L—O) exp ——

i
1—

Fo 0 Vz)
(28)

The final result may be written in the form:

where Fo represents the field strength at Lo. Because si and si is given by (9), while
and P„(L) may be regarded as constants for purposes
of the integration in the interval (L0,5/4LO), (27)
becomes:

It has already been shown that

Vz+24 Vz+24

F0+3//L F0+3//Lo 3$L(1/Lo) (1/L) j

boa

P(L)dL=
5/4Lp

JLp
Po(L)dL

~8(2z 0

Pz(L)dL+ P„(L)dL, (33)
5/4Lp a) 3/2Lp

=Lo 1+
Vz+2P & L)

For helium, with L=5/4LO, one finds that

3p |z Lo)

Vz+2y ( L )

where the terms on the right are given by Eqs. (32),
(26), and (21), respectively.

In the case of large fields we can use the formula

00 3/2L0 00

t P(L)dL= t P (L)dL+ ~ P(L)dL, (34)
ULp JLp ~ 3/2I p

which shows that the approximation (29) was per-
missible. Substitution of (29) into (1—Fos3/Vz) & leads to

while for small fields the last term in (33) may be
omitted. It must however be pointed out that the choice
of the intervals in which Po(L), Pz(L), and P„(I) are
applicable is somewhat arbitrary.

Muller has also shown that the field ion current is
approximately given by

(30)

(4 &
* 9(Vz 4') (

0 Vz) 2(Vz+2(f)) & L ) (35)I+=3eZ I'dl. ,
0Lp

( Fosse ~
p g q

*' 3(Vz P) p
—Lo~

Vz ) ( Vz J Vz+2y ( L)-
By using this approximation one obtains:

5/4Lp

Po (L)dL

~5/4I p

=10'P'(Lp) exp( —qBp/Fo) e '~dL

and the total current I by I= (&+1)I+, where y is the
number of secondary electrons released per ion.

The supply function Z has been derived by Inghram
and Gomer. ' Values of I for helium calculated from the
Eqs. (33) and (34) are in reasonable agreement with
the experimental values give~ by Muller. '

- e4p/5Lp ep/Lp 4. ACKNOWLEDGMENTS
= 10'P'(Lo) p exp( —qB0/Fp)

4p/5I. 0 p/I-0

where

j
Bo ( FoLOI I ( Fosi) ~

P'(Lo)=P (Lo) exp' —
(

1—
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