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Seven-Dimensional Charge Space

D. C. PZASLEE
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Some implications of a charge space of seven (rotational) dimensions are considered for (I) particle
classiffcation, (II) strong interactions, and (III) weak interactions. The principal conclusions from this
point of view are that (I) all particles except the photon and graviton can be incorporated in 7 dimensional
charge space; lepton conservation must be abandoned, which automatically introduces parity noncon-
servation into P decay; (II) the one boson, two fermion interaction is predominantly pseudovector in form
and induces no mass differences; the Z —h. mass difference arises from interference with a fundamental two
boson, two fermion interaction of lower charge symmetry; the —1V' mass difference has an "intrinsic" basis
and is not due entirely to strong interactions; (III) the weak universal Fermi interaction has signature —1
under time reversal; the strangeness change dS=~j. is associated with 256 independent (in principle)
terms; the rule AI=+& needs further qualification because I=T+U, where T and U are independent
operators.
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' J. Tiomno, Nuovo cimento 6, 69 (1957); here the full "/

dimensional symmetry is not used but decomposed into disjoint
4- and 3-spaces.

~~BARGE space should be ascribed the dimen-~ sionality that affords the most compact descrip-
tion of elementary particles and their interactions. The
present paper examines the case of a rotational space
with seven dimensions. ' Application to observed eGects
is made in a way to maximize the 7 dimensional sym-
metry and thus obtain a system that is simplest with
respect to charge space; this at least provides an ideal
scheme against which to measure any deviations of real
particles. The discussion comprises three parts: particle
classification, strong interactions, and weak interactions.

I. PARTICLE CLASSIFICATION

In this part we attempt to organize particles accord-
ing to their "bare" properties, insofar as these can be
inferred from observable particles. The classification
includes all present particles except the photon and
graviton, which are distinguished as the only ones
having classical rather than quantum wave equations.
These excluded fields supply external calibrations for
the 7 dimensional scheme; specifically, all the bare-
particle expressions below are supposed to be diagonal
in charge and mass.

I. The Baryons
The known baryons can be arranged in a column,

P3 0'3 T3

and associated with the definitions of three independent
Pauli spin operators in charge space, y, e, ~ as shown.
The diagonal charge and mass operators are

tJ=Ss+Ts+Vs, m=M —Std, ,
2S=-,'(1—ps)e, 2T=~, 2U=-', (1+ps)e,

M =1.1 Bev, 6=0.4 Bev.
(2)

The Z—A and smaller mass differences are neglected as
arising from the interactions, but the ™—E mass dif-
ference is regarded as "intrinsic" for two reasons
discussed in later sections: there is a parallel p—e mass
diGerence, for which no explanation in terms of inter-
actions seems possible; and baryon-boson interactions
of the high charge symmetry considered here cannot
cause a —X mass diGerence. '

The total wave function of a baryon is supposed to
be of the form O'X, where X is the usual real space
wave function. This means that X is the same (except
for intrinsic mass variations) for each of the eight
particles in Eq. (1); namely, it has spin s and parity
+ (by definition). The eight varieties of baryon in
Eq. (1) represent the simplest spinor in a f dimensional
charge space, just as X is the simplest spinor in a 5
dimensional (rotational) real space.

Equation (1) suggests that there are no more
hyperons to be found, for the simplest spinor in 7 dimen-

' Another argument for intrinsic —(A,Z)—N mass differences
is that the strangeness selection rule on electromagnetic inter-
action then becomes a simple consequence of gauge invariance.
Write the free Lagrangian as 1.=%'(y„s„+m)+ and introduce the
electromagnetic interaction by 8„—+ 8„—ie gA„, where m and
q are charge space operators. Then the gauge transformation
A„-+A„+B„Qis compensated by 4' -+

exp lie qQ }e only if

Lm, qj=0.
With the intrinsic m assignment of Eq. (2) this is just the con-
dition necessary to eliminate y transitions between Z+ and p,

and Z, ts and e (below). From the present point of view
intrinsic Am are the main feature of "strangeness": they eliminate
p transitions, and the pion metastability of hyperons occurs
because accidentally m, &A/2&mx. A suggestion of intrinsic
mass differences and a certain baryon-lepton analogy has also
been made by Gamba, Marshak, and Okubo, Proc. Natl. Acad.
Sci. (U.S.) 45, 881 (1959).
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sional space has just eight entries, and these are all
filled. Of course, if charge space were really 9 dimen-
sional, the simplest spinor would have 16 components;
or the next higher spinor in 7 dimensional space might
have 24 components. In any case, further hyperons
must appear in multiples of 8, and the most likely
multiple indicated at present is zero.

2. The Bosons

A column of bosons diagonal in charge and mass is

E+
E
E~

y= E'+
%-+

S3 T3
0
0
0

1 02

0 1
0
0 0

U3
1
2
1
2

E'+= EO,

0
0
0

Z~=ZO.

There are no boson operators exactly analogous to y,
e,"!g for the fermions; but the bosons can be classihed
in terms of independent three-vectors S, T, and U that
do possess exact baryon analogs, ' given in Eq. 2 and
discussed further in part II. The charge and mass
operators are

q=Ss+Ts+Us, m=M'+(Ss)'6',
m'=O. & Sev, ~'=&.6aev. (4)

Perturbation treatment of the boson self-energy loop,
averaged over suitable fermion pairs with intrinsic
mass differences according to Eq. (2), always yields an
expression like Eq. (4). One is thus inclined to regard
the E~ difference qualitatively as a refi.ection of the
intrinsic baryon mass difference already assumed,
despite inability to say anything about relative mag-
nitudes because of divergences.

The 7-element column (3) represents a vector in

charge space. As before the total wave function is py,
where y is a real space wave function identical for all
charge states (except for intrinsic mass effects); in

particular, E as well as x must have spin and parity 0 .
Also, there is no room in Eq. (3) for the discovery of
additional bosons of the same class. It is somewhat
easier to find additional bosons of other classes .than in
the baryon case, however: the one-component charge
scalar would be the x~ that has been several times
postulated4 ~ though never observed. If charge space
were 9 dimensional, there would be two more bosons
in the vector P. These two possibilities are the only

s The quantities I„J&,Js' of reference 1 are here T&, (5+V) 8

s,nd (S—i7),, respectively. T. Okabayashi, Progr. Theoret. Phys.
(Kyoto) 21, 867 (1959), uses S3, T3, and U3 directly, denoting
them by ~g, 83 and —,'P.

4 Y. Nambu, Phys. Rev. 106, 136 (1957).
~ A. M. Baldin, Nuovo cimento 8, 569 (1958); Y. Yamaguchi,

Progr. Theoret. Phys. (Kyoto) 19, 622 (1958);S. N. Gupta, Phys.
Rev. 111, 1436, 1698 (1958); W. Krolikowski, Nuclear Phys. 10,
213 (1959).

simple ones, for the tensor of next lowest order in 7
dimensional charge space has 21 components. Mere
complexity argues against the usefulness of any such
construct. The charged vector meson hypothesized' "
as a P decay intermediary has no place in this scheme,
where several charged and neutral components must be
assigned to each boson state in real space.

