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Many-Body Problem in Quantum Statistical Mechanics. V. Degenerate
Phase in Bose-Einstein Condensation*

T. D. LEE, Columbia University, Rem York, Rem Fork

C. N. YANG, Institute for Adeonced Study, Princeton, Iiero Jersey
(Received July 31, 1959)

The formulation of the previous paper (paper IV) is extended so that it becomes applicable in an inter-
acting system in the presence of a Bose-Einstein degeneracy. This extension is carried out by the introduction
of an x-ensemble, which enables one to utilize an Ursell-type expansion even in the presence of a Bose-
Einstein degeneracy. The variational principle of the previous paper is also extended. It is proved that in
the presence of a Bose-Einstein degeneracy, the average occupation number of a single particle state with
momentum p approaches inanity as y —+ 0. The method is applied to a dilute system of Bose hard spheres.

2. x-ENSEMBI E

In the grand canonical ensemble the relative proba-
bility of finding E Bose particles in the configuration

*Work supported in part by the U. S. Atomic
Commission.

'T. D. Lee and C. N. Yang, Phys. Rev. 117, 22
hereafter referred to as IV. We adopt the same notations
in IV.

Energy

(&960),
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1. INTRODUCTION
' 'N the previous paper' (paper IV) it was shown that
~ - the logarithm of the grand partition function gn'
for a system of Bose particles can be expressed in terms
of the average occupation number (rtj,) in the mo-
mentum space. Furthermore, both gn' and the integral
equation satisfied by (nz) can be obtained from a
variational principle. It was pointed out that for an
infinite system, the average occupation number (rt&)

may be singular at k=0 as the fugacity z increases to a
certain critical value z,. For z) z. while (nx) is still well
defined, its integral equation as derived in the previous
paper becomes quite useless.

The purpose of this paper is to show that by intro-
ducing the concept of an x-ensemble, the method
developed in the previous paper can be generalized and
extended to the region where (nk) is singular at k=0.
Physically, the occurrence of such a singularity in (sea)
corresponds to a particular type of phase transition
which is a consequence of the symmetric statistics. A
special example is the well-known phenomenon of
Bose-Einstein condensation for a system of free Bose
particles. The formalism presented in this paper, there-
fore, gives a general discussion of such condensation
for a system of interacting Bosons. It will be shown
that in the condensed phase as well as the gaseous phase
it is possible to express the thermodynamical functions
in terms of the average occupation number. Further-
more, a variational principle is developed which enables
one to compute the thermodynamical functions and
(st~) in both phases.

As an example, the method is applied to a dilute
system of Bose hard spheres.

ki, ktv is given by

(N!) 'z (ki, k.ivIWiv'Iki, ~ kN), (V.i)
where 8"~' is related to the Boltzmann W~ function
by I

see Eq. (I.23)]

(ki, ktv IWtv Iki, ktr)

Q + (kl ' ' 'kN
I
WN

I kr, ktv). (V.2)
p/

Let I be a function of ki' ktv' which is defined by

L(kr' ~ kiv') =number of k that are zero. (V.3)

As remarked in paper IV, when the fugacity s exceeds
a certain critical value s'. the most probable value of I.
for a large system is comparable to the total number of
particles. ' Thus, in the sum (V.2) the permutations
between particles of zero momenta give an exceedingly
large number of identical terms. Indeed, it is easy to
show that the main reason that the previous explicit
expression of in&a' in terms of (n~) I

e.g. , Eqs. (IV.33)
and (IV.34)j becomes useless for z~ z, is precisely due
to such permutations between particles of zero mo-
menta. Therefore, it is desirable to sum over the I. t

identical terms in (V.2) arising from permutations
between particles of zero momenta before the Ursell
expansions.

The difFiculty in this procedure lies in the fact that
after the partial summation it becomes almost im-
possible to evaluate the logarithm of the partition
function via the usual Ursell expansion of 8'~' in terms
of the U&' functions. To overcome this difficulty we
introduce the concept of an x-ensemble.

We define a lV~* function to be

&kr', kN I WN
I
kl ' ' '4)

=—(I, !)-'(xQ)n(kr', kyar'I Wiv'I ki, kN) (V.4)
~ For simplicity, throughout this paper we shall restrict our-

selves to systems with total momentum equal to zero. Otherwise,
because of Galilean invariance it is necessary to consider systems
which have macroscopic average occupation number (ny) for
k&0. It is, however, easy to see that the presence of these states
with total momentum not equal to zero does not affect the form
of any thermodynamic functions obtained in this paper.
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where L is defined in (V.3). The corresponding x-par-
tition function gn is defined to be

X Q (k,, k IW„*lk,, k ). (V.5)
kq-"kN

(1V!)
—'s~(ki, kiv I

Wiv*
I
ki, kiv). (V.6)

In (V.6), as in (V.1), ki, ks, . and kiv are each
independently and freely variable over the whole
momentum space.

The following theorem establishes the connection
between a grand canonical ensemble and an x-ensemble.

Theorem 1 (proved in Appendix A).—If

An x-ensemble, then, represents a collection of systems,
each of which is described by the number of particles
E, and by their momenta ki, k2, kiv. The relative
probability of occurrence of a system is given by

k~i' ——k~s' —— . ——k~i' ——0, (V.13)

while the rest, kai', kas' etc. , are all not zero. To
compute U„*we first distribute the e integers 1, 2, n
into m groups each containing a integers, with

ns n=n. Such a grouping may be represented as
follows:

By using (V.10), (V.4) and Rule A of paper I, these
U can be expressed in terms of sums of products of the
Holtzmann U„ functions. In the following we state the
general rule of such sums:

Rule C (proved in Appendix B).—Let us consider
first

(k, ," k„ I
U„*lk„".k„&,

in which, say, l of the n final momenta ki', ks' k„'
are zero. For definiteness we denote the particles with
zero final momenta as AI, A2, Ag and particles with
nonzero final momenta as BI, B2, B„~,i.e.,

Q-'(8/Bg) lngn*=0 at x= x (V.7) where a, b, c, d ~ - are the integers 1, 2, ~ ~ e. Similar
to Rule A, in the first curely bracket there are nz& round
brackets with one integer in each, (nii ——0, 1, 2, ~ )
and in the second curly bracket there are nz2 round
brackets with two integers in each, (nss ——0, 1, 2, ),
etc. Within each round bracket the integers are arranged
in ascending order. Within each curly bracket the round
brackets are arranged such that their first integers
follow an ascending sequence.

Next, corresponding to each such grouping (V.14)
we form a sum

where S is real and positive, then

Q ' lngn*(x=S) =Q ' lucan' as Q —+ ~. (V.8)

If (V.7) has no real and positive solution for x, then
(V.S) is still true provided we set

(V.9)x=0.

To evaluate 1ngn* it is possible to take advantage of
the usual Ursell expansion method. We define the Ui'
functions by

(k 'Iw Ik)

(k,',I,'I W,*l k„k,)—=(ki'
I
Ui*

I
ki)(ks'

I
Ui'

I
ks)+(ki', ks'

I U, 'I ki,k,),
(k,',k,',k,'I Ws*l k, ,k, ,k,)

—=(ki'I Ui*lki)(ks'I Ui Iks&(ks'I Ui lks)
+ (ki'I Ui

I
k]&(ks', ks'I Us*I ks, ks)

+(ks'I Ui*lks)(ki', ks'I Us I ki, ks)
+&ks'I Ui*lks&(ki'»s'I Us Ikbks)

+(ki', ks', ks'I U3'I ki, ks, ks),

(V.15)
where

Sp= (xQ)'((k.'I Uil k.)(ke'I Uil ks) }
X((k,',k, 'I U, lk„I.)

X(k,',k, 'I U, lk„kr& }.", (V.t.6)

(n,P, ~ ~ y,b, e, ~ ) =E(Ai, ~ Ai, Bi, ~ B(„ i)). (V.17)

In (V.15), we sum only over those permutations P
which satisfy the following two conditions:

in which n, P, ~ 7, 8, s, P, is a permutation of the

(V 10) integers 1, 2, ~ ~ n. Therefore, it is also a permutation
of c4 J) ' ' 'c4g) B]) ' 'B(~ $) ~

Q-i lng. *=+h:(Q)s- z, —(V.11)

where

b„*(Q)= (n!Q)—' Q (k, , k„l U„ lk, , k„). (V.12)
kI. kryo

s T. D. Lee and C. N. Yang, Phys. Rev. 115, 1165 (1959),
hereafter referred to as I.

etc.
The relationship between 8" and U is the same as

that between 8' and U. Using the result' of Appendix
A of I, one thus obtains

(a) Among the set of /! permutations which differ
from each other only in the fi, na/ positions of Ai ~ Ai,
only one is included in the sum (V.15). Because of
(V.13) it is immaterial which one among the l! permu-
tations is included.

(b) If we set in (V.16)

kn =4, Ii=1, 2, . (n —I)j,
k~j'=0

I j=1,2, ~

and regard the resulting product on the right-hand side
as a function of ki, ~ .k„, this function must not be of
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the form of a pro'duct of two factors one of which Example 5.
depends only on some, but not all, of the variablesk„.k„while the other depends only on the rest of Q~s =s 2 Dpsl Utlpt)(prl Utlps&+(ptrpslTs'Ipirps&j

these variables.
We then sum up a!!expressions (V.15) over the differ- +p(xQ)DPI Url0)(OI UiIP)+(p OIYs'I P,O)j

ent groupings (V.14). This total sum is equal to
+ (-')'(xQ)'(O, OI Ts'I 0,0)) (V.25)

(ki' k 'I U I
ki. k.).

in which the sums4 extend over all P; compatible with
Similar to the simplification from rule A (of paper I) (V 19)

to rule A' (of paper IV) many terms in the sum (V.15) It will be shown in Appendix C that in the sum
can be further combined by introducing Lsee Eq. (I.30)] (V.11), T„*always occurs in the combination

(ki' k„'IT„'Iki k„)
—=gp P'(kr' k„'I U„I ki k„), (V.18)

where the sum extends over all permutations I" of
k '.

In the following we give some examples to illustrate
rule C. It is convenient to introduce the notation p (or
p;, p', p ) which is identical with k (or k;, k', k )
except that

(pr qps ' ' 'ps
I Ye, t I plqpsq ' ' 'pt&

[(n s)—!(I—t)!j-'(xsQ)"-'~'*'
e&s, e&t

X(pr'ps' p', 0, oIT- Iprps P~O" o) (V26)

In (V.26) e varies from the larger of s and 3 to infinity.
For example,

P/0 (V.») &p IY, , lp)=r. L(.-1).j-(*.Q).—
n=1

X(p',0, .OI T 'I p,0, .0), (V.27)

( IYs, s Ipr, ps)=g LN!(e—2)!g-'(xsQ)"-'
%=2Example i.

(p'I U *IP)=(P'I U IP)=~- exp( —PP'), X(0, 0
I T„ I pi, ps, 0, 0). (V.28)

(and similarly for p;, p' and p ) while k (or k;, k', k )
may or may not be zero. This convention will be used and
throughout this paper.

and

(0I U,-IO) =*Q.

(pi', " p.'I U.'Ik, " k.)
=(pi', p 'I U„'Iki, k„)

for all m.

Example 4. If

(V.22)

Example 2.

(pi', ps'I Us'I kt, ks) =(pt', ps'I Us'I ki, ks)
=(ps'I Ui I ki&(pi'I Ur I ks&

+(pr', ps'I Ys'I kr, ks&,

(pi', OI Us*I kt, ks) =xQ(pi', 0I Us'I kr, ks&,

and

(0OI U,*Ikrks) = (2!) '(xQ)'(O, 0IY,'Ik„ks). (V.21)

Example 3.

It is of interest to notice that while in U * only the
zero rnomenta in the 6nal state carry factors (xQ), in
the sum (V.26) the zero momenta in the initial and final
states are treated in a symmetrical way.

