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observed fact suggests that the strong interaction has
invariance under C and hence under I' if only CI' in-
variance is assumed. Also, the necessity for exchange
antisymmetry in the baryon-antibaryon model of the
boson implies rather simple charge space properties for
the interaction. On this compound model the statement

. that strong interactions conserve strangeness is a
tautology.

The interaction that does not distinguish fermions
from antifermions can be—and presumably is—univer-

sal to both baryons and leptons. It must be weak
enough not to form bound boson states, or free leptons
would not be observed; according to the argument
above it must also contain (1&ps) factors and be
parity-violating. The choice of a charge space vector
form for the interaction, required to avoid revealing
relative leptonness through (tie)sr interactions, implies
2 =CI'= —1 rather than invariance and also a lower
degree of charge symmetry than in the strong inter-
action.
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It is shown that there does not exist a ground state for a system of spin zero bose Gelds coupled only by
local interactions involving three powers of the fields. Thus these interactions alone are not suitable for a
model of interacting fields.

I. INTRODUCTION
' 'T is necessary, if a 6eld theory is to give a consistent
~ - description of physical reality, that there be a state
of lowest energy. If the energy spectrum has no lower
bound, then the system can undergo a "radiative"
collapse. We shall be concerned in this paper with a
group of local interactions of spin zero bose fields that
do not give rise to a state of lowest energy. These are
interactions that involve three powers of the fields, i.e.,
for one field, p, intera, cting with itself, '

H;„,=)t)t y'(x)d'x,

for two fields, P and x,

inverse length. These three interactions are the so-called
"super-renormalizable" ones. '

For each of the interactions given above we shaH
show that the assumption of the existence of a ground
state leads to a contradiction, and hence that these
interactions alone between the fields are not physi-
cally realizable.

II. PROOF OF THE NONEXISTENCE OF
THE GROUND STATE

First consider the case of one scalar 6eld with the
cubic self-interaction (1). The dynamics are described
by a Lagrangian

L,= ', ~d'xPy(x) (a„ao—srts)d (x)—)~y'(x)$,

IJ;„,=) "x(x)y'(x)d'x,
where

8„8&= V' —(8/ct t)',

and for three fields, P, x, and 0,

H;.t——)~ t g(x)8(x)y(x)d'x.

and ns' is taken to be a finite real number which may
be zero. The requirement of invariance of I under
spatial reQection implies that p must be a scalar field.
From I. is derived the form of the energy operator, Po,
for the field

The 6eld operators are taken to be Hermitean and
thus I, must be a real constant, with dimensions of an
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this interaction (1), does not lead to a positive definite energy.
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where
yo(x) = aors(x).

Integrating by parts and introducing the real symmetric

s W. Thirring, Helv. Phys. Acta 26, 33 (1953).
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Condition (9) implies that the coefficient of the term
linear in a(x) vanishes pointwise. Hence

operator

we may write
cu'= —V'+m2,

2(o'Q (x))+3XQ'(x))=0. (14)

Also, Q (x)) and QP(x)) are independent of x, since the
vacuum is an energy-momentum eigenstate, so that

2m'(P)+ 3k(qP) =0. (15)

P'= ', tD-p')'+4tiaPP+X4ti']d'x.

One may also derive the commutation relations

t y'(x),y(x')] =it(x—x'),

9'(*),~'(")]=o= E~(*),~(*')],
LThis result may also be arrived at by taking the
vacuum expectation of the equation of motion derived
from (4).]Thus (13) becomes

2m4~& m~$2). (17)
(U 'P'U) —(P') &0.

Thus the assumption that m2 is finite implies that (qP)
is also finite. )If m'=0, then one infers from (15)
directly that (qP) =0.) Now the positive nature of the
right-hand side of (16), compared with the dominating
odd function a'(x) on the left-hand side establishes the
contradiction. Hence for the case of interaction (1)
there is no ground state.

The reason that no ground state exists is as follows:
Bose fields may be given arbitrarily large excitations,
so that the nonpositive definite cubic term in the energy
operator will, at large field excitations, in general
dominate the positive quadratic terms that are present
from the terms in the energy operator independent of X.