The absence of the vroo, at erst sight perhaps sur-
prising, is in accord with a simple compound model.
If the charge vector (Ep.) is composed of a baryon-
antibaryon pair, they are presumably in a 'So state to
form a pseudoscalar. The exclusion principle then
requires for the charge scalar x"a 'I'j state, which may
have considerably less "binding" than the 'So state. '
which may have considerably less "binding" than the
If the bosons were elementary particles in the same
sense as the baryons, one would rather expect the
simplest element x" to have the lowest mass.

A feature of both baryons and bosons is the corre-
lation of what might be called their real space and
charge space "statistics. " That is, the spinor 4 is
associated with a spinor X, the tensor p with the tensor
y. This association appears first for 7 dimensional
charge space and is one of the most appealing arguments
against lower dimensionalities.

There are some hints here that bosons in a 7 dimen-
sional scheme are most economically regarded as
secondary rather than primary particles: the absence
of the moo is explainable on a compound model, and the
E~ mass difference may simply reQect the intrinsic
baryon mass difference. Accordingly, we shall exclude
any fundamental boson-boson or boson-lepton inter-
actions.

3. The Leytons

This section attempts to fit the leptons into 7 dimen-
sional charge space, proceeding by analogy with the
above. The association of real and charge space sta-
tistics indicates an eight-element column; one diagonal
in mass and charge is

8
VO

esp
7s~
p+

+ )Oc

,Pgl

s J. Schwinger, Ann. phys. 2, 40/ (1957).
7R. P. Feynman and M. Gell-Mann, Phys. Rev. 109, 193

(1958).
s E. Fermi and C. N. Yang, Phys. Rev. ?6, 1739 (1949);M. A.

Markov, Doklady Akad. Nauk SSSR 101, 54, 449 (1955);
S. Sakata, Progr. Theoret. Phys. (Kyoto) 16, 686 (1956); R. W.
King and D. C. Peaslee, Phys. Rev. 106, 360 (1957); H. P.
Stapp, Phys. Rev. Letters 1, 296 (1958); L. S. Okun, J. Exptl.
Theoret. Phys. U.S.S.R. 34, 469 (1958) Ltranslation: Soviet Phys.
JETP 7, 322 (1958)g.

9 The ~" will then be a vector meson as in reference 4 rather
than a pseudoscalar as in reference 5.
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where ~", X" are the charge conjugates of v', X'. Here
ys is the usual Dirac matrix in real space; it is appended
so that the total wave function of a bare particle can
again be written as P$ with P a constant function in
real space (except for intrinsic mass) for all elements
of P, while at the same time assigning opposite intrinsic
parities to particle and antiparticle. This peculiar
feature of Eq. (5') is dwelt on below; with ps, o.s, rs
assignments as in Eq. (1), the charge and mass for-
mulas are

q=Ss+Tg+ Us, m=Ms —Ssdp,
Mp=0, hp=0. 2 Bev. (6)

The change in sign of mass indicated by Eq. (6') is in
accord with the presence of the ys. The p mass appears
here as intrinsic, and the e mass as resulting from
interactions, although this is a theoretical mystery at
present. "If one assumes dp the same for bare baryons
as for leptons, then 6'/d, s= 2 measures the baryon mass
renormalization, suggesting Mp=0. 6 Bev, for the unre-
normalized baryon mass.

The correspondence between Eqs, (6') and (2)
determines uniquely the p, e positions in Eq. (5).
From this alone a few conclusions can be drawn:

(i) any type of electromagnetic transition between p
and e is forbidden" to all orders by the same strangeness
rule' that prevents 2+ —+ p+y, A-+ ts+y, etc. ; this
holds whether the neutrinos in p ~ e+ v+ v are identical
or not.

(ii) The electrodynamic corrections to the p and e

magnetic moments must both be n/2rr to lowest order";
to higher orders the corrections should differ only in
intrinsic mass eGects.

(iii) An excuse arises for the existence of the 1i meson,
otherwise irritatingly superQuous. There are two posi-
tions for charged particles of each sign in Eq. (5'),
which must be 61led by leptons similar in space-like
character but linearly independent.

This last feature is absent from charge spaces of lower
dimensionality than seven; with higher dimensionality,
it is necessary to add more independent charged leptons,
for which empirical evidence is lacking.

The most striking aspect of Eq. (5') is the necessity
of using both particle and antiparticle in order to fill

up the eight entries in the column. This implies that
somehow or other the distinction between leptons and
antileptons is of less import than that between baryons
and antibaryons. " If the superscript a denotes anti-
particle, then Eqs. (1) and (5') imply

' Katayama, Taketani, and Ferreira, Progr. Theoret. Phys.
(Kyoto) 21, 818 (1959).

n Davis, Roberts, and Zipf, Phys. Rev. Letters 2, 211 (1959);
Herley, Lee, and Bardon, Phys. Rev. Letters 2, 357' (1959).

"Lundy, Sens, Swanson, Telegdi, and Yovanovitch, Phys.
Rev. Letters 1, 38 (1958); Garwin, Hutchinson, Penman, and
Shapiro, Phys. Rev. Letters 2, 516 (1959).

'3 A distinction between baryons and leptons on the basis of
their particle-antiparticle relations has also been suggested by
G. Schremp, Phys. Rev. 113,936 (1959).

(%X): .- (@X)
(nonlinear) (7)(A)::(A)..

(linear)

This suggests as a working hypothesis Lcalled hypothesis
(Z) hereafter) that leptons and antileptons are experi-
mentally indistinguishable, which is their essential
difference from baryons; with corollaries

(i) no measurement can determine "relative lepton-
ness" of two leptons (e.g., e and 1i+ or p,

'
, e and vs

or vsc)

(ii) massless leptons are effectively Majorana neu-
trinos.

Corollary (i) is automatically satisfied by the electro-
magnetic interaction, which is diagonal in all particles
of Eq. (5'). The appendix shows that for P decay this
condition imposes factors (1+ps) between, all lepton
pairs and prohibits mixture of (A, V) with (S, 2', P)
terms in the interaction form without derivatives. For
lepton and antilepton to be indistinguishable in
boson-lepton interactions requires the mass of v' (and
of )t', if it is to play any role in p decay) to vanish
identically and two charged (i.e., massive) leptons not
to interact with a boson. This last precludes boson-
lepton interactions with any rotational invariance in
charge space except about the Qs axis; from the absence
of strong boson-lepton interactions one then infers that
all strong boson-fermion interactions must have a higher
degree of invariance in charge space (part II).