3. PRIMARY GRAPHS AND CONTRACTED GRAPHS

A convenient way to express incan* as a sum over
products of Y, , ~* is to use the graphical method. Similar
to the discussions presented in paper IV, we introduce
the general definition of a primary graph.

A primary graph is a single (i.e., all parts are con-
nected) graphical structure containing at least one
vertex. The lines are connected with each other at
various vertices. Each line has a direction indicated
by an arrow. Each vertex is characterized by two
numbers s and t where s and t can be any positive
integers 0, 1, 2, ~ - provided

P&P & Py (s+t) ~ 2. (V.29)
then using momentum conservation one obtains

(o, o, PI Us*I p', —p', p)
= (2!) '(xQ)'(0, 0, PITs'Ip' —p' p) (V.23)

An (s,t)-vertex connects 3 incoming (i.e., with their
arrows pointing towards the vertex) lines and s outgoing
(i.e., with their arrows pointing away from the vertex)

(O, O, PIUs*lp, p', —p')
= (2!)-'(xQ)'(0, 0, pIYs'I p, p', —p')

+ (2 ) '(*Q)'(P
I Ui I p)(o OI Ys'I p' —p') (V 24)

4Throughout this paper we adopt the convention that for a
cube of volume 0, a vector ir (or ir;, ir', ir ) refers to momentum
whose components are 2mQ x(m1,m2, m3}, where m;=0, ~1, ~2,

~ ~ .. A vector y (or p;, y', y ) always refers to a similar momentum
2sQ l(m&, ms, ms) except that m&, m2, ma cannot be all equal to
zero. All sums with respect to p (or p;, p', p )j,'therefore extend
over all integral values of m; except m1=m2=m~=0.
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lines. A line which has vertices at both of its ends is
called an internal line; otherwise, it is called an external
line.

A primary (Ij,,v)-groph is a primary graph which has
v external incoming lines and p external outgoing lines. '

To every external line we assign a nonzero momentum

q;, where

Consider the U permutations of the positions of the
integers associated with the internal lines. The total
number of permutations that leave the topological
structure of the graph Lwhich includes the positions of
these numbers 1, 2, lj unchanged Drom the situ-
ation after step (i) abovej is deined to be the symmetry
number of the graph.

The term that corresponds to each primary (Ir, v)-
graph is given by

i=1, 2, ~ (Ii+v).

These external momenta are always considered to be
distinguishable. Two primary graphs are diferent only
if their topological structures, which include the
positions of these distinguishable external momenta,
are different.

To each primary (p, ,v)-graph we assign a term deter-
mined by the following procedures:

Lproduct of all factors in (ii)—(iv)$. (V.31)
pj. ..pg

In terms of these primary graphs we can write the sum
(V.11) as (proved in Appendix C)

lngo'= K

+g Lail diferent primary (0,0)-graphsf, (V.32)

x0+P ( ) '(*")"(o" 0Iv-'lo, " 0). (V.33)
n=l(V.30)&ysi', ps. IT*,i Ip~i, p~i&,

(i) Associate with each internal line a diferent
integer i (i=1, 2, ~ l) and a corresponding (nonzero)
momentum y;. where

(ii) To each (s,t)-vertex, assign a factor

where pg~, pg~ are the momenta associated with its
incoming (internal or external) lines and pili', ~ pii,

'

are the momenta a,ssociated with its outgoing (internal
or external) lines.

(iii) Assign a factor « to each srrfernal line.
(iv) Assign a factor

(symmetry number) '

to the entire graph where the symmetry number is
de6ned as follows:

In explicit form we can write (V.32) as'

(inn. *—&)=2 L«&plTi. i*lp)+k"&pluri, i*ly)'+ "3
+2 &pi,ps I Ts,s*l pi, ys)Lk«'+«s&pil Ti, i'I yi&+" j

plp2

+2& ITo. 'Iy, —
y)&y,

—ylT, e'I )

xL-."+«'&y
I vi. IyH- ".3+" . (v.34)

The sum (V.34) is illustrated in Fig. 1.
Sy a procedure similar to that used in the previous

paper, ' we may eliminate' the (1,1)-vertices in these
graphs by defining

(2) ~ (y) —=«I:I—«&y l&i, i'lp&j-'. (V.35)

(2)

(2)

Fio. 1. (Ing~Q —X) as a sum of primary (0,0)-graphs. The numbers
under these graphs are their symmetry numbers.

s In paper IV, the n-vertex corresponds to the present (n,e.)-
vertex. Similarly the g-graph corresponds to the present (gg')-
graph.

We, then, define a contracted (ij,, v) groPh to be of -the
same topological structure as that of a primary (p, v)-
graph except that it does cot have arsy (1,1) vertex. To-
each contracted (Ii,v)-graph we assign a term which is
determined by the same rules (i)-(iv) used to obtain
(V.31) except that (iii) is replaced by

(iii)' Assign a factor

rN*(y;)

to the ith internal line (i= 1, 2, ~ 1).
The term that corresponds to a contracted (p, v)-

graph is then given by

Lproducts of all factors in (ii), (iii), and (iv) j.
p] ~ ~ ep$

(V.36)
67he elimination of the (1,1)-vertex is merely a matter of

convenience. It is not a necessary step for the later introduction
of irreducible graphs. See Appendix F for a more detailed
dcscussron.
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[ (p)] [Q )p) — m (pl] respectively. More explicitly, we can write, e.g. , (V.43)
as

p
s&

p
( I)

p i

p h

( I)

P
I

'p
(2)

[~ (p)7 '[OR(y) —~'(y)7=Z&y, yrITs, s'Ip, p &~'(yr)
PI

+( I&o,s'Iy y&&p PITs, o*l &~*( p)

ip

(2)

nP A

+
J

p

I

)/

p 4w yr

(2)

+s Z(p pl psl Ts, s Iy, yr, ys&~ (yr)r)4 (ps)

+ . . (V.44)

Fro. 2. Lm~(y)g '[ OR(p) —e4'(p)gas a sum of contracted (1,1)-
graphs. The numbers under these graphs are their symmetry
numbers.

4. AVERAGE OCCUPATION NUMBER IN
MOMENTUM SPACE AND OR(P)

As in the discussions given in IV, it is useful to
introduce &mx& which is defined to be the statistical
values of the occupation number in momentum space
averaged over an x-ensemble. These average numbers
can be expressed in terms of U)* by (proved in Appendix
D)4

(mo) =Q [(/—1)!7-'s'

&kr) k) r, yI U)'Ikr, . k) r,p&, (V.38)
kI . .k)-I

(mo) =x(B/Bx) [(lngn*)+xQ7 (V.39)

At x=x, where x is given either by (V.7) or (V.9),
(V.39) becomes

II '(mo&=*.

It is convenient to define OR(y) as

OR(y) —= [&mp&+ 17.

(V.40)

(V.41)

By using Rule C, it is straightforward to express OR(p)
explicitly as sums over expressions (V.15). These sums
can be further simplified in terms of either primary or
contracted graphs. We write (proved in Appendix C)

OR(y) =z+s'
&(g [all different primary (1,1)-graphs7, (V.42)

and

OR(y) =~*(p)+[~*(y)7
&&P [all different contracted (1,1)-graphs7. (V.43)

Each of the external lines in these graphs carries a
momentum p. In the sums (V.42) and (V.43), each
graph contributes a term given by (V.31) and (V.36),

In terms of these contracted graphs, (V.32) becomes

incan*

——O(.'+P, ln[s '4r4*(p) 7

+Q [all dif'ferent contracted (0,0)-graphs7. (V.37)

This sum is illustrated in Fig. 2. For clarity we use
dotted lines for all contracted graphs. The first three
terms on the right-hand side of (V.44) correspond,
respectively, to the first three graphs in Fig. 2.

[~*(y)7'[~*(—p) 7'L&
I
To, s*l p —

y&&»
—P I

Ts o
I &7

gp

I

I

lp

, p

I p Ip

~ ~ ~

Ip

I

Ip

Ip

I

Ip

lp

I p

Fro. 3. A subset of all contracted (1,1)-graphs that contain at
least one (0,2)-vertex and one (2,0)-vertex. In each graph the
external incoming line must terminate at a (0,2)-vertex.

5. IRREDUCIBLE GRAPHS

In the previous paper (IV) the contracted graphs
were simplified by the introduction of the irredicible
graphs. As was explained in Sec. 6 of paper IV such
reduction is not only mathematically advantageous
but also physically necessary. The same reasoning also
applies directly to the present case.

However, the actual technique of reducing the sum
of these contracted (p, p)-graphs into a sum of the
appropriate irreducible graphs is much more cornpli-
cated in the present case. To see the difFiculty let us
consider as an example a subset of all contracted
(1,1)-graphs that contain at least one (2,0)-vertex and
one (0,2)-vertex. Furthermore, in each of these graphs
the external incoming line must terminate at a (0,2)-
vertex. Such a set of contracted (1,1)-graphs is illus-
trated in Fig. 3. It is easy to see that

[m'(y)7' p [contracted (1,1)-graphs in Fig. 37
W no*(y) OR( —y) OR (p)

X( ITo, *ly, —
p&&y,

—PIT,o*I ). (V.45)

In particular, e.g. , if we substitute (V.43) into (V.45),
the coefficient of
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on the right-hand side of (V.45) is 2 while that on the
left-hand side, which corresponds to the second graph
in Fig. 3, is 1.

To overcome this difficulty it is necessary to define
two new functions OR;„(p) and OR,„t(p).

OR;, (p) —=s' g fall different primary (0,2)-graphs),

and

oR,„1(p)—=s'

Xg fall different primary (2,0)-graphs), (U.46)

where the momenta associated with the two external
lines in each of these graphs are y and —p. In terms of
the contracted graphs, (V.46) becomes

oR'-(p) =L~ (p)m (—p))
XQ fall different contracted(0, 2)-graphs),

and
oR-t(p) =I ~*(p)~ (—p))

XP Lail different contracted (2,0)-graphs). (V.47)

two of its internal lines open the entire graph can be
separated into two (or more) disconnected dual (p, v )-
graphs with at least one of the disconnected graphs
satisfying (V.49). Otherwise, it is called irreducible for,
irreducible dual (p, v)-graph).

To each irreducible dual graph we assign a corre-
sponding term which is determined by the following
procedures:

(i)" Assign to each arrow of the internal lines an
integer i and a corresponding momentum p;, Li=1, 2,

~ 2ru, where 212 is the total number of interns, l lines).
(ii)" Assign a factor

(PBl lpB2 I' ' 'PBS [~s, t
~ PAllpA2i

' 'PAt)

to each (s,l')-vertex which connects the incoming
arrows (i.e., pointing towards the vertex) of momenta
PA1, PA2 PAt with the outgoing arrows (i.e., pointing
away from the vertex) of momenta pB1', PB2' PB,'.
These arrows can be associated with either internal or
external lines.

(iii)" Assign, respectively, a factor
From their definitions it is clear that

oR.(p) =oR.(—p),
&(p' —p )OR(p'), b(p'+ p )OR'-(p')

~(p +p )OR-t(p')
(V.48) or

to each internal line which carries two arrows, i and j
that are pointing parallel to each other, towards each
other or away from each other. The 8(p) function is
defined here for discrete p by

8(p) =1 for P=O,

8 (p) =0 otherwise.

(iv)" Assign a factor

(symmetry number) '

to the entire graph. We consider the (2212)!permutations
of the positions of the integers 1, 2, 2' that are
assigned to the arrows of the internal lines in, step (i).
The symmetry number of the irreducible dual graph is
defined to be the total number of such permutations
that leave the topological structure of the graph Lwhich
includes the positions of these numbers) unchanged
Lfrom the situation after step (i)).

The term corresponding to an irreducible dual graph
is then given bv'

Lproducts of all factors in (ii)",
If (ttt, v) = (1,1), then the momenta of the two external
lines are both p. If (p, v) = (0,2) or (2,0), the momenta
of the two external lines are p and —y.

Similar to the discussions given in Sec. 6 of paper IV,
we shall discuss the question of the reducibility of these
dual graphs. Let us imagine that any one of the internal
lines in such a dual (ttt, v)-graph is cut open. The two
ends of this particular internal line would then be
separated into two external lines each retaining the
original direction of its arrows.