Interactions (2) and (3) are treated similarly. For
two fields coupled together

Also, if U is of the form

U=exp i I d'xa(x)G(x),

where a(x) is a real function, and G(x) is an Hermitean
operator, the requirement that the vacuum energy be
an extremum implies that

~/&a(x) ((U 'P'U)). (*)-=o=o, (9)

where 8/Ba(x) denotes the variational derivative with
respect to the function a(x). This is just the statement
that

(LG,P'])=o.

for x and x' having space-like separation.
The eigenvalues of P' are the possible energy values

of the system. Assume now that there exists a state of 2 dsx (a~~a+gas) &9),~/m~)(~~) dsx am (16)
lowest energy, which we call the vacuum, and denote
by ). Then the vacuum energy is given by (Po).
Furthermore, if Uis a unitary operator, then U'operat- By choosing a(x) arbitrarily small, arbitrarily slowly

ing on the vacuum cannot lead to a state with a still varying, and such that the integrals in (16) exist, we

lower energy expectation value. Thus can conclude that

The commutation relations (7) imply that the
unitary operator L,= ', d'xLy(a„a~ —m')y-+x(a„a~ —p')x —XxqP]. (18)

satis6es

so that

U= exp i d'x'a(x')y'(x'),

9'(),U]=0, L~(*),U]= ()U,

U-'y(x) U=y(x)+ a(x),
y(x) ~ —y(x) (19)

(10)
Again X is real, and nz' and p' are Gnite real constants.
x must be a scalar field, but p may be either scalar or

(11) pseudoscalar, since

provided that t=t'. Since however P' is a constant of
the motion, we may always evaluate P' and the integral
occurring in (10) at the same time. Furthermore, the
commutation relations are still valid if one takes
derivatives in space-like directions, so that

U 'p'(x) U= y'( )+x8'a(x), (k = 1,2,3). (12)

Then for the U in (10) it is easy to calculate that

(U 'P'U) —(P')

d'x(2aco'(y)+ a~'a+3Xa(y')

+3Ãa'(y)+ha') & 0. (13)

is a symmetry of L,.
It follows that

P = 'L(y')'+y+ 'y+-(x')'+xor 'x+Xxy']d'x, (20)

where cv„'= —V'+m', and 40„'=—V'+p'. All com-
mutators at equal times involving one field x and one
field p vanish, and one has (7) obeyed by z and P
individually. Using the same procedure as in the case
of one field, taking now

U=exp 4 ~La(x')qP(x')+b(x')X'(x')]d'x', (21)
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2i '(x)+~(4') =o.

One then arrives at the analog of (17)

(25)

(are 'a+hei„'b+Xba')d'x&~ ——(p') a'd'x. (24)

As in (17), we find
2m2+2) )t2Q2)

Again the right-hand side of (24) is positive, but the
left-hand side may take either sign for appropriate a(x)
and b(x). This contradiction establishes the non-
existence of the ground state for fields coupled by XzqP.

The discussion for three bose fields interacting via
(3), where one field must be scalar and the other two
either both scalar or both pseudoscalar, is strictly
analogous to the above discussions and therefore need
not be given. In this situation, the symmetries

x~ —x, 4~ —4,
X~X 4 ~ —4» t)~ —

l)~ (25)

x~ —x, 4~4,
guarantee the vanishing of expectation values that
occur in

(U 'I"U) (I"), —

such as (x), (x@), etc.

III. DISCUSSION

We have thus shown that if the only interactions
between the bose fields are of total power equal to

one derives

I L2 .&~)+ „.+2f.„(,)+f.„f+u(q)
+2ha(y@)+2hab(g)+Ra'(x)+Lb'']d'x &~ 0. (22)

It follows from (19) that (P)=(yp)=0. Also, taking the
variational derivative of (22) with respect to b(x),
evaluated at a(x) —=b(x) —=0, one has

three in the fields, then one is led to a system in which
there is no ground state. It is easily verified that any
combination of such interactions, or the inclusion of
nonspace-time degrees of freedom in no way alters the
above conclusion.

As we mentioned, there is no ground state due to the
dominance of the cubic term in the energy operator, for
large field excitations. The presence in H;„~ of a positive
definite fourth-power structure in any of the fields, such
as gp' or gp'z' with an arbitrarily small positive coupling
constant g, insures however that there will be a ground
state. This implies that in order for the interactions of
the kind discussed in this paper to be realized physically
for m and E mesons, such positive definite quartic
terms must be included in the interaction Hamiltonian.

The proof given here will not work, of course, for a
Vukawa type interaction since two of the fields occurring
in the interaction are fermi fields which have only
limited excitations. Also, the electromagnetic inter-
action of charged spin zero mesons has an e'A'p' term
in it which essentia11y insures the positive definiteness
of the energy.

Several authors have used cubic boson-boson inter-
actions alone in considering the convergence of the
perturbation expansion of the Smatrix. ' The arguments
presented here are intended to show the inconsistencies
involved in using these interactions alone in a model of
a field theory.

Finally, we note that these arguments may be
extended to the case of an interaction involving the
fourth power of bose fields in which at least one of the
fields occurs to an odd power,
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