If the masses of s and )' both vanish, it seems
unnecessary to maintain a distinction between the two
neutrinos, so we assume X'—= v' and multiply each by a
normalizing factor 1/v2. Whatever the intrinsic charac-
ter of v', only the Majorana-type combinations
(v'+ v")/&2= v and ps(v '—v')/v2=X occur in P decay,
according to the argument in part III, Eq. (29). This
is the basis for corollary (ii). The only effect of ascribing
Dirac character to v'—which we now do—is to prevent
X from vanishing identically.

A necessary ad hoc step, justified only because it
leads to Eq. (29), a satisfactory starting point for a
universal Fermi interaction, is to exchange the 3rd and
6th entries in Eq. (5 ). This is'effected by the trans-
formation

R=-', (1+osrs)+-,'L(1—oars)+ ps(es —rs)]

+ (p~r+0 +p r a+),
2

which yields
e

vp

vo/V2

use
p+

ysv"/v2
psv"/v2

75p,
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and replaces the operator Ss in Eq. (6') by

/1 —
ps& (os'+rs l (1+rs (1—os)

2 I ( 2 I ( 2 ( 2 ]I+Ps

The second of these terms is self-contradictory in
assigning diferent masses to identical particles in Eq.
(5) and is therefore discarded, leaving the satisfactory
form

(1—ps' (os+rs)
rB=3IIQ—

] / ] )As.&2)i 2)
The procedures of the last paragraph are arbitrary

and tentative: it is not clear that Eq. (5) is unique or
even the most suitable lepton function. In lieu of
anything better, however, we shall use it in the universal
Fermi interaction of part III.

Whatever the inadequacies of hypothesis (Z), it is
at least satisfying that charge space considerations
should yield a baryon-lepton distinction. Otherwise one
would have two equal families of fermions in charge
space and no reason to suppose that the roster was
complete. As it is, however, there exists one family
each of full-bodied and eviscerated fermions; and the
principle of distinction between them cannot generate
any new families of fermions or bosons.

If hypothesis (Z) is correct, one should explain why
lepton conservation seems to work so well for P-decay
processes. As illustrated in the appendix, this is a result
of the (1&ps) factors in the interaction: they produce
a 100% v polarization that makes all simple P-processes
go 4ss if they satisfied lepton conservation with a
2-component neutrino. Actually, we here deny lepton
conservation, and later discussion will also deny any
physical significance to the 2-component neutrino,
which appears as an algebraic accident of the four-
fermion interaction.

II. STRONG INTERACTIONS

The absence of strong boson-lepton interactions,
which would necessarily be charge asymmetric, suggests
that strong boson-baryon interactions be given maxi-
mum symmetry in 7 dimensional charge space. As in
the lepton case, charge space considerations imply some
restriction on the real space form of the interactions.
The sections below discuss the charge rotation operators
for fermions and bosons and the interaction forms
between two baryons and one or two bosons. The real
space wave functions are henceforth absorbed into 0'
and p, which are now subject to both real and charge
space operators, distinguished by respective Greek and
Roman subscripts.

I. Fermion Charge Rotations

of y, 43, ~ associated with spinor (1) the quantities FA,

I i= p&0'r& rs= psOip IAB+rBA = 2OABp

I'2= p~0.2,

~3=pl&3)

I'4= p2,

I 6=p%2p

I 7 p303p

I'4334sss = (i) .

This set of Fz is by no means unique: an 8-fold vari-
ation is obtainable by transformations

1A'=R'I'A(E') '

R = (R ) '=-,'(1+ps+os —
p,sos),

& = (Z ) '=3-(1+ps+rs psrs—),
E'= (E') '=-,'(1+os+rs —o.srs).

(9)

The F& obtainable in this way are shown in Table I.
Changing the relative signs of the diGerent terms com-
prising E in Eq. (9) leads only to variations in sign
among the j. & of Table I, and not to any new forms;
it is sufFicient to consider only the transformations (9).
In fact, all the forms of Table I correspond simply to
relative sign changes of some components of Eq. (1),
as seen by considering E%'; and since there are no
interference measurements for detecting such changes,
all columns in Table I are physically equivalent. '4 We
shall therefore use representation (8) throughout for
the I'g.

There are 21 rotation operators,

ZA B——(I'„B I'BA)/2i—, (10)

TABLE I. Independent forms of Fz. Note the uniformity of r, .

A j. A FA* I. Atl

1 P101
2 P1(F2
3 P103
4 P2
5 P3T1
6 P372
7 P3T3

P2O'2

P2&1

P1
P2O'3

P3T1
P3T2
P3T3

P lO 1T3
P1O 2T3

P1&3T3
P2T3
T1

T2

P3T3

PIO IT3
PIO'2T3

PIO3
P2
P3T1&3
P3T2&3
P3T3

P2O 2T3—P2&1T3
P1T3
P2O'3T3

Tl
T2

P3T3

P2&2T3—P2O'1T3

P1
P&3
P3T1O3
P3T20'3

P3T3

PlO 1

PIO'2

PIO3T3
P2T3
TIO'3

T2O'3

P3T3

P2O'2—P2O'1

P1T3
P2O'3T3

TIO3
T2O3

P3T3

corresponding to the full set of 7 dimensional rotations.
It is convenient to express nine of these operators as
three commuting 3-vectors:

S3 4 (Zis 234) and cyclic,

Us 4 (Zis+Z34) and CyCliC,

~3 g~56p ~2 g~75y ~1 2~67'

with eigenvalues (0, —,') for S and U', —', for T. The
operators S, T, U are all that remain valid upon a
breakdown of the 7 dimensional symmetry into disjoint
4 dimensional and 3 dimensional spaces associated,
respectively, with (S, U) and T. Even if this breakdown
is not assumed, several physical quantities can be

To exhibit 7 dimensional rotational properties, a "phe author is indebted to M. T. paughn for c/arifying this
Dirac-type formalism is convenient. Define in terms point.
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expressed in terms of S, T, U. The strangeness is

S=2S3—X,

where %=baryon number; and the charge vector

(12)

2. Boson Charge Rotations

An elementary procedure for the bosons is to form
Kemmer-type matrices, " BA=s(1'A+I'A'), where I'A

and F~' are independent. This 64-rowed representation
is reducible, containing representations of 1, 7, 21, and
35 rows. The 7-rowed BA (A=1 to 6) have a simple
representation exactly analogous to that of the usual"
5-rowed P„(zi=l to 4); the corresponding column p
consists simply of the real elements pA (A=1 to 7)
where

(2)
—'*Qraz4z)=K+, (2) l(PsWzQs)=zr,

(16)
(2)

—**(ysa~4)=E'+,

The charge rotation operators now follow the usual
definition" for Kemmer matrices,

Q= S+T+U, (13)

has the charge number as its third component, g=Qs.
The component Qz of the charge vector figures in

"antiparticulation, "
+'=A+= (—1)'~e' omC4', (14)

where J is the particle spin and C is the real space charge
conjugation operator. " A well-known feature of 2 is
that

A (I'BO)A '=a (I'BO), (15)

where 0 is a real space operator and the signature is
—for O=SAI', + for 0=TV.