A dual (y, v)-graph is called reducible if by cutting

P1 ' P2m

(iii)", and (iv)"). (V.50)
We now define

X(p) —=P fall different irreducible dual (1,1)-graphs),

X;„(p)—=P (all different irreducible dual (0,2)-graphs),
alld

X. t(p)
—=P fall different irreducible dual (2,0)-graphs).

(V.51)

where a=in or out.
Next we introduce a completely new type of graphs

called deal graphs In th.e following for expediency we

shall not discuss the gradual evolution of these new

graphical methods but only present the final rules.
/See Appendix E for the detailed steps. )

A dual (p, ,v)-graph is defined in exactly the same way
as a contracted (p, v)-graph except that every internal
line carries two arrows, one for each end. Thus, there
are three diferent kinds of internal lines depending on
whether these two arrows are parallel to each other,
point towards each other, or point away from each
other. The external lines, however, carry only one
arrow each. Each external line is associated with a
nonzero momentum. These external mom enta are,
again, considered to be distinguishable from each other.
Two dual graphs are diGerent only if they have different
topological structures which include the positions of
these distinguishable external moment. a.

Throughout this paper we are only interested in the
special cases of (p, v) = (0,0) and

(p, v) = (1,1), or (0,2), or (2,0). (V.49)
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(P) =
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P P

(l)

(2)

(2)
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P "P
(2)

(2) (2) P P

I I

P P P P P

Fzo. 4. X(p) as a sum of irreducible dual (1,1)-graphs. The
numbers under these graphs are their symmetry numbers.

P P

+

(2)

P P

~ ~ ~

(2)

Fro. 5. X; (p) and X, t(p) as sums of irreducible dual (0,2)-
These sums are illustrated in Fig. 4 and Fig. 5. In graphs and (2,0)-graphs. The numbers under these graphs are

terms of these graphs, (V.51) becomes

X(p) =Z(p, pr I Ts.s*l p, pr&OR(pr)
Pl 2

+2 -'(p, pr, ps I Ts,s*l p, pr, ps&II OR(p')
PlP2

+ Z kDp, prlTs, s lps, ps)3

represent, respectively, the various graphs listed in the
same order in Fig. 4 and Fig. 5.

In terms of these graphs it is easy to see that if @re

interchange y and —p, X; (p) and X,„t(p) must remain
the same. Thus we have, in addition to (V.48),

PlP2PS

XL(ps, ps I Ts.s*l p,pr&II OR(p~)
X-(p) =X-(—«), (V.52)

+2 k(p I Tr. s I y, pr, —pr)OR-~(pr)
Pl

+2 s(p, pr, —pr! Ts.r*l p)OR'-(p)+ ",
Pl

where O.=out or in.
The following theorem now establishes the relations

between OR(p), OR; (p), OR,„t,(p) and these irreducible
graphs:

Theorem 2 (proved in Appendix E).—
X'-(y) =(

I To.s I y, —p&+Z(pr I Tr, s*l pr, y, —p&OR(pr)
Pl

2

+Z(ps!Tr, s I p pr)(prl Tr, s i p ps&II OR(p')
PlP2

+2 -'(pr, psl Ts, r*l»
Plp2

X( I Te, s*l —p, pr, ys&II OR(p;)+. ",

where
@(p)= Lm (y)j '—~-'(p),

f X(P) X'-(y) &

~(p) =!
Ex. ~(y) x(—p))

(p) =I !
) OR(p) OR'-(p) i
&OR.„,(y) OR( —p) i

(V.53)

(V.54)

and

X-~(p) =(y, —yl&s, o I &+K(pr, y, —yl&s, r lpr&OR(pr)
Pl

+2(p, pr I
Ts, r lps&(

—y, psl Ts, r*l pr&II OR(p, )
PIP2 i=1

2

+2 s(—PITr, s*lpr, ps&(p, pr, pslTs, o*l )II OR(p;)
PlP2

and
(m (y)

!m'(y) =
I

0 m*(—p) i

Furthermore, from the de6nitions (V.46) and (V.51)
it can be shown directly that by using the Hermitian
property of the Hamiltonian we have

In the above, the terms are so arranged that they

OR;.(p) =OR.„,(p) —=OR'(p),

x'-(y) =x-~(p) —=x'(y) (V.55)
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(2) (2) (2)

In (V.60) the first five terms correspond to, respectively,
the first Qve irreducible dual graphs in Fig. 6.

The above formula (V.58) is valid for any x-ensemble
of arbitrary x values. However, in order to obtain the
thermodynamical functions for the original system in a
grand canonical ensemble it is necessary that x should
assume a particular value determined by (V.7) or (V.9).

(8) (2)

(2) (2)

Fro. 6. 4t)' as a sum of irreducible dual (0,0)-graphs. The numbers
under these graphs are their symmetry numbers.

x(p) =x(—p). (V.56)

If the interactions between particles are isotropic, then

m*(p) =444 (-p), OR(p) =OR(-p),
and

6. VARIATIONAL PRINCIPLE

Equations (V.51) and (V.53) may be regarded as
integral equations for 5K, from which one may compute
BR and consequently the average occupation number

(ut~). Furthermore, the determination of OR enables

one, through (V.58), to compute the partition function
go*. We shall demonstrate in this section that these

procedures can be formulated in terms of a single
variational principle.

1. In (V.59) we can regard Q as an explicit functional
of a, s, OR(p), OR'(p). It is shown in Appendix G that
the equations for determining OR(p), OR'(p) and x can
be obtained by setting the variation of $(a,s,OR,OR' )
with respect to x, 5K and 5K' separately to zero. Thus if

where
lngo. ——$(x,s,OR,OR'), (V.58)

Some additional properties of these functions are given
in Appendix F.

Next, we proceed to express lngo in terms of sums
over irreducible dual graphs. Similar to the„"notations
used in paper IV, we define

I
see Eq. (IV.34)j

g'(xs, OR,mr;. ,mr, „,)—=Q Lail different irreducible dual (0,0)-graphsf.
(V.57)

By using (V.55), it can be shown that (proved in

Appendix G)

and

$(x,s,OR,OR') =0,
t'OR'(p) x,s,OR

8
x—$ (x,s,OR,On' )

8$
=0

.s,BR,DR'

then (V.53) holds and'
g= x)

$(~,s,OR,OR') =0,
.&OR(p) x,s,OR'

(V.61)

(V.62)

(V.63)

Q (x,s,oR,oR') =p, ln{s-'I oR'(p) —olr" (p) $&)
—Z. L~*(p)3 'LOR(p) — *(p)]+V'+O('. (V 59)

K and Q' are given by (V.33) and (V.57), respectively.
The sum (V.57) is illustrated in Fig. 6. In terms of
these graphs we And

Q'=z E(pr, pzlTs, z lpr, pz)OR(pr)OR(pz)
PlP2

where x is given by (V.7) or (V.9) according to the
rules stated in Theorem 1. Thus by using Theorem 1,
the pressure P of a system in the original grand canonical
ensemble is given by

(14T) 'p= stationary value of LQ
—'Q(g, s,OR,OR') j (V.64)

at constant s as 0~ ac .
The partial derivative of Q with respect to s is

+-,' P( l&s, s*l p, —p)OR-4(p)

+-', Z(p, —plTz, s'I )OR;.(p)
p 3

+s 2 (pi pz, pzITs, s*lp»pz, pz)II OR(p, )
PlP2P3

+s 2 I(p»pzlTz z'Ip»p4)
ply ep4

x&p.,p IT.,"Ip,p.» n ~(p;)+ (V.60)

~ It is important to notice that

8 8—incan~ = —4tl(x, z,OR, llV)
8x & Bx s, OR, OR~

= —5:(z,p,YR,)R')8
p, OR, OR

provided (V.61) and (V.62) holds. Thus, if (V.63), or

8
x—Q(z,p,OR,mr') =0

p, OR, OR&

has two solutions x=0 and x=i)0, then according to Theorem 1
it is always the nonzero solution that prevails.
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related to the particle density p by

8
Q

—' s—$(x,s,OR,OR') =p
ax

' ' '
x,mr, m'

(V.65)

that as 0 —+ ,
(Qig~')*'~" '(pi' " p.'IT..~*lp»" pi&~ bp p

x(yi', y.'I », ~ I y». . .p~), (v.71)
where

provided (V.61) and. (V.62) are satisfied.
2. An alternative variational principle can be for-

mulated in terms of a Le endre transformation. We
de6ne

P=Z p', P'=Z p',

~*(p)=sLI —s(pl». i lp)7 ' (V.72)

g
and bp, p is a Kronecker 6-symbol. Thus, for example,

5'(x,p,OR,OR') =—Qp lns —P (x,s,OR,OR'), (V.66)

in which we use (V.65) and regard

s= s(x,p,olt, olt').

Thus we have

Q (x,p,OR,OR' )
bOR(y) x,p,OR'

The v, , & functions are, by definition, independent of

(V 67) the volume.
As Q —& ~, (V.59) becomes

Q-'$(x, s,OR,OR' )

= (Ss-') ' d'P ln{s 'I oR'(y) —OR"(y)7'*)

$ (x,s,oR,OR' )
bOR(y) x,s,OR'

g (x,p,OR,OR' )
boR'(p) sipi5K

8
x—Q(x,p,on,on')

Q (x,s,OR,OR' )
bon'(p) x,s,oR

—(g ') ' ~d'pl (y)7 'I:OR(y) — *(y)7

+Q 'X+Q '$', (V.73)
where

Q-'~=- +2 ( )-'(-)"(g ')"-'
n=1

x(0," ol.. Io, " o&, (v.74)
and

2

(g-)Q-%'=- (y.,y. l"..*Iy,y.&II ~(y')d p;2J

= —x—$(x,s,oR,OR' )
Bx - s,5R5R'

1+- D I ~o, 2*1 P~
—P&+(P —y I ». o*I &7oR'(P)d'p

2~

By using (V.64) we find that the Helmholtz free energy
F of a system in the original grand canonical ensemble
is given by

1
+ (pl P2 ya I » 3 I p»p»p3&II o (p*)d'p'

(Q~T) 'F= stationary value of LQ g(x,p,on,oR')7

at constant p as 0 —+ ~.

'7. LIMIT OF INFINITE VOLUME

(V.69)

1+- L(yi » I », 2'I P~,P4&7'b'(Pi-I-Pm —y3 —y4)8J
1 f

xH oR(y')d'p'+- L(yil», a*lyi, P2, —P2)

To study the forms of the functions $ and Q as
0 —+ ~ it is useful to introduce

(p& ~' p~ I "~.& Ip»' 'p&&

=2- L(~—~) '(~—I) '7-'(g '»)"-"-"
x(yi', . y, ',0, .0I v~'I yi, .

P&,0, 0&, (v.70)

where U„' is defined in (IV.54) and is related in a simple
way to the Boltzmann I„functions introduced in (I.54)
for Q= ~. In (V.70) the running index e varies from
the larger one among the two integers s and t to infinity.
By using (IV.126) in paper IV and (V.26) it follows

, I

p=x+(Sm') ' Ls 'OR(y) —17d'p, (V.76)

+(y, P, —y I , ly &7OR'(P.)OR(y )d'p d'p

+ (V 75)

Regarding Q as a functional of x, s, OR, and OR' and
demanding that it be stationary with respect to
independent variations of x and 5R and 5K' at Axed s,
one obtains the equilibrium values of x, BR, and 5R.
The particle density is then given by
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which follows from (V.65), (V.63) and the fact that all
the u, , & depend on x and z only through the com-
bination xz.