3. Two Fermion, One Boson Interaction

The simplest interaction form is a complete scalar
in charge space,

GB'I'A (0@A)@, (2o)

where 0 is some real space operator. Equation (20)
implies complete symmetry among all x- and E-baryon
interactions. " If 0 is the usual pseudoscalar operator,
one must attribute the observed order-of-magnitude
difference in G ' and G~' to renormalization eGects.
There are two objections to this: in a highly symmetric
scheme there is no obvious source of such a large
difference in vertex renormalizations; and as discussed
in part III, the weak decay interactions suggest that
the vertex renormalization is small in absolute mag-
nitude, substantially less than a factor 2. The dominant
part of Eq. (20) must therefore be

OQA zysy„pA„)
——pA„——(t)„4A)/lcA,

where l~:~ is the observed rest mass of the meson. This
normalizing factor appears quite naturally if one uses
linearized (i.e., Kemmer) equations in real space for
the boson wave functions: then the five quantities, @,
g„all appear on an equal footing, so that (21) is the
exact I'V analog of the usual PS interaction

O'4 A =ys4A ~ (21')

remark applies not only to boson decays like K —+ 2z
but also to hyperon decays. The example of a weak
interaction assembled in part III has in fact no par-
ticular connection with AI= ~, although it gives many
of the same results.

For the bosons, antiparticulation is particularly
simple,

(19)

Of course it is possible to have some admixture of (21')
with (21); the present exploratory discussion will
employ only Eq. (21), however.

A diagram" of Eq. (20) is shown in Fig. 1. Such a
diagram may be useful in describing higher spinors in
7 dimensional space." For example, the J=7= —,

'
resonance observed in pion-nucleon scattering must
have some generalization in going from 3 to 7 dimen-
sional charge space. The appropriate diagram is
constructed by placing an additional cube on each face
of the cube in Fig. 1, and then removing the central
cube. This structure contains 48 corners or elements and
is the next simplest spinor to Eq. (1). Of these 48
elements, 16 represent J= 2 resonances in x —S, e-
m —A. and m —Z scattering; the others represent possible

One can again de6ne quantities S, T, U by Eq. (11)
with the inclusion of an extra factor 2 throughout, as is
usual in going from the spin —,

' to spin 1 case; the
assignments resulting from Eqs. (16) and (17) are those
given in Eq. (3). It is not possible to work backwards
from S, T, U to a quantity like the fermion 9, although
e and ~ may be obtained.

An important feature of assignment (3) is that the
isotopic spin

I= T+U (18)

is composed of two parts T and U that serve, respec-
tively, for pions and kaons. Since these parts are inde-
pendent, no simple rule like AI=2 is sufhcient to
describe weak, strangeness-violating decays; one must
specify in detail what happens to T and U. This

'VThis form with Eq. (21') is suggested by R. E. Behrends,
Nuovo cimento 11, 424 (1959), along with an alternate form for
baryons of different parity in order to explain the mass differences
along the lines of reference 6; see H. Katsumori and K. Shimoura,
Progr. Theoret. Phys. (Kyoto) 20, 578 (1959).

"N. Dallaporta, Nuovo cimento 7, 200 (1958).
'9Thanks are expressed to Professor H. A. Jahn for helpful

remarks on this subject.

'~A is a straightforward extension of a similar operator long
used in pion-nucleon considerations: A. Pais and R. Jost, Phys.
Rev. 87, 871 (1952); L. Michel, Nuovo cimento 10, 319 (1953).

"N. Kemmer, Proc. Roy. Soc. (London) 173, 91 (1939).

+AB (BAB BBA)/zq A)B= 1 to 6)
(17)

+A7 B'A7/9, zzlr =rltsz4ss, rlA 2BA' 1. —— —
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J=-,'+ resonances in E-baryon scattering. Whether
these latter resonances actually appear is a moot
question and would require much more detailed inves-
tigation than attempted here.

lg ——Fg. (23)

Invariance under Q and S, is suflicient to determine
the E~ except for two coefficients:

Ei ~27+~68 ~54' Es 48(~28+~14) f~67)

E2 ~35+~71 ~64) E6 &(~31+~24) b~75)

E3 ~16+~52 ~74) E7 48(~12+~34) ~~56 ~

E4 ~51+~62+~78)

(24)

One way of defining the coeKcients a, b is to introduce
an operator that behaves under Q like a 3 dimensional
tensor of second rank,

4. Two Fermion, Two Boson Interactions

Although interaction (20) amplifies any intrinsic
mass differences that may exist, it does not originate
any, in particular the Z—h. mass difference. Moreover,
Eq. (20) entirely forbids" the reactions K +p —& Ks

+n, sr++ p —+ K++X+ and imposes experimentally
violated restrictions on other production processes. "
These difhculties can be removed by introducing a
second basic interaction,

(Gs/M) (O'IAy„iI. ) (CHEAP„), (22)

where I~, E~ are charge space operators and &=1.1
Bev is a normalizing mass. To yield a Z—A mass dif-
ference, Eq. (22) must not be invariant under all 21
operators of 7 dimensional rotations; but to show
charge independence and strangeness conservation, it
must be invariant under at least Q and Ss. A systematic
way of obtaining such a form is the following: arrange
the 21 Z~~ in seven linear combinations of three each
and call these E~, while setting

of Eq. (22) according to Eqs. (24) and (24a):

(E,~6E2)/~2 ~ ~L~'K- —~-Ks~i~-K47»
Es ~ $m=K+ 7—r+K +—iir'K47„,
E4 ~ 6T—7r K+-/7r+K +7r'K87„, (26)

(Es+iE6)/v2 ~ &pKsK 7r'—7r &iK4K 7„,
E, ~(K K-+ ~ ~++iK~87„,

t ++7 =O'A4'Bs 484'As

Here the charged mesons are all destruction operators.
An approximate magnitude for G2 may be inferred

from analysis of s-wave x-nucleon scattering, "
G2/47r =0.3 &G12/47r =0.08. (27)

Of course the magnitude of G2 depends on the value
assumed for the normalizing mass M; the choice
3f=1.1 Bev corresponds to the cutoff energy in the
treatment of x-nucleon scattering with I'V coupling.
In any case, it seems that G2 and G&' have the same
order of magnitude, so that (22) and (20) could con-
tribute comparably to strange particle production.
Evaluation shows that (22) contributes directly to
7r++p —+K++X+ and that (22) and (20) together can
give general agreement with other production proc-
esses."A Z—A mass difference arises from interference
between (20) and (22), though not for either interaction
separately.

Of course Eq. (22) opens a Pandora's box: one can
equally well assume independent, basic interactions of
two fermions with 3, 4, ~ ~ 78 ~ ~ bosons; and Eq. (27)
gives no assurance of decreasing G„with increasing m.

Terms higher than G2 will not be considered here; the
higher terms presumably show at least as much rota-

Vil 8L~15 2 (~26+~37)7t

V22 8+26 2 (~15+~87)7&

V33 3 +87 2 (~15++26)7y

V12 V21 ~16++25)

V23 V82 ~27 ~36y (23)

Vsi= Vis=&85+&17

Equation (22) is invariant under V;; (for bosons, —,'V;;
for fermions) if

(24a)

Whatever the physical meaning of V;;, it is satisfactory
that Eq. (22) should be invariant under 9 charge
rotation operators, which is the number associated with
the breakdown of 7 dimensional symmetry into disjoint
4 dimensional plus 3 dimensional.

It may be useful to write out the second factor pEAg„

'0It also forbids E +p —+E++™but allows E++p ~ E™
+~t)

'" A. Pais, Phys. Rev. 110,574 (1958).See also Feinberg, Kabir,
and Weinberg, Phys. Rev. Letters 8, 527 (1959).

FIG. 1. The symmetric strong interaction (20). The corners of
the cube are baryons, the connecting links are E and 7i- mesons
appropriate to the charge and strangeness change.

"Drell, Friedman, and Zachariasen, Phys. Rev. 104, 236
(1956); A. Klein and B. H. McCormick, Progr. Theoret. Phys.
(Kyoto) 20, 876 (1958).
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tional invariance as Eq. (22) and are also invariant
under C and A.

III. THE WEAK INTERACTION

This section attempts to follow the general ideas of
7 dimensional charge space in constructing a universal
Fermi interaction. We get only as far as showing how
this can generally be done and exhibiting a couple of
examples; it seems premature to propose a detailed
interaction form on the basis of presently available
data. First order perturbation theory is used through-
out.

I. Introduction

The four-fermion interaction is taken as

g „c~{%'P~y„(1+o~yo)%'}{%P~'y„(1+e„'yo)4}, (28)

where the + are baryon functions of both charge and
real space, the I'g are charge space operators, and c~
are coefficients. According to the appendix this form

by itself does not assure baryon conservation, so we
must additionally assume both 0' functions in a single
bracket to have the same baryon number; with a
complete set of I'z there is no loss of generality in
taking all four @ in Eq. (28) to have the same baryon
number. It is also possible to arrange things so that
lepton interactions are described by pairwise sub-
stitution of f for + in either bracket but not by sub-
stitution for one 0 in each bracket, which might violate
baryon conservation. This substitution must employ a
form of P invariant under antiparticulation; for Eq. (28)
can be formally rewritten in terms of 4' with appro-
priately transformed I'&, and according to hypothesis
(Z) there can be no distinction between putting 4 ~ P
in the original form of Eq. (28) and 4' —&f in the
transformed (28). This requirement is satisfied by the
rule

(29)

using Eq. (5) for P and the A appropriate to Eq. (8).
The quantities

o~+„)/~2oX yo(„o~ „o)/V2 (30

are linearly independent; in what follows they will be
treated as orthogonal Majorana neutrinos. "

Equation (29) guarantees maximum polarization in
the observed sense for all lepton processes; this polari-
zation results not from two-component neutrinos,

"Dual neutrinos also appear in A. Salam and J. C. Ward,
Nnovo cimento 11, 568 (1959).

however, but from electively "two-component" elec-
trons and p, mesonsl This simply illustrates that the
two-component neutrino —or two-component lepton in
general —is merely a mathematical convenience and has
no special physical significance.

The choice of p factors for P and P' in Eq. (28) can
be made in two nonequivalent ways: either (P,P')

(pt, po) or (1,po), or P (1,po) and P' (pi, po). The
second form is necessary if Eq. (28) is to account for the
pion decay of hyperons; but there is no evidence against
including the first as well; we provisionally omit it for
simplicity. Then in terms of strangeness, the I" factor
induces 8S=&1, the P factor AS=0 (if we specifically
choose forms to exclude the hS= ~2 that is also allowed
in general for P). Then all weak decay processes involve
exactly hS= &1:in ordinary P decay the leptons carry
5S=~1, in E—p, decay the leptons carry AS =0. Which
process one describes depends on which bracket in Kq.
(28) undergoes 4 —& f+; substitution of both brackets
leads to p —e decay.

The factors o and ~ in I' and I" are associated with
electric charge conservation, which implies that Eq.
(28) is a scalar, 3-component of a vector, or 33-com-
ponent of a tensor under the rotation operator Q. These
three possibilities have alternating behavior under time
reversal, which in the present scheme is equivalent to
transposition of the charge space operators: the scalar
is of course invariant, the 3-component of a vector cross
product has —1 signature, and the tensor 33-component
has signature +1. Since a uniform signature is required
for the observed distinction between 0' and 8', the poss-
ibilities separate into two nonmixing groups —vector, or
scalar plus tensor. The charge vector has the attractive
feature that each bracket in Eq. (28) contains one
charged and one neutral particle, as required for leptons
(appendix). Adopting the vector form, we write

H(P) = zg g~ c~f(+P~+yo(1+:xylo)@}
X{+P~' V„(1+e~')o)+}
—{O'Pg 7„(1+egpo)+}

X{~P."v.(1+"'~)+}], (»)
where the second term is the Hermitian conjugate of
the erst. Here the superscripts & indicate that the
charge space operators contain factors o.+ or o+ (and in
the case of P' a factor p+ or p as well), to which
respective factors v3, 03 may be adjoined. The relation
II(P)~= II(P) does not c—ontradict the usual tests of
time-reversal invariance in P decay, which would only
reveal phase diGerences between diferent coefficients
in Eq. (31) but can never show the presence of a
constant multiplying phase factor i. This choice implies
that in the present scheme E3=0' —& 2m, while E4——0';
thus (Ei, E&, Eo) is the 3-vector analogy to (ort, oro, ohio).

The form (31) precludes a number of unobserved
processes, like p, —+3@, p, +1V —+E+e, Eo —+m'+y+e,
IC+ ~ or++@+i; all but the last of these would reveal
"relative leptonness" of p and e.
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Any weak interactions involving bosons are assumed
to occur entirely through interaction (31) with the
mediation of strong interactions'4" like (20) and (22).
The P-decay bosonss'r is specifically excluded: the
general Qavor of part I is that bosons are secondary
particles, so that an elementary four-particle inter-
action should involve only fermions; and the absence"
of p, —+ e+y provides some experimental evidence
against the P-decay boson. "The principle of conserved
currents in P-decay' is not in accord with the absence
of primary boson-lepton interactions, nor is it especially
indicated for Eq. (31), where it would seem to imply
P+=Q+. In the detailed discussion below it appears
unlikely that present data can be fit with so simple a
choice for P; for example, the decay —+ e +i+re
must then proceed with the same strength as ordinary

P decay.
Decay processes like ~ 1V+n are completely

forbidden to first order by Eq. (31). The pion is asso-
ciated with the P-factor of (31) through a baryon-
antibaryon loop, so that the real baryons are connected
by an operator I"which must have strangeness change
AS= ~i. This is then the selection rule for weak pion
emission.