To write down the explicit integral equations deter-
mining 5K and 5R', one takes the functional derivatives
of Q. (V.61) and (V.62) become two coupled integral
equations:

x=0 and DR
—'(p=0) &0,

while the other corresponds to

(V.82)

will be discussed in the following sections, this theorem
together with Theorem 1 give a clear classification of
the possible existence of two diGerent phases in a Bose
system; one corresponds to

alt(p) =rl*(p)+no*(p)DR(p) X(p)
+m*(y) art'(p) x'(p),

DR'(p) = *(p)~'(p)x(y)+ *(y)~(y)x'(y)

where x and x' are, according to (V.75),

(V.77)
x&0 and BR '(p=0) =0 (V.83)

where x is the solution of (V.63).
It is easy to see that in the phase x'=0 all the equa-

tions derived in the present paper reduce to the corre-
sponding equations obtained in paper IV.

f
x(p) = „&p,pil », 2 I y,yi&~(yi)d'pi 8. DILUTE SYSTEM OF BOSE HARD SPHERES

In this section the above results will be applied to a
dilute Bose system of hard spheres. We shall show that
at a given particle density p and temperature T it is
possible to evaluate the thermodynamical functions of
such a system in successive powers of a, provided

2

+ (p Pl~p I ii .3*1y, yi,y2)II ~(y')d'p'

1+- Dy, pll», 2 Ip2,p3&j'&'(p+yi —P2 pa)
2 apX2&(1,

(a/l~)&&1,

and
(V.84)8

3 Ã

(V.85)

xII ~(y.)~ p.+ L(pl ». 8 I p, pi, pi&
i=1 where a is the diameter of the hard sphere and X is the

thermal wavelength,
+&p, yi) —pil». i*lyH~'(yi)d'pi+" ~ (v 78) 7=(4 P)~.

and

x'(p)=-:L( Ioo. 2*lp -p&+(y -yl'o*I )j
1 f+- L(pi l». 3 I pi, p, —p)
2

+(pi pi
—yl», i*lyiH~(yi)d'pi+" (v 79)

We recall that for a small diameter a the explicit
forms of u ' can be computed by using the binary
kernal B. The details of such calculations have been
discussed in previous papers. Here we list some useful
formulas for u, , i*, K, m*(p), etc. for the case of hard-
sphere interactions I see e.g., (IV.48) and (IV.61)7.

(y ', "y-'IU-*IP, "y.)-oL(u')=ij, (v.s6)

&Pi)P2 I u2, 2*I Pi,P2) = —(2vr') 'aX'

xexpl —p(p, yp, )jyo(a), (v.s7)

& IUo, 2 lp, —p)=(p, —pl», o I &

=4 axsp-'Lexp( —2pp') —1j
+O(a), (V.SS)

L~*(y)j '=s '—&pl», i*l p)
=s '—exp( —pp')

XL1—4''ms+0(a')], (V.89)8
0 '—lngii* =0

Bx
(V 7)

and
0 'I:=—@+as—aX'(xs)'+O(a'). (V.90)

(V.78) and (V.79) are, of course, identical with the
limiting form of (V.51) as the volume becomes infinite.

In the integral equations (V.77), y is regarded as a
continuous variable. It is of interest to know whether
the solutions BR(p) of these equations may become
singular as y —+ 0. It can be shown that the occurrence
of such a singularity is closely related to x&0 where x
is determined by (V.7).

Theorem 3 (proved in Appendix H).—If as Q~ ~
the solution for

is x=x where x is real and positive, then at x=x the
solution for the integral equations (V.77) satisfies

9R '(p) =0 at P=O. (V.80)

Furthermore, at x= x

L5It'(y)/OlZ(y)]= —1 at p=0. (V.81)

Consequently, the determination of x is closely
related to the study of the behavior OR '(p~ 0). As

In the following we shall use the variational principle
(V.69) to evaluate the free energy F in successive
powers of a. Throughout the computation we shall
consider p and T as Axed.

Zeroth Approximation

We shall calculate x, s, DR, 5K', Q etc. as functions of
p, T accurate to the zeroth power in u. All the zeroth
order quantities are denoted by subscripts 0. From
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(V.75) and (V.86) we find

0 'Qp' ——0

Thus, by using (V.89) and (V.90), the zeroth order
expression of g, LEq. (V.66)], becomes

II—'Qp(xo, p,ORp, ORo') =p lnzp

—(8z') ') dsP In(zp
—'I ORp'(p) —ORp" (Is)]')

+(8vrs) —' dsP{I zp
—'—exp( —Pj')]ORp(p) —1)

+xp(1—zp), (V.91)

where zp is regarded as a function of (xp, p,ORp, ORp')

determined by (V.76),

p=xp+(8s') —', '

Lzp 'ORp(p) —1]dsP. (V.92)

By setting the variational derivatives of gp with respect
to 5Kp and BRp' to zero, we obtain

ORp(p) =zpL1 —zp exp( —PP')] ', (V.93)
and

F, and Ii& in the two phases are given by

II 'F,=paT lnzp —X saTgsgs(zp)+OLap']
if p (p„(V.102)

II-iF.= —(1.342)X-s~T+OLaps] if p) p.. (V.103)

These results are, of course, identical with that of a
free Bose gas.

First Order Expression of Free Energy

Next, taking advantage of the variational property
of g we can substitute the zeroth order solutions xp,

zp, ORp, ORp', directly into (V.66) and. (V.73). By using
the explicit forms of m (y), X and v, , i* given by (V.86)—
(V.90), we find the first order expression for 5 to be

I neglecting terms proportional to O(a") where ss) 1]
II '5'i ——p lnzo —Ii 'gsys(zo)+4a&'(xozo)LIi 'gsys(zo)]

+ah'(xozp)'+2''I X 'gs(s(zp)]', (V.104)

where xp(p, T) and zp(p, T) are given by (V.99) and
(V.101).Thus, we obtain the following results:

(a) In the gaseous phase (p (p,) the free energy F,
is given by

ORo'(p) =0. (V94) II-'F,=PENT lnzo —I~ s(aT)gs)s(zo)
Substituting these results into (V.91) and (V.92), we +Sz'ap'+05&9 '] (V 105)
find where

gp(xp, p) =p Inzp —X 'gsgs(zo)+xo(1 —zp), (V.95)
P=~ 'gus(zo).

Next we set

P xp+~ gs/2(ZO) p

gi(x)=E y"I '.
n=l

( 8
I xp Qp I

=xp(1—zp)=0,
axo i „

(b) In the degenerate phase (p) p.),
(V'96) II Fd= pe&T+4'iraLP +2ppc P ]

+OLa~p**h '] (V 106)

(V 97) The zeroth order expression of p, is given by (V.100).
These results have been previously obtained by using
the pseudopotential method. ' That the next order
terms are proportional to O(a') and O(as) in these two

phases will become clear after we evaluate the first
(V 98) order solutions for x, z, OR, and OR'.

which, according to Theorem 1, determines~ the
functional form of xp(p, T). Solving (V.96) and (V.98)
for xp~0 and sp, we And that the system exists in two
phases:

(a) The gaseous phase in which

First Order Solutions of 5K and 5K'

In order to calculate OR' accurate to O(a) it is
necessary to include in (V.75) the first two terms in
the sum for Q'. We define'

& 'gvs(zp)=p.

This solution obtains for the case p &p„where

V.99 II-"Pi'=- (I i,I sl »..*IIi,I s&II ORi(I')d'P'

p&=X gs/s(1)='A (2.612).

(b) The degenerate phase in which

(V.100)
1 f+-„L( IUo, s'IIs, —y&+(I, —I l». p I )]
z~

)&ORi'(p)dsP. (V.107)

(V.101)

Thus, the zeroth order expressions for the free energy

s T. D. Lee and C. N. Yang, Phys. Rev. 112, 1419 (1958).
9 Ke use subscripts 1 for all Grst order solutions. These 6rst

order solutions include both the zeroth order solutions and their
corrections.
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~, (p) = *(p)l:m,'(p)x, (p)+on, (p)X,'(p)], (V.108)

where

Xl(p) =
~

&p,p'I us, 2 I p,p')dRi(p )~~P',

and

X,'(p) = sL& I u, ,*l p, —p)+ &p,
—p I u, ,*l )]. (V.109)

By using (V.87)—(V.89) and neglecting terms O(a') in
these equations, we find the solutions of (V.108) to be

~ (P) =zL1—I e p(—&P')] 'L1—f'(P)1 ' (V11o)

where
~i'(p) =f(p)~i(p) (V.111)

f(p) = —4oraxizisP 'I 1—exp( —2PP')]
XL1—f' exp( —PP')] ', (V.112)

and

f'=zi 1—4''xizi —4As

X t (8ors)-'ORi(P) exp( —pp')d'p . (V.113)

Correspondingly, the integral equations (V.77) become

DRi(p) =~*(P)I:1+~i(P)Xi(P)+~i'(P) Xi'(p)],

q'= p'(8oruxi) '. (V.119)

It is important to notice that the magnitudes of 5R~
and 5Ri' at small P are quite different from that at
large p.

Substituting the erst order solutions of BR~, BR~', x~,
and zi back into (V.66) and (V.73) we can evaluate the
next order term for the free energy. In the calculation
for Q', the integration over p (ap)& yields a term
Ol al] while the integration over large momentum gives
a term proportional to a'. These results together with
a more complete discussion of the erst order solutions
of x and 2' will be given in a later publication.

it is necessary to separate two diferent regions of
momentum.

(b.i) At p'))(ap), we findio

~ (p) = L1-~ -p(-Op')]+OL 'p'p-'],
and

m, '(p) = —4orax, z 'p-'I 1—exp( —2Pp'))
XII-f "p(-ep')]-'+O[ 'p'P"]. (V 1»)

(b.ii) At p' OI apl we find'o

~ (P) = (2~) '*) '(q'+1)Lq'(q'+2)] '+Ol:~ '*],

and

Oni'(p) = —(2a)i'xi)-'I q'(q'+2)]-'+Ql a—
&], (V.118)

where

Correspondingly, (V.76) becomes

f
p= at+ (8irs)—' Lzi-'gati(p) —1]d'P. (V.114)

The functional form of x~ can, then, be determined
by applying the variational principle (V.69) with
respect to x. The detailed forms of these functions are
rather complicated. In the following we shall discuss
only some simple partia/ results.

(a) In the gaseous region (p (p.)
xi= 0, dRi'(p) =0,

dR (p)=z I1—t e p(—PP)], (V.11S)
where

p=)-g„,(f-), f=z,L1—4') ].
These results are identical with the results obtained
in paper IV I see, e.g., (IV.66)]. To O(ao), p, is given
by (V.100).

(b) In the degenerate region (p) p,), we find

~i——p —p,+OLa&p'*) -'],
»= 1+2~) '(p+p. )+OI (p~')'1,

and
t-=1—2a) (p—p,)+OI (pa ):]. (V.116)

To study the order of magnitude of ORi(p) and 5Ri'(p)

9. DISCUSSIONS

In this section we make some general remarks about
the present method.

1. Throughout the present series of papers the e6'ects
of statistics are treated separately from the eGects of
interactions. For a system of interacting particles we
characterize their interactions by the various Boltz-
mann V& functions (or their symmetrized and anti-
symmetrized forms, Y&' and Yi" functions) which are,
in principle computable from the corresponding two-
body problem through an expansion in terms of the
binary kernel.

The eGect of statistics enters when we express the
U~' and U'~" functions in the case of symmetrical or
antisymmetrical statistics in terms of the corresponding
Boltzmann U& functions by using Rules A and B in
paper I. Without using the explicit forms of these
Boltzmann U~ functions we can express these two rules
in terms of graphs which ultimately lead to a set of

"It is important to notice that 5R(p) is related to (m&) by
(V.41) where (mo) is the number of particles with momentum p
and not the number of phonons. The transformation between
phonons and particles for a system of Bose hard spheres at a
6nite temperature has been studied by means of the pseudo-
potential method LT. D. Lee and C. N. Yang, Phys. Rev. 112,
1419 {1958}$.Using these results, identical expressions for 5K(p)
such as those given by (V.117) and (V.118) can also be obtained.
It is interesting to notice that from (V.118) for small p, (m&) ~ p o

while the Laverage number of phonons with momentum yg 0-p '.
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integral equations for the average occupation numbers
in momentum space.

This approach is especially useful in the case of Bose
particles since the appearance of a, Bose-Einstein con-
densation is the consequence only of the symmetrical
statistics. While the quantitative properties are of
course inQuenced by the actual forms of the Boltzmann
U& functions, the qualitative features of such a phase
transition can be studied by analyzing only the eGects
of statistics. This is explicitly demonstrated, for
example, by the general character of the coupled
integral equation (V.77). A Bose-Einstein conden-
sation is simply a transition from a phase, called the
nondegenerate phase,

P )

FIG. 7. Schematic P-T
diagram of He.

(i) Along the X line AB, OR '(y=0) =0 on both sides.
(ii) Along OA, OR '(p=O) =0 on the liquid side but

OR '(y=O) )0 on the gaseous side.
(iii) Along A C (excluding the triple point 2),

OR '(p=0) )0 (but has a discontinuity) on both sides.
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APPENDIX A»

where OR(p) is the solution of the integral equations
(V.77).

Two different kinds of phase transitions, therefore,
are possible.

(a) In the nondegenerate phase, at the point of
transition,

To prove Theorem 1, let us erst consider a grand
canonical ensemble of systems, each of which satisfies
the periodic boundary condition in a cube of volume Q.
We define (Po(L) to be

x=0 and OR '(y=0)) 0. (V.122)

(b) In the nondegenerate phase, at the point of
transition,

x=0 but OR '(p=0) =0. (V.123)

"Fairbank, Buckingham, and Kellers, Bull. Am. Phys. Soc. 2,
183 (1957).

In general, we expect in the former, case (a), a phase
transition of the first order while in the latter, case (b),
a phase transition of higher order. An example of case
(b) is the condensation of a free Bose gas. Another
example of case (b) is the approximate solution we
obtained for the case of dilute hard spheres.

2. We can apply these results to liquid He. The
phase transition between He I and He II is of second
order. Therefore, we expect the X transition to be of
the type (b) discussed above. Since at the point of
transition OR(p) has a singularity even in the non-
degenerate phase and since all thermodynamical
functions can be expressed as sums of integrals of
products of the BR function it is quite possible that some
of the thermodynamical functions may become singular
in the eoedegemerate phase at the point of transition.
This may have a direct bearing on the observed form"
of the specific heat near the X point.

At very low pressures and temperatures there is a
phase transition of first order between helium gas and
He II. This transition is an example of type (a) dis-
cussed above.

In Fig. 7 we plot a schematic P Tdiagram of helium-.

The above results can be summarized as follows:

go*——Pl. (!Io(x,L).

For volume 0 —+ ~, we have

(V.126)

Q ' ln(IIo ——Q 'L —xQ+L ln(xQ)

L lnL+L+In(—Po), (V.127)

Q ' info' ——Q ' lnLmax of (Po(L)j, (V.128)

and
Q ' luego* ——Q ' in/max of (Itic(x,L)j, (V.129)

in which "max of" stands for "maximum of, among
various values of L."

To prove Theorem 1, we observe that

ln5Io —— In(Po(L)+ln(xQ/L) =0 (V.130)
BI. 81.

'2 Throughout this Appendix we will discuss various limits of
infinite volume and also consider eA'ects of dividing a large system
into two smaller but macroscopic systems. These discussions and,
in particular, the proof of the lemma are based essentially on
physical arguments. While these statements can be substantiated
by considering specific systems such as that of dilute Bose hard
spheres, a completely rigorous mathematical treatment of these
arguments has not been found.

X Qz (ki, kii
~
W~'ik, , k„), (V.124)

ki ~ ~ kN

where the sum Pz extends over all ki k~ in which
L of the momenta ki, k2, k~ are zero. We also define

IIIii(x,L)—= (L!) '(xQ) zIPo(L) exp( —xQ). (V.125)

Then
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at the value of L, at which ln(Rg assumes its maximum Hence as Q —& ~,
value. Substituting (V.129) into (V.7) and using

(V.130), one obtains 0 ' In(Po L ~q Qi ' In(Poi L,
+(1—~)(0;i Inc o,(L,)ga=I./0,

In(Po(L) =0.
I9L

(V.131)

82

0 IncP&(I.)
QL2 -z, Q

KP (V.132)

as 0-+ ~, but keeping L/0=finit.
Proof. We consider a—partition of the volume 0

into two smaller volumes and impose separately the
periodic boundary conditions on these two volumes 0&

and 02, where

0,=~0 and 0,=(1—~)0.

Correspondingly, we consider a partition of L,

I.=Li+L2,

where I.& and L& are, respectively, the number of
particles with zero momentum in Q~ and 02. Vtilizing
the property that a configuration of L~ particles with
zero momentum in 0~ and L2 particles with zero mo-
mentum in 02 corresponds to a configuration of L
particles with zero momentum in 0 but not vice versa,
we find, after neglecting the surface effects due to the
partition,

O, (L)~a o, (L,)so,(L,).
Now for every partition,

(L/0) =~(L /0.)+(1-~)(L/0.).

Substitution of (V.131) into (V.127)—(V.130) leads to
Theorem 1 for the case $/0. For the case that (V.131)
cannot be satisfied, (Po(L) assumes its maximum at
I.=O. (V.8) then follows from the definition of go*.

To render the above arguments more rigorous we
must first sharpen the definition (V.124). We impose
an additional condition on the range of the summation
over ki, . . .ky. For all nonzero k

(number of k;=k) ~AQ,

where a and A are constants provided ~3&o.&1. This
condition is introduced so that we need not consider
configurations which have a macroscopic Li.e., O(Q)j
occupation number for k&0. While such configurations
are essential for the study of dynamical properties,
they can be neglected in any computation of the thermo-
dynamical functions for a system which is at rest. t See,
e.g. , reference 2.$ Thus, (V.128) still holds. Further-
more, for a large system the value of Po(L) gives the
relative probability in the grand canonical ensemble of
having L particles with zero momentum. Ke now prove
the following lemma.

Lemwa. —

0-i Ing, =0-' Inc, (L), (V.134)
asQ —+ ~.

We now study the curves Q ' In%&(x,L) es L/0. The
first and second derivatives are given by

and

In61&(x,L) = In@',(L)+ Int (xQ)/Lj,
BL BI.

82 l92

0 —In(Ro(x, L) =0
8L BL

Intro(L) —(0/L). (V.135)

Therefore for sufficiently large volume Q, if we plot
0 ' In(Ro(x, L) against (I/O), the resulting curve must
be convex just as the curve Q ' In(Pa vs L/0 is. Further-
more, at any Axed real and positive value of x,

0—' In%.o (x L)g 0 ' In(Pii (L),

where the equality occurs at (and only at)

(L/0) =x.

(V.136)

Combining (V.129), (V.135), (V.136), and the lemma
we find that for suKciently large volume 0 'In/&*
varies convexly when plotted against x; i.e.,

(8'/Bx')0-' Ing„*~0

for x~0. Furthermore, as 0—& ~, at any

x~0,

0 ' info'~ 0 ' ln Qadi',

(U.137)

(V.138)

(V.139)

and the equality occurs at

*=Z= (I./0). (V.140)

Theorem 1 is a direct consequence of (V.139) and

(V.140).
APPENDIX 8

To prove Rule C, let us consider a matrix element

(ki', kg iWg ski, k)), (V.141)

in which, say, L of the X 6nal momenta are zero. Ke
denote by A~32 A~ the L particles with zero final

momenta and by I3i82 . B~ r, the (N L) particles—

where p is any positive number between 0 and 1.
Consequently, if we plot limo „LQ ' In(P&(L)j against
(L/0) at a fixed fugacity s, the resulting curve must be
a convex one, which proves Lemma 1.

Suppose the maximum value of 0 'In(Po(L) occurs
at (L/0), where

maximum/0 ' In(Po(L)(=0 ' In(Pii(L). (V.133)

(V.129) becomes
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with nonzero 6nal momenta.

k~,'=0 [i=1,2, L],
and

ka 80 [j=1,2, .(7—L)]. (V.142)

From (V.2) and (V.4) we find

(k, ', k~ Iws]*lk„k]])=(xQ)' g P&'(L)

&((k,', . kg'i Wgik„. . .kg), (V.143)

where P&'(L) is any permutation of the iV numbers

(Ai, Ar„B], B~ r) provided it does not alter the
relative order among A~, A2- .Al. , i.e.,

FIG. 8. Examples of numbered
(0,0),-graphs.

(Aiii) =

PN (L)[A1&A2) ' ' 'AL]B1]' ' BN L]—
=[.. .Ai . As .Ar i . Az, ]. (V.144)

In (V.143) the sum extends over all (lV!/L!) permu-
tations PN'(L) which apply on the Iinal momenta
ki'. kz' only.

Next, we consider the Ursell expansion of the
Boltzmann functions lV„:

(k'~W, ~k)=(k'~ U, ~k),

(k]',ks'[ Ws [ ki, ks) = (k]'] Ui [ ki)(ks'[ Ui
[ ks)

+(ki', ks'
~
Us

~
ki, ks), etc. (V.145)

By substituting the appropriate expressions (V.145)
for WN into (V.143), we can express WN as a sum of
terms (V.15) over all different groupings (V.14), but
without the condition (b) used in (V.15). Combining
these results with (V.10), it is straightforward to solve
for U~, U2, U3 ~ ~ in terms of sums of the form
(V.15) and (V.16). The result is Rule C.

APPENDIX C

In this Appendix we shall give the steps leading from
(V.11) and (V.12) and Rule C to (V.32), and from
(V.38), (V.41) to (V.42). Siinilarly to the introduction
of Rule A' in paper IV, we first combine Rule C and
(V.18) into Rule C'.

Rul'e C'.—Rule C' is exactly the same as Rule C
except for the following two changes:

1. In (V.16) replace every factor

Q
—i ingo~ g+P P zn(]slQ) —i

n=i l=o

(k, .k
i
U„

i ki, k.), (V.146)
kI

where the sum P] extends over all ki . k„provided

(number of zero momenta among ki. k ) = I. (V.147)

By using Rule C', these sums can be expressed as a sum
over expressions (V.16)' with

k =k, , (i=1 ]s).

For example, in the sum

(V.148)

E (ki, "ks~Us*~k], ks),
QI ~ ~ o $5

let us consider a definite term (V.16)'.

(V.149)

(c) Among all the perrnutations

(aP y]I e f' )=P(Ai A],B„B(„])),(V.17)

which diGer from each other owly in the relative
positions of numbers withs]s the same bra [e.g. , (k~', k]]'

~

and (k&',k~'
~ ] in (V.16), only one is included in (V.15).

From (V.11) and (V.12) we can write Q ' lng]]* as

by a corresponding factor

kc ) (Ai) = (xQ)'[(3!)-'(00,0
~

Ys'
~
k],ks]ks)]

y [(k],ks
~

Ts'~ k4,ks)], (V.150)

(I]]!)
—'(kD] ' ' 'kD 'IT-'I kci, ~ ~ kc ),

where 10=number of zero momentum among
kD] kD . The resulting expression is called

(V.16)'

2. In (V.15) we sum over those permutations P
which satisfy, in addition to the two conditions (a)
and (b) stated in Rule C, a further condition (c):

where ki/0&k& and ks ——k4 ——k&=0. For clarity we
write the zero final momenta in (V.150) explicitly as 0.

In Fig. 8 we represent (Ai) by a graph, called a
numbered (0,0);graph. " In a similar way, every term
(V.16)' which satisfies (V.148) can be represented by
a numbered (0,0);graph constructed according to the
following procedures:

]SThe term (p,]),-graph refers to any graph where a zero
momentum is represented by a wavy line.
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D= (1U!)/(u (V.152)

numbered (0,0);graphs that are different. It is im-
portant to note that the difFerent terms (V.16)' which
correspond to these diferent numbered (0,0);graphs
give identical contribution to the sum (V.146) after
summing over all the nonzero momenta.

For example, starting from (Ai) in Fig. 8, difFerent
numbered (0,0),-graphs (Aii), (Aiii), etc. can be
formed. The corresponding terms (V.16)' are

(Aii) = (zQ)2((3!))(0,0,0~Y2'~ ki, k2, k4))
XP(kl k2

~
Y2 jk2yk2)) (V 153)

where ki/OWk2, k2 ——k4 ——k4 ——0,

(Aiii) = (xQ)2t (3!) '(0 0,0(Y2') k2, k4, k2)7

XP(k2, k4 [ Y,' [ ki, k2)7, (V.154)

where k2&0&k4, ki=k2 ——k4=0, etc. Altogether in-
cluding (Ai) we can construct

D=5 L(2~)(2 )) '

difFerent numbered (0,0);graphs by permuting the
positions of 1, 2, 5. Thus

~=(2!)(2 )

In general, let us consider a numbered (0,0);graph
with a total of X numbers,

X=L+M, (V.155)

where the (internal) straight lines are numbered
BiB2 B2r and the (external) incoming wavy lines
are numbered A&A2 A&. In this graph there are, say,
h(s, t; n) vertices, each conne.cting s outgoing straight
lines, t incoming straight lines, (n s) outgoing wav—y

Every zero initial momentum k is represented by
an incoming wavy line with a labeling number n Le.g. ,
n=3, 4, 5 in (Ai)). Every zero !inal momentum is
represented by an outgoing wavy line mitholt a labeling
number. Every nonzero momentum kji is represented
by a straight line with number P (e.g. , P= 1, 2 in (Ai)).
Since in the sum (V.146) these nonzero momenta are
to be summed over, the corresponding straight lines
are all internal lines. The topological connectedness
between vertices and lines follows the same order as
given by the corresponding term (V.16)'.

It is easy to see that if (V.148) is satisfied, then there
is a one-to-one correspondence between the terms of
(V.16)' and the different numbered (0,0);graphs.

From any numbered (0,0);graph with a total of E
numbers we can generate 1U! numbered (0,0),-graphs by
permuting the position of the E numbers. Among these
N ~ graphs there will be a total of, say,

(V.151)

numbered (0,0);graphs (including the original graph)
that are identical with the original one; or, a total of

~—g g L(n t) [74(s, t;n)

s, t, n
(V.157)

where co is introduced in (U.151).
Next, we define a (0,0),-graph which is obtained

from a numbered (0,0);graph by deleting all the
numbers. In an entirely similar way we can give the
general definition of a (ti, v),-graph.

A (p, v),-graph is a single (i.e., connected) graphical
structure which contains two diGerent kinds of lines,
straight lines and wavy lines. Every line carries a
direction which is indicated by an arrow. All wavy lines
are external (incoming or outgoing) lines. The straight
lines can be either external or internal lines. A (p„v),-
graph has v incoming external straight lines and p
outgoing external straight lines.

These lines are connected at various vertices. Each
vertex, called an (s,t; n)-vertex, is characterized by
three integers s, t, and n where s, t, (n —s), (n —t) are,
respectively, the numbers of outgoing straight lines,
incoming straight lines, outgoing wavy lines and in-
coming wavy lines that are connected by this vertex.
The number n must be greater or equal to 1 while s
and t can be arbitrary integers, including zero. Each
(ti,v);graph must contain at least one vertex.

To each external straight line we assign a moesero
momentum q; [i=1, 2, ~, (ti+ v) 7. All these momenta
are considered to be distinguishable. Two (ti, v),-graphs
are different only if they have diGerent topological
structures which include the positions of these dis-
tinguishable momenta of the external straight lines.

Corresponding to each (ti,v);graph we assign a term
determined by the following procedures:

(i)"' Associate with each internal line a difFerent

integer i (i=1 ~ ~ .M) and a corresponding nonzero
momentum p;. Associate with each wavy line a zero
momentum.

(ii)"' To each (s,t; n)-vertex we assign a factor

L(n —s)!(n—t)!) '

X(pcl' 'pcsyOy' ' 0
~
Yn

~
poly ' ' pDC&0& 0)y

lines and (n —t) incoming wavy lines. Clearly

L= P(n —t)A(s, t; n),
and

M =g tA. (s,t; n) =g sA(s, t;.n) . (V.156)

To give a general expression for ~, let us de6ne a
partially numbered (0,0),-graph which is obtained from
the numbered (0,0),-graphs by deleting the numbers

.AL, associated with the incoming wavy lines but
retaining the numbers B~ ~ B~ associated with the
(internal) straight lines. We then consider M! per-
mutations of Bj B~ which will generate M t partially
numbered (0,0),-graphs, among which the total number
of partially numbered (0,0);graphs identical with the
original one is de6ned to be the partial symmetry
number S'. It then follows that
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where Pili, ~ ~ yoi, 0, ~ ~ 0 are the momenta associated
with the appropriate incoming (straight and wavy)
lines and pg~, ~ .p|,-„0, ~ ~ 0 are those associated with
the outgoing lines.

(iii)"' Assign a factor s to each internal straight line
and a factor (xzQ)& to each (incoming or outgoing)
wavy line.

(iv)"' Assign a factor

(V.158)

to the entire graph where S' is called the partial sym-
metry egmber defined as follows:

Number the internal lines according to (i)"' and call
the resulting graph a partially numbered (p,v);graph.
Among the 3f! permutations of these M integers the
total number of permutations that yield one particular
partially numbered (p, v);graph is defined to be S'.

The term corresponding to a (y,v),-graph is then
given by

)products of all factors in (ii)'"—(iv)"'j. (V.159)
Pl ' PM

By using (V.146), Rule C', (V.152) and (V.157) it
follows that

APPENDIX E

To prove Theorem 2, we begin with the contracted
graphs. Consider a contracted (p, v)-graph where

(p, v) = (1,1), or (0,2), or (2,0). (V.49)

Such a contracted graph is defined as improper if by
cutting any one of its internal lines open the entire
graph can be separated into two disconnected graphs.
Otherwise, it is called a proper contracted (p, v)-graph.

We then define Q(y), Q;„(y) and Q,„&(y) by

@(y)
—=P (all different proper contracted (1,1)-graphs',

R; (y)—=P Pall different proper contracted (0,2)-graphs j,
-i(P)

=P Lail different proper contracted (2,0)-graphs j,
(V.162)

where each contracted graph contributes a term given
by (V.36). In (V.162) the momenta associated with
the two external lines are both y in the (1,1)-graph and

y, —y in the (0,2)- and (2,0)-graphs.
Lemma 1.—

info* ———»+P Pall difFerent (0,0);graphs'. (V.160)

OR(y) =s+s' P fall difFerent (1,1)-graphs]. (V.161)

OR(y) =m*(y)+m (y)k(y)OR(y)
+m (y)g; (y)OR.„&(y), (V.163)

In an entirely similar way we can express OR(y) as ~ ( ),( )g( )~
sums over different (p,v);graphs.

+m*(y)&'-(y)OR( —P) (V 164)

A primary (p,,v)-graph can be obtained from a
(p, v);graph by deleting all the wavy lines. This cor-
responds to a partial sum over those (p,v);graphs that
diGer owly in the number of wavy lines attached at
various points. Performing such partial sums on (V.160)
and (V.161) we obtain (V.32) and (V.42), respectively.
Furthermore, after these partial sums only the com-
bination Y,, &* occurs.

APPENDIX D

The proof of (V.38) is identical with that given in
Appendix 8 of paper' IV except for replacing the
superscript n by x, k by y, and (e&) by (m, ). (IV.94),
then, becomes exactly (V.38).

To prove (V.39) we notice that (ttto) is, by definition,

oo

I Co*3 'Cexp(») j 2 (& ) ""
N=p

L(ki, 4~ &~*ski, 4),
Q& ~ o egg

where L is defined by (V.3). The above expression is
just the right-hand side of (V.39).

OR,„,(y) =m*(—y)R (—y)OR,„i(y)
+ *(—y)@- (y)OR(y). (V 165)

Proof. (V.43) can be —written as

OR(y) =m*(y)+Lm*(y)l'&(y)+Lm (y) j'
&&+ Lail difFerent improper contracted (1,1)-graphsj.

(V.166)

By cutting one of its internal lines open, each of the
improper graphs in (V.166) can be separated into two
disconnected contracted graphs, one of which contains
the original external incoming line and the other con-
tains the original external outgoing line. Furthermore,
we can always choose the internal line such that after
it is cut open the disconnected graph containing the
original external incoming line is a proper contracted
(p, v)-graph where

(p, v) = (1,1) or (0,2). (V.167)

By summing over these two possibilities for (p, v) and
using the definitions of Q(y) and R'; (y), (V.166)
becomes (V.163). Similarly starting from (V.47) one
can derive (V.164) and (V.165).

By using the same argument but demanding that,
after cutting the internal line of the improper graph in
(V.166) open, the resulting disconnected graph con-
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X(y) =&(y),
X'-(y) =@*-(p),

X i(p) =-i(p).
(V.168)

LR"s are defined in (V.162) and X's are defined in
(V.51).$

Proof. The direct w—ay to prove (V.168) is to express
X(p), X; (y) and X.„i(y) as explicit functions of m*(p)
by substituting (V.43) and (V.47) into (V.51). A com-

g (p) = m*(p) +
lp

IP
I

(p)

m" (p)

(V. I65)
p p P (p')

I

taining the external outgoing line must always be a
proper contracted (li, p)-graph, one obtains

OR(p) =m (p)+m (p)g(p)OR(p)
+~*(p)y..„,(y)OR;. (y). (V.163)'

Similarly, by interchanging the roles of the two external
lines, (V.164) and (V.165) become

OR. (y) =~*(—y)@(—y)OR. (y)
+~*(—p)k;„(p)OR(p), (V.164')

OR -i(p) =~*(p)@(p)OR-i(p)
+~*(p)Q...(p)OR( —y). (V.165)'

These equations (V.163)—(V.165) and (V.163)'-
(V.165)' are illustrated in Fig. 9.

I emma Z.—

parison between these expressions and (V.162) yields
Lemma 2.

Topologically, we may take any proper contracted
(p,,p)-graph where (li, r) satisfies (V.49); and then reduce
it to an irreducible dual (li, ))-graph by replacing,
respectively, part of its internal structure that has the
same structure as that in OR(y) by a single line with
two parallel arrows, part that has the same structure
as OK; (y) by a single line with two arrows pointing
towards each other, etc. It can then be shown that any
such proper contracted (p, p)-graph can be reduced to
a unique irreducible dual (li,p)-graph. Consequently
the sums in (V.162) become identical with the corre-
sponding sums in (V.51).

To show Theorem 2, we notice that (V.53) can be
written as

~(p) =m(p)+m(p) ~(p)&(p) (V 169)
or

&(p) =m(p)+&(p)~(p)m(p) (V 169)'

By using (V.54), (V.169) is just the matrix form of
(V.163)—(V.165) and (V.163)'. Similarly (V.169)' is
the matrix form of (V.163)'—(V.165)' and (V.163).

APPENDIX F

In this Appendix we shall discuss brieBy some miscel-
laneous properties of 5K, BR;, and 5K,„~.

1. Let ag, and aj,t be the annihilation operator and
creation operators of momentum k, 3'. be the Hamil-
tonian operator (in terms of a), and a(,t) and I the total
particle number operator

m=p GgtGg.

= mx(p) +

m" (p)

P

P

"P/ (p)

m" ( p)
(V. I65)

'p -p P;„(p)
We define Og to be the operator

0()*—=LI'(a()ta()+1) j-'(xQ) &t'ps

&& expL —PX—xQ), (V.170)

fin(p) =
Qn(p)

P -P
I

m" (p) + (-p)

(V. I64 )

where I is the gamma function. In terms of these oper-
ators, we can write

g()*=trace/0()*j,

OR(p) = (g() )-' traceLO()*u, aptfs,

OR;, (p) = (g()*)
—' trace(O() (),pa()apta ptas',

P -P
I

+(p)' $ m"(-p)

(V. I 64) and

OR,„t(p)= (g() ) ' traceLa, a,a()ta()tOo $s'. (V.171)

Q,„, (p)

m" (p)

J(
Ip

~%out

m" (-p)
I

I -P
P

m" (p)q „Q(-p)
I

I

P -P

+ (p) i m*(-p)
)

P -P

( V. I 65)

(V. I65)

Fio. 9. Graphica1 representations of (V.163), (V.163)'—(V.165),
(V MS)'. The graphical structures of these boxes are illustrated
in Fig. 4 and Fig. 5.

2. As remarked in reference 6, without eliminating
the (1,1)-vertices in the primary graphs it is also
possible to lead directly from the primary graphs to
the irreducible graphs.

To see this it is easiest to start from (V.53) and from
Figs. 4 and 5, which give the X functions explicitly in
terms of the OR's. The left-hand side of (V.53) does not
contain the vertex Y~, ~ at all. The right-hand side of
(V.53) contains Yi. i only in the term Lm*(y)$ ' and
contains it linearly. Moving this linear term to the
left-hand side means the inclusion of an additional
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diagram in X(y) containing the Yt, t vertex. The re-
sultant equation then reads

where
R'(y) =s '-K '(y) (V.172)

~'(y) =+(y)+ I

0

It can be shown that this is exactly what one obtains
by directly reducing the primary graphs without 6rst
going through the process of partial summation into
contracted graphs.

3. We can also reverse the discussion of the last
subsection by observing that the vertices Y2, 0 and Y0, 2

are contained in (V.53) only on the left-hand side in
two very simple terms corresponding to the simplest
diagram for X;„and that for X,„~ in Fig. 5. Moving
these two terms to the right-hand side of (V.53) and
combining them with m*(y) results in an equation of
the form

~"(y)=I:m"(y)3 '-& '(y), (V.1/3)

It can be shown that this is exactly what one obtains
by first further contracting the contracted graphs
through a partial summation over the (0,2) and (2,0)
vertices, and then performing the reduction operation.

where 0"(y) is the same as Q(y) except that all terms
containing Y0, 2 and Y2, 0 are deleted, and

( s ' —
&y I

Tt. t*l y&
—

& I
To, s

I y, —
y&m" (y) =

I

~ —
&I»

—I IT.o'I
&

s '—
&
—I IT. 'I —y&&

mS 'a=i. (V.175)

Proof. In Figs. 1—0 and 11 we list various examples
to illustrate (V.175). Although (V.175) is fairly self-
evident, like most combinational problems its proof is
somewhat clumsy.

Ke number every arrow of the irreducible dual
(0,0)-graph with M lines by an integer s, where

s=1, 2, ~ (2M).

The result is called a numbered irreducible dual (0,0)-
graph. Let us 6x the position of one of the integers,

Two arrows in an irreducible dual graph are considered
equivalent if the labeling of these two arrows, respec-
tively, as n, P and leaving all other arrows unlabeled
lead to the same topological structure, (which includes
the positions of these two labels), as the labeling of these
two arrows, respectively, as P, rr. To each arrow we
de6ne an egli~alemce elmber

(V.174)

which is the total number of equivalent arrows in-
cluding itself. It is clear that two arrows on the same
line must have the same equivalence number m.

Next, we consider any irreducible dual (0,0)-graph
with symmetry number S. By cutting one of its lines
open one obtains an irreducible (p, v)-graph with sym-
metry number, say, o-.

Let e be the equivalence number of an arrow which
is on the line that is being cut. The following lemma
relates e with the two symmetry numbers S and 0.

Lemma l.—

APPENDIX G

The proof of (V.58) and (V.59) is similar to, but more
complicated than the discussion given in Appendix C
of paper IV.

Let us consider any dual (0,0)-graph. By cutting any
one of the internal lines open but retaining the arrows
of its two ends, we can obtain a dual (p, v)-graph, called
a corresponding (p, v)-graph, where

S fI

if this particular internal line has two parallel arrows;
otherwise,

(p, v) = (0,2) or (2,0),

depending on whether the two arrows are pointing
away from each other or towards each other. Further-
more, if the original dual (0,0)-graph is irreducible,
then the corresponding (p, v)-graph is also an irreducible
dual graph.

Similar to the discussion given in paper IV Lsee Eq.
(IV-103)) there is a relationship between the symmetry
number of any irreducible dual (0,0)-graph and its
corresponding (p, v)-graph. To study such a relationship
we 6rst introduce the de6nition of equivalent arrows.

4

FIG. 10. Examples of symmetry numbers and equivalence
numbers. If e is the equivalence number of an arrow in an irre-
ducible dual (0,0)-graph with symmetry number S, then by
cutting open the line which contains this arrow and assigning a
momentum p to this arrow one obtains a corresponding (vt, v)-
graph with symmetry number 0 =I 'S Lace (V.175)g.
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Lensnsa Z.—
[bg'(xs, m,m;.,m.„,)j(.,)

=Zo X(p)b~(p)+Zo' X'-(p)bOR-3(p)

+P,' X.„,(y)bOR; (p), (V.177)

where Po' extends over the half p-plane. In (V.177)
the variation 85K, 85K;„, and NR, „& are completely
arbitrary provided

bit. (p) =bOR. (-p), (V.178)

S = 8

P

where n = in or out.
Proof. To sho—w (V.177) let us consider, e.g. , the

erst irreducible dual (0,0)-graph in Fig. 10:

(pi, p2, p3 I ~3,3*Ip~, po, p3&OR(p~)OTt(p2)OR'-(p3).
PIP2P3

The functional derivatives of O' [subject to (V.178)$
are given by

68

bOlt (p) OR;, (xs)

Z (p,p,p I
Y . I y,y, p &OR(p )OR;-(p ),

Fro. i i . Further examples of symmetry numbers and
equivalence numbers. and

PIP2

say, A, but consider the (2M—1) ! permutations of the
positions of the other (2M—1) integers. By using the
definitions of equivalence number and symmetry
number it can be shown that among these (2M—1) !
permutations the total number of egwbered irreducible
dual (0,0)-graphs that have identical structures is given

(V.176)

where I is the equivalence number of the arrow which
is associated with the integer

On the other hand, we can evaluate the same number
(V.176) by considering the corresponding (p„~)-graph
which is obtained by cutting open the line that contains
this particular arrow (which has the equivalence
number e), and assign to this arrow a momentum y.
It is easy to see that the number (V.176) is identical
with the symmetry number a of this corresponding

(p, v)-graph. Thus, we And

e 'S= 0.,
which is Lemma
Now in

g ' (xs,m,m;.,m...)
=—g [all diferent irreducible dual (0,0)-graphs j

(V.57)

we can consider Q' to be an explicit functional of OR(p),
OR; (p), OR, ,(p), and the variable (xs), where the
dependence on (xs) is implicitly through the factors
~S,t

NR; (y) OR, (xs)

=
2 2 (p~,p2, p I ~3.3'

I p~, p2, p&OR(p~)OR(p2),
PIP2

where these two expressions are identical with the
corresponding (1,1)-graph and (2,0)-graph of O', as
shown in I ig. 10.

As another example, we consider the second irre-
ducible dual (0,0)-graph in Fig. 10.

&pp IY, ly)& ITo. *ly, y, —y&
P1P2P3

XOR(y2)OR(p2)OR, „3(p3).

The functional derivative of 8 [subject to (V.178)$ is
given by

= Z(p, pal~, i*lp )
bOR (y) OR.„3,(xs)

X( I
'4, 3*Ip, pi, —p2&OR(p, )OR.„,(p2)) (V.179)

and

5$

balZ. „3(p) OR, (xs)

Q &yl p2I +2,1 I y)( l&0,3*Iy~, p2, —p)
Plp2

X~(p~)~(p2)+2 Z (p~, p2 I ~2.~*l —p)
P 1P2

X( I +0,3 I pi, p,p)OR(p, )OR(p,). (V.180)
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Comparing with Fig. 10, one Iinds that (V.179) is
identical with the corresPonding (1,1)-graph of 51 and
(V.180) is equal to the sum of the two corresponding
(0,2)-graphs of S.

In general, let X~ be the total number of lines, each
of which has two parallel arrows, in an irreducible dual
(0,0)-graph. The functional derivative of such a graph
with respect to 85K~,~ is a sum of ) j terms each of which
can be obtained by cutting one of the ) j lines open and
then assigning to both arrows of the opened line a

momentum y. Each term, therefore, is equal to S '0.

times the value of the corresponding (1,1)-graph where

S and 0. are the symmetry numbers of the irreducible
dual (0,0)-graph and its corresponding (1,1)-graph,
respectively. By cutting open, one at a time, these X~

diferent lines one would obtain n such identical terms.

where e is the equivalence number of the arrow which

is on the line that is being opened. By using Lemma 1,
one finds

l any irreducible dual (0,0)-graph] ~

m(p) I OR;„,OR,„i,(xs)

=P fall its different corresponding (1,1)-graphs]. (V.181)

In this irreducible dual (0,0)-graph, let ),2 be the
total number of internal lines that have two arrows
pointing towards each other. The functional derivative
of such a graph with respect to NR; (p) l subject to
(V.1'l8)] is a sum of

2)2 (V.182)

terms, each of which can be obtained by cutting one of
these ) 2 lines open and assigning to these two arrows

momenta p and —p, respectively. The factor 2 in

(V.182) is due to the two ways of assigning p and —p
to these two arrows. Again, if e is the equivalence
number of the arrow of the opened line then every such
term would appear e times in the sum, and each term
is equal to S 'o- times the value of the corresponding

(2,0)-graph whose symmetry number is 0. By using

Lemma 1, one finds

l any irreducible dual (0,0)-graph]
8OR; (p) OR, OR.„,(xz)

Similarly, one finds

=P
l

all its different corresponding (2,0)-graphs]. (V.183)

To prove (V.58), one regards OR and OR' as given by
(V.53). They are expressible in terms of x and z.
Substituting these expressions into (V.59) one considers

Q to be a function of s and (xs),$(x,s,OK,OK') =g, ln{s—'l OR2(p) —OR"(p)]')
—Z. L~ (p)]-'I oR(p) —~*(p)]+0'+&, (V.59) Q (x,s,OR,OK') —=Q (z,xs),

where s and (xs) are treated as independent variables.
By using (V.59), (V.33), and (V.186), one findsQ is regarded as an explicit functional of x, s, OK and

5R', then at constant x and s

P$ (x,s,OR,OR')]...
=2,{x(p)+LoK'(p) —oR"(p)] 'oR(p)

—
l m*(p)]-'}m(p)+ 2 P,'{x'(p)

—
l oR2(p) —oR"(p)]-'*oR'(p))m'(p), (v.185)

8
s—Q(s,xs) =2 Is 'OK(p) —1]+xQ. (V.187)

- (xz)

Furthermore, as z —+ 0 but keeping (xs) =constant

where
f@(s,xs)+xQ] ~ P (e ~)

—'(xsQ)"
n=l

l any irreducible (0,0)-graph] =P Pall its different corresponding (0,2)-graphs]. (V.184)
m.„,(p) OR,OR;„,(xs)

By using (V.181), (V.183), (V.184) and summing over
all irreducible dual (0,0)-graphs, one proves Lemma 2.

Jemmu 3.—If in

m'(p) =m'( —p).

Proof. Lemma 3 is a dire—ct consequence of Lemma
2 and (V.55).

We remark that if

Pg(x, s,OR,OR')]...=O,

then OK and OK satisfy (V.53) and vice versa. (V.186)

x(0, . . .0IT.'lo, " o). (V.188)

By using (V.34) it can be verified readily that info
satisfies the same equations (V.187) and (V.188) as

Q (s,xs). Consequently,

ln go*——Q (s,xz). (V.189)
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The variational principles I (V.61)—(V.63)j follow
directly from (V.186) and (V.189).

APPENDIX H

To prove Theorem 3 it is necessary to discuss some
detailed properties of the (li,v),-graphs introduced in
Appendix C.