2. Formulation

Present fragmentary evidence suggests that matrix
elements for e and p, are of equal magnitude in lepton
decay of heavy particles. An arrangement suitable to
express this condition is

&,U~; ) =I (=-'=--), +j(~ ~");3
+&L(p&). '+j(~' ~ ).'3,

~.(P; ) =L( =--), +j(~'~'-); 3
+&I.(p™0);+j(~~~-).3,

&.'U&; ) =L(=--~ ), +j(=-'~'); 3 (32)
+~L(~'-p) -+j(~-~) 3,

J3,'(j & e) =I:(= ~~).'+j(n~+). 'j
+&L(~ p), '+j(~='),'7,

(pl)'= {iJrry„(1+eys)pe}, etc.

Here A, 8 are operators of I' type, 2', 8' are I" type,
so that Eq. (31) can be written symbolically as

H(P) =sgZ{P„(jk; e)P,'(j'k'; e') —H.c.}, (33)

with P, P' taken from Eq. (32). This form shows that
EI(P) contains 256 independent terms. Substitution of

Eq. (29) yields

p, (j+;-)-I:().-);+j(--);j=L,(j),
P.'(j'+ —) ~ L(—~ ~)e +i'(e ))e 3=I'(i') (34)

I', I"—+ 0 otherwise.

Terms with ic+, e+ follow from Eq. (34) by charge con-

jugation. The requirement for p, , e equivalence is now
that all P(j+; —) terms in H(P) have only one sign
of j, and that all P'(j '+; —) terms have only one sign
of j'. This eliminates 60 of the original 256 terms in
Eq. (33), a not very serious restriction.

According to Eqs. (33), (34), four-lepton (i.e., two-

neutrino) interactions must be proportional to

H() v) =igLL„(j)I.,'(j') —H.c.f
=sgI ()Iic )„(p,—i)„—+jj'(e-X)„-(ie-)„——H.c.

+j(i e-)„-(p-i)„—+j'() ic
—

)„-(e-X)„-—H.c.]
=sgL{() ). —( )). }{(~ ). —jj'(e e ). }

+{j'()~).—j(»). } (»)
X{(e p ) —(p e ). }j

=egL2(»), {(7 1 ). —jj'(e e ). }
+ {j(m)„s—j ())t)„s}{(e-I-)„-—(p-e-)„-}],

with (Xv)„=P,y„f„, (vv)„s iJ,y„yean„.
——Here the second

form follows from the erst by Fierz exchange, and the
third results from using the Majorana properties of the
neutrinos. The last line of H(Xi) gives exactly the same
measurable features for ic—e decay (lifetime, angular
distribution, electron polarization) as obtained from a
conventional form with a single Dirac neutrino and

coupling constant g. The previous line accounts for
neutrino-electron (or p, meson) scattering; on the
present scheme it is actually an exchange process
whereby one type of neutrino is converted into the
other, thus preserving the rule AS=~1 for all weak
interactions.

(a)

(b)

'4 N. Dallaporta, Nuovo cimento 1, 962 (1953); G. Costa and
N. Dallaporta, Nuovo cimento 2, 519 (1955).

'~ M. Gell-Mann and A. H. Rosenfeld, Amnla/ Review of
NNclear Science (Annual Reviews, Inc. , Palo Alto, 1957), Vol. 1,
p. 407.

se E. R. Caianiello, Phys. Rev. 81, 625 (1950); Y. Tanikawa,
Phys. Rev. 108, 1615 (1957).

'~ G. Feinberg, Phys. Rev. 110, 1482 (1958).
S. S. Gershtein and J. B.Zeldovich, J. Exptl. Theoret. Phys.

U.S.S.R. 29, 698 (1955) Ltranslation: Societ Phys. JETP 2, 576
(1957)j. I'"xo. 2. Diagrams for weak pion decay of hyperons.
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TABLE II. Charge space factors for weak pion emission.

Term in H(P) Corresponding ZANAPA' in H(~), suppressing p and undex y

e[A(jk; e}A'(j'k', e') —H c ]= —&2[(1+j) (1—k)+js(e, —e'))[A'(jj', kk'; —e') —H c ]—B(«'){(jj'; e')[X(jj', —kk') —H c ]
e[A(jk; s)B'(j',k'; e') —H c]= —N(1+j)(1—k)[B(jj', —kk'; e') —

H c )—S(ee'){(jj'+kk')[N(jj', —e') —H c]
+(jk'+ j'k') $31(jj', —e') —H.c.)}

e[B(jk; 6)A'(j'k'; e') —Hc ]= v2B(e, —e'){ j[B—'(jj ', —kk'; e') —H c )+k'[B'(jj', —kk'; —e') —H c ]}
+S(ee'){(1+jj'kk')[N(jj'; e') —H c ]+(jk'+j'k)[3E(jj'; —e') —H c )}

e[B(jk; e)B'(j 'k'; e') —Hc)= @25(e, —e')k'[A'(jj', kk', ——e') H —c ) S(«—')kk'{ (jj ',e')[X(jj ',kk') —Hc)
Here X(jk)=[(Z'+"")+—j(Z'+ ) )+k[j(i'' )+—(vtZ™)),

kE(ie) = (P~')'+j(~= ) '

N(je) =(.~") +j(~ =-')-
S («') =[(e—e')/2)'
{.(j ) =-:[(1+j)+(1—j))

For baryon decays it is necessary to combine H(P)
with the pion part of strong interaction (20) via a
baryon loop as in Fig. 2. In this diagram the two
dumbells with umbilical connection (for free momentum
transfer in a local four-field interaction) represent
H(P); diagram (u) involves Tr/I'DP( jk; e)] with
D=S, 6, 7, which vanishes unless P=A(+ —;e);
diagrams (b) and (c) comprise terms in (I'~PP'+PP'I'~);
and the diagram conjugate to (a) would involve
Tr LI'nP']—=0. The kinematic factors associated with
these diagrams are such that diagram (tt) yields a form

H(zr) =zgGiJo(~/2&)' QA e~N~(zr)(PAs@s H c )1
(36)

where Js(M/2zr)' is a divergent integral with charac-
teristic mass M=1.1 Bev, and N~(zr) are coeKcients
associated with the charge space factors just mentioned.
The charge subscripts on $„=ct„&/ztz is dropped for
simplicity, as it will be obvious from P . Diagrams (b)
and (c) yield kinematical factors identical to first order
in perturbation theory with (36), provided that e= e'.

If ~= —~', these diagrams yield instead a leading term
(using perturbation theory with PV coupling for the
pion) proportional to

zgGi(ztz /M) Jo(M/2w)' PL(4'(1&ps)%')P —H.c.]. (37)

We take this term to be of order (ttz,/&= 15%relative
to (36) and omit it entirely, since it is of the same order
as neglected vertex corrections from strong interac-
tions; these vertex corrections appear to be of order
20% in the comparison of tt —e with nuclear P decay.
On this lowest-order basis the charge space factors in
Eq. (36) corresponding to Fig. 2 have been computed
in Table II.

Diagram 2(a) also serves for m. —tt(rr —e) decay. On
substitution (34) one has

H(zr2)=zgsGiJs(M/2zr)'N(zr2)(L„'(j')p„— H.c.) (38)
=N (zr2) h(zr2).

The loop integral Jo is supposed the same as in Eq.
(36). N (zr2) is a numerical factor depending on
Zc~ Tr )IHIP~]. Values of N(~2) and similar factors
are presented for individual II(P) terms in Table III.

The conjugate diagram to 2 (a) would describe
E—tt(E—e) decay:

H(E2) =zgGiJs(M/2ir)'N(E2) fL„(j)p,—H.c.) (39)
=N (E2)h(E2),

where $„=8„$~/~~ with A =1, 2.
For three-body leptonic decay the situation is more

complicated: even with neglect of vertex corrections,
E(3) decay can be effected by interaction (20) acting
twice t Fig. 3(a)] or interaction (22) acting once /Fig.
3(b)]. No arguments appear for selecting one of these
over the other; although (3b) leads to a quadratic and
(3a) only to a logarithmic divergence in perturbation
theory, the gauge condition for photon propagation
assigns to both the same order of magnitude in units
of M'. These divergences make uncertain the kinematic
factors in the "effective Hamiltonian" of E(3) decay.
I'or simplicity we assume a form (@E'@„)for the boson
functions, as in Eq. (22). This is unlikely to be correct
in detail but will permit a survey of the charge space
factors and perhaps some order-of-magnitude com-
parisons in decay rates. Accordingly,

M
H(E3) =ig [GisJiN(E31)+GsJsN(E32)]

2Ã 2( )
XL(w'E+)„L„(j)—H.c.] (40)

=N(E31)h(k31)+N(E32)h(32),

TABLE III. Charge space coeKcients for leptons.

Term in H(P) Corresponding lepton term

A (jk; e)A'(j'k'; e') tt'Ei(hv)+t[vt&+k'zt(j 'e'; j))
+t'[~.+kp(; j))-

A (jk; e)B'(j'k'; e') tt'HP. v)+t[N3+ j'iv(j k', e'; j)]
+t'$ns+kP(e; j))

B(jk; e)A'(j'k'; e') tt'H(hv)+t[N&+k'zt(j 'v.';j ))+t'v(ke; j')
B(jk; e)B'(j'k'; e') tt'H(Xv)+tgna+j'w(j'k', e',j ))+t'e(kv. ; j')
where t= z'(1+k)(1—e) and likewise for t'; and

I&——V2 (1 j') (j—k') e'h (X2) —v2 (1 j') (1+—k') h(X31)—
—&2 (1+j') (1+k') [h (IC32) —h (tt'32) —h (0'32)),

tzs=vZ(1+ j) (1—k)eh(v2) —v2(1+j}(1+k)h(v31)
+%2(1—j) (1+k)h(v32),

vt —&2(1+k')[=(1—j')h (0'31)+ (1+j')h (8'31)).
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TAsrE IV. Parameters of H(Es).

&NgPz' in &(~)

V2(A'(++; r') —H.c.g
Litf (—")+X(—")—H.c.g
v2LA'( —+; s') —H.c.g
@2''(—+; e') —H.c.j
L3II (—e') —X(—e') —H.c.)
LX(+—) —H.c.g

0
0

8[(E++E )s']„
—8E(~++~-)E,j„

8Ls'Egg,
8t E+s +E s.+g„

8t (s-++s )Es+(E++E' )ssj„
8LE+~-+E-~+ ~'E, j,

0
0
0
0

a The first entry in this column contains an additiona1 term 8it (~+ —~ }K4j„which vanishes identically on the necessary symmetrization between th
pions.

4

where the notation (a X+)s follows" Eq. (26), and the
factors E are given in Table III. J~ and J2 are dimen-
sionless divergences presumably of the same order as
Jp and assumed to have negligible dependence on
kinematic factors, The corresponding form for leptonic
decay of 0', 8' is

venient to de6ne

P(e' j)=igL(P~). 'L,'(j)—H c.],
N(ie j)=igfL~(~ ~),'+(~' P) ]L,(j)—H.c.),

f D ) '+i(P="') ']I '( ') —H ),
~(&', j)=igfL(.~ );+i(~~P);]I-,(j)-H.c.).

(43)

By shifting the loops in Fig. 3 to the left side as in
Fig. 2(a), one has a diagram suitable for mrs decay,
a.+~ m'+@+(e+)+i, where p emission or absorption
can occur only with virtual pions. The corresponding
interaction is

H(s.3)=i Lg3E/(2 r)r]LGtsJiX(s31)+GsJsX(~32)]
XL( ' -)„L„'(j')—H. ] (42)

=S(s-31)h (rr31)+X (s.32)h (rr32),

in complete analogy with Eq. (40). A similar form can
be written for E+—& Es(IC4)+pP(e+)+ v.

Of course interaction (33) gives rise to direct lepton
decay of baryons on substitution of Eq. (34). It is con-

Iircootxdl (b)

I IG. 3. Diagrams for E'& decay.

"Note that the H.c. of (s'E+)„ is (E s')„=—(s'E ),.

II(03)=ig LGi'JtlV(031)+Gs JsN (032)]
(2s)'

(rr+Es),
I.„(j)—H.c. (41)

i(rr+E4) „
=$(031)h(831)+E(832)h (032).

The terms (43) represent the hyperon P decays most
feasible to observe at present. Their coeKcients are also
listed in Table III.

To the present order of accuracy the process E~ 2x
is described by using the two-boson loops of Fig. 3 to
close the open lines in Fig. 2. Note that the correspond-
ing diagram with both m mesons in a single loop cannot
contribute, as the pions must be in a 7=1 state for
both Figs. 3(a) and 3(b). The effective interaction is
most simply based on the H (rr) of Eq. (36) and Table II:
H(E~) =igG,I,Pr /(2 )'])y(G,'~,Z,+G,I,E,)y„]y„,

(44)

where the charge operators Ej and E2 are given in
Table IV; the charge index on the p outside the brackets
is suppressed, as it follows by charge conservation from
the other factors. Table IV lists all nonvanishing con-
tributions to E~ and E2.