We first observe that rules (i)"'—(iv)"' used in deter-
mining (V.159) can be stated in an alternative form:

(i) In each (p, v);graph, assign a different integer j
to every line (internal or external, straight or wavy)
where

i=&)» .

S024
La 3

u=8
I

VI = I2

P -P

0 =4

Vg= I 2

L I 3e g — a
S ul 8

L(L-I)
X—=—

S vl 4

N= m+ls+l;+IJ, +v,

where m, lo, l; are, respectively, the total number of
internal lines, wavy outgoing lines and wavy incoming
lines. Since the total number of the external incoming
lines in a (li,v);graph must be equal to that of the
external outgoing lines, we have

lp+p=l;+v.

Next, assign to each internal line a nonzero mo-
mentum px; (i=1, m) where A; is the integer
associated with that internal line, and to each wavy
line a zero momentum.

(ii)" To each (s,f; e)-vertex we assign a factor

(yoi yo, 0, 0I& Iy» .yD o o)

where (yDi, yiii, 0, 0) and (yoi, yo„0, 0) are,
respectively, the appropriate momenta of the incoming
and outgoing lines connected at this vertex.

(iii) Assign a factor s to each internal line and a
factor (xsQ) & to each wavy line.

(iv)* Assign a factor

(total symmetry number) —'

to the entire (p, v);graph where the total symmetry
number is defined as follows:

Number the (p, v),-graph according to (i), and call
the resulting graph a "corlpletely rilmbered (p, v),-
graph "Two co. mpletely numbered (p, v),-graphs are
different only if they have diGerent topological struc-
tures which include the positions of these E integers.
It is important to remember that the external straight
lines are always considered to be distinguishable from
each other. Among the Et permutations of these 37
integers, the total number of "completely numbered

(p,v),-graphs" identical to any given one is defined to
be the "total symmetry nlmher" of the (p, v),-graph.

The term corresponding to a (p,v),-graph is, then,
given by

Lproduct of all factors in (ii)"—(iv)*j. (V.190)
PA 1 PAs7s

V = l2

L(L-I) Ia
$ w 4

We remark that the differences between (ii)» and (ii)"'
precisely cancels the differences between (iv)" and
(iv)"'. Consequently (V.190) is identical to (V.159).

Some examples of the total symmetry numbers are
given in Fig. 12.

Similar to the discussions given in Appendix E we
classify all (p, v);graphs into two groups, proper and
improper. A (li,v),-graph is called improper if by cutting
any one of its internal lines open the entire graph can
be separated into two disconnected graphs. Otherwise,
it is called a proper (p, v),-graph. It is clear that all
(0,0);graphs are proper.

In terms of these proper (p, v);graphs we can use
(V.162) and (V.168) to express X(y), X; (y), and
X-~(y).

X(y)
=P fall different proper (1,1),-graphsj

—(ylT. *In&,
X; (y)

=P Lail different proper (0,2),-graphsj,

X-~(y)
=P fall different proper (2,0),-graphs J,

(V.191)

where each graph contributes a term given by (V.190).
The presence of —(yIYi, i Iy) in (V.191) is due to the

fact that a (1,1)-vertex is not present in the contracted
(1,1)-graph but the corresponding (1,1;e)-vertices are
present in the (1,1);graphs.

There exists a close relationship between (0,0),-
graphs and proper (p, v).,-graphs where

(ia, v) = (1,1), (0,2), and (2,0).

W a

FIG. 12. Examples of total symmetry numbers for a (0,0) -graph
and its related (v,v),-graphs Lsee (V.196) and (V.197)j. Notice
that jg. thjs example S 'I=X.N.-I x g. &.-1 i yl, ~ —1 1
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Starting from a (0,0) -graph we can generate a set
of proper (1,1),-graphs by changing any one of the
outgoing wavy lines in the (0,0);graph to an external
outgoing straight line associated with momentum p,
and by changing any one of the incoming wavy lines
to an external incoming straight line also associated
with momentum p. The resulting graph is a proper
(1,1),-graph. The totality of all difFerent proper (1,1),-
graphs constructed this way is called the set of all
related proper (1,1),-graphs.

Similarly, we can take any two of the incoming
(outgoing) wavy lines in a (0,0);graph and change
them to two external incoming (outgoing) lines asso-
ciated with momenta p and —p, respectively. The
resulting graph is a proper (0,2),[(2,0),]-graph. The
totality of all different proper (0,2),$(2,0),]-graphs
thus constructed is called the set of all related proper
(0,2),P(2,0),]-graphs.

Lemma 1.—
S 'L=Q I-'—-'Q w

'—-'Qi, wy ' (V.192)

where 2L is the total number of wavy lines in any
(0,0);graph, S is its total symmetry number, I;, v;, wz

are, respectively, the total symmetry number of its ith
related proper (1,1),-graph, the jth related proper
(0,2),-graph and the kth related proper (2,0);graph.
In (V.192) the sum extends to all appropriate related
graphs.

An example of (V.192) is given in Fig. 12.
Proof. From any (—0,0),-graph we can construct

"completely numbered (0,0),-graphs" according to
(i)". From the definition of the "total symmetry
number, "the total number of such different completely
numbered (0,0);graphs is given by

g=X!5 ', (V.193)

where lIt' is the total number of lines (straight or wavy
and internal or external) in the (0,0);graph. From each
of these difFerent "completely numbered (0,0),-graphs"
we can choose an incoming wavy line and an outgoing
wavy line; change both to straight lines; label both
with the momentum p but retain their numbers. The
resulting graph is a "completely numbered proper
(1,1),-graph. " The total number of such different
"completely numbered proper (1,1),-graph" is

L2g =L~r tS-~ (V.194)

where the factor L' represents the diGerent ways to
choose these two wavy lines among the L numbered
incoming wavy lines and the L numbered outgoing
wavy lines. The same set of "completely numbered

(1,1);graphs" can also be constructed by numbering
the related set of proper (1,1),-graphs. By using the
definition of the "total symmetry number" I;, the
number of such different "completely numbered (1,1)-

graphs" is found to be

ItI'p I (V.195)

Equating (V.194) with (V.19S), we find

L2S—1—Q . ~.—1 (V.196)

In an entirely similar way, by considering the related
set of proper (0,2),-graphs and (2,0);graphs it can be
shown that

L(I.—1)S—'=P; i;—'=g w -', (V.197)

where L(I—1) represents the difFerent ways to choose
two among the L appropriate numbered wavy lines
and label them +p and —p, respectively.

Combining (V.196) and (V.197), we prove Lemma 1.
Lemma Z.—If

then

t9

Q '—Iny„a*=0,
8$

(V.198)

s-'= X(p ~ 0)—X'(p ~ 0)+(Oi Ti, i i 0), (V.199)

where X and X' are given by (V.78) and (V.79).
Proof. From (V.160—), we can write

8
Q '—1 Q = —1++(xQ) 'Lf(0,0),-graph], (V.200)

8$

where 2L is the total number of wavy lines in the
(0,0);graph. In (V.200) the sum extends over all
difFerent (0,0);graphs. Throughout this appendix, we
use the notation t (p, i),-graphs] to represent the term
corresponding to the (p, r ),-graph as given by (V.190).

By using (V.190) and (V.196) we Gnd

(xsQ) 'L'$(0 0);graph]
=P; $ith related proper (1,1),-graph]& p,

where the sum extends over all diferent related proper
(1,1) -graphs. The factor (xsQ) ' on the left-hand side
is due to (ii)". Similarly, by using Lemma 1 we find for
any (0,0),-graph that the following identity holds:

(xsQ) 'Lt (0,0),-graph]
=g; $ith related proper (1,1),-graph]& p

—
2 P; Pjth related proper (0,2);graph]~ 0

—ispy, D,'th related proper (2,0),-graph]p 0.

(V.201)

If (V.198) holds, then by substituting (V.201) into
(V.200) and utilizing (V.191) it follows that

s '= X(p ~ 0)—-'X (y —+ 0)—-'X (p ~ 0)
+(0IT...*I0)

Thus, Lemma 2 is proved.
To prove Theorem 3 we notice that (V.199) is
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identical with

On the other hand, from (V.77),

(Lsl*(y)) ' —X(y)+X'(y))s o ——0. (V.202) OR (y) = {E™(y)1 X(y))
—(L~*(y)1 '—X(y)) 'fX'(y)3' (V 204)

Combining (V.202), (V.203), and (V.204), we complete
LOR'(y)/OR(y))=X'(y) f(stt*(y) 1 '—X(y)) ', (V.203) the proof for Theorem 3.
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Calculations of Total Cross Sections for Scattering from Coulomb
Potentials with Exyonential Screening*

G. H. LANE) Awn E. EvERHaar
Physics Deportment, Unsoerssty of Connecticnt, Storrs, Connectscnt

(Received September 10, 1959)

Momentum transfer cross sections and total cross sections are calculated for scattering from the potential
energy function V= (Z&Zso'/r) exp( —r/o). Here the 6rst factor is the Coulomb term and the exponential
factor contains a screening length a. The cross sections are obtained by integrating the differential cross
section over all angles using a classical calculation or a Born approximation calculation according to which-
ever is valid. The validity criteria are discussed as they depend on the de Broglie wavelength of the scattered
particle. In certain cases the Born approximation solution is valid at small angles and the classical solution
is valid at large angles. Graphs and tables are presented showing the results as functions of suitable
parameters.

The momentum transfer cross section is finite in all cases and the total cross section is finite except in the
classical limit. In this limit, however, calculations are presented showing that portion of the total cross
section which arises from scattering through angles greater than a speci6ed small angle.

l. INTRODUCTION

'HE screened Coulomb potential energy function
is often used to describe the interaction between

two colliding atoms. It is useful in an energy range
extending from a few hundred electron volts to several
hundred thousand electron volts. The function under
consideration is

P= (ZtZse'/r) exp( r/a), — (1)

where Zle and Z2e are the nuclear charges of the colliding
atoms and u is a screening length. Differential cross
sections were computed classically for scattering from
this potential energy function in a paper, ' hereinafter
called reference I, and similar calculations which agree
well have been made by Firsov. ' Experimental measure-
ments of diGerential cross section for ion-atom collisions

by Fuls et al.' agree very well with the calculated
values. Evidently one may use the classical calculations
of I with some con6dence to obtain values of impact
parameter and distance of closest approach, as well as

*This work was sponsored by the OfBce of Ordnance Research,
U. S. Army, through the Ordnance Materials Research Once at
WVatertown and the Boston Ordnance District.

t'Now at Franklin and Marshall College, Lancaster, Penn-
sylva'nia.

' E. Everhart, G. Stone, and R. Carbone, Phys. Rev. 99, 1287
(1955).Hereinafter called reference I.

2 O. B. Firsov, J. Exptl. Theoret. Phys. {U.S.S.R.) 34, 447
(1958) tSoviet Phys. JETP 7, 308 (1958)g.

'K. N. Fuls, P. R. Jones, F. P. 7iemba, and E. Fverhart,
Phys. Rev. 107, 704 (1957),

differential cross section at various scattering angles.
It was, therefore, thought desirable to extend the
calculations to obtain certain total scattering cross
sections for this potential.

It has long been recognized that the Coulomb
potential gives rise to an infinite total cross section
both classically and quantum mechanically. The
addition of the exponential screening factor, however,
makes this total cross section 6nite except in the purely
classical limit, as seen in the values to be presented
in Sec. 4 below.

Although the total elastic scattering cross section is
a well-established concept, it is not particularly useful
because it cannot be measured. The reason, of course, is
that extremely gentle collisions make up a large part of
the total cross section, and one cannot experimentally
tell the difference between an unscattered particle and
one which has been scattered through a minute angle.
One way of avoiding this difhculty is to calculate, as
in Sec. 5 below, only that portion of the total cross
section which results from scattering in excess of a
specified angle.

Perhaps a more useful cross section is that for
momentum transfer. This incorporates a 1—cos9 factor
in the integrand, which gives a low weight to the gentle
forward collisions and a proportionally higher weight
to the more violent collisions. The momentum transfer
cross section enters into calculation of diffttsion coef5-