3. Application

This section outlines some applications of the pre-
ceding expressions. No attempt is made to find a
definite, complete form for H(P), but examples are
given of how the present scheme can account for
available data. EfForts to transcribe the formulas of the
last section in terms of charge space operators g, o,
and c have not so far yielded any algebraically attrac-
tive symmetry in agreement with observations.

The following assumptions will be made about lepton
decay: (i) the p- and e-matrix elements are identical in
magnitude for all processes; and (ii) no decay process
corresponding to I, e, or tt in Eq. (43) occurs to 1st
order. The second is a rather extreme assumption but
seems in harmony with present observations;" although

'0 Crawford, Cresti, Good, KalbReisch, Stevenson, and Ticho,
Phys. Rev. Letters 1, 377 (1958);Nordin, Orear, Reed, Rosenfeld,
Solmitz, Taft, and Tripp, Phys. Rev. Letters 1, 380 (1958);
Leitner, Nordin, Rosenfeld, Solmitz, and Tripp, Phys. Rev.
Letters 8, 186 (1959).
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E'= 2, (46)

for each h in Eq. (45). If assumption (i) is relaxed to
demand p, and e equivalence only for presently observed
processes, it is possible to obtain H(Xv) terms with dif-
ferent values of j and j' and thus extract only the part
H(pe), while B(ee) and H(ijp) vanish. It is perhaps of
interest that the terms in Table III giving rise to H(Xv)
can at most yield (pN)+ for nuclear p decay, which gives
a relative sign for the A and V coupling terms opposite
to that observed. It is fundamental to the present
scheme, based on charge analogies between baryons
and leptons, that the (pn) and (pe) decay processes
cannot arise from the same term in H(p).

Assumptions (46) permit the assignment of values to
the loop integrals Jp in Eqs. (38) and (39). The decay
rates are

lepton modes of A. and Z+ decay have been seen, their
apparent rate is an order of magnitude slower than
expected on a naive universal Fermi interaction. In the
present calculation this represents erst order forbid-
denness, the observed decays presumably arising from
vertex corrections by E mesons. " A good deal more
experimental and theoretical work on this point is
clearly required; in the meanwhile assumption (ii), if
not actually correct, will at least serve to test the Qexi-
bility of the present scheme. The experimental founda-
tion of (i) is also quite weak; although the known
cases of lepton decay (pe, prs, Es) seem to agree with it,
they represent a very small fraction of the total possible
lepton processes —and agreement with (ii) for bosons
does not necessarily imply agreement for all baryon
pairs contributing to the loops.

By manipulating Table III to satisfy assumptions
(i) and (ii), one can obtain as independent terms

v2 t h(E2) —h(E31)5, V2Lh(E32) —h(8'32) —h(8'32) 5,
V2h(8'31), v2h(g'32), v2h(7r2), V2h(s.31), (45)

v2h(s32), H()Iu), {(pl)„L„').
Note that the G2 terms automatically give equality of
the lepton decay rates" for 8' and 8' at a rate twice
that for E+ lepton decay"; these conclusions are not
necessarily true for the 6& terms but may be satisfied
for a sufficiently symmetric H(P).

In the absence of any better guess, suppose all boson
terms to contribute equally, with

Similarly, an observed rate of r(E2)=4.8X10' sec '
yields

Jp'= 0.16=0.2. (49)

For EC,3 and EC» the decay rates are

r(E3) = L ~

L, ~'/(2s)'5wmx',

L= sg/M@2/(2s)'ms5Grs Jrs,

v2Grs Jrs= Gy Jr/(E31)+Gs JsX(E32).
(5o)

Here 8' is a statistical factor dependent on the kine-
matic form assumed in Eq. (40) but generally of order
10 '. For the kinematic form (40)

E„s/E,s=0.6, (51)

which is just within present uncertainties. Taking an
average r(E3) of 3.3X10' sec ', one obtains

(Grs Jzs)'= 0.8, (52)

TABLE V. Parameters of hyperon-2t decay.

so that Jr and/or Js seems of much the same order as Jp.
For the s.—s.-lepton interaction of Eq. (42)

JJ(7r3) =igI M~&/(2s)'m. 5(G12J12 )
X t y*&„y—&„P*P5L„'(j') (53)

=ig'Le*~A ~,4*05L,'(i '),

where g'=&0.3g if we assume

(J12 ) Jls ~

One thus infers an (Ppr3) similar to that obtained from
the principle of conserved lepton currents, ' but with a
coefficient about 3 as large and of indeterminate sign.
This estimate of g' is of course subject to much uncer-
tainty"; there is no necessity on the present scheme to
have g'—=g, although the two appear comparable in
magnitude.

For the pion decay of baryons

r (s) = (Grs/4m) Jps' (M/2w)'5sm $Ã,'W, +Ey'Wy5,

L(M M)lm 5 C'(+f+~J )/M 5(P/m ') '(55)
W„=$(M,+M )/m 5'P(Eg Mg)/M—,5(p/m ),

where i and f refer to initial and final baryon states, and

p is the momentum of the decay. The quantities of E,
and E„are the charge space factors for the respective
y„and y„ys terms in Eq. (36), as taken from Table II.
The kinematic factors 8, and 8'„are listed in Table V.

Jo2= 0.19=0.2 (48)

r( 2) =re(G /4 )Jp 1P( 2) ( m/ m)

XL1—(m„/ms. )'5', (47)

r p= 'g Mm s/(27r) =10' sec '

From the observed r(pr2) =3.9X10' sec ',

Decay

A —+x

Z+~ ~+

Z ~x

Wp

1.96 0.74
1.98 0.82
7.04 5.03
6.80 4.75
7.46 5.29

(A')A„= 5.7a1

5.2~0.5
5.5~0.8
2.7~1.0
2.7ai.0
2.5~0.8

@ S. Oneda, Nuclear Phys. 9, 476 (1959).
320kubo, Marshak, Sudarshan, Teutsch, and Weinberg, Phys.

Rev. 112, 665 (1958).
ps If thea~ 'factorsareomittedfrom@g„, then [g'~ =0.1~g[:M.

Sugawara, Phys. Rev. 112, 2128 (1958).
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All elements of Table II involving x+ emission
contain a factor W2, while those for 4rP emission do not;
these factors arise from the strong interaction. Thus the
4r+/4r =2 ratio observed in A decay simply indicates
that the corresponding terms in Table II appear with
the same coefficients. '4 It is tempting to assume that
the same is true for all terms in H„and set

one be s wave, the other P wave ss while the present
scheme would also allow both to be s wave.

Equation (57) suggests a coefficient 2 to multiply
the ZNzI'&' terms in Table IV. The 0' ~ 2m- decay rate
is then

r(E7r) = (3p/4''mx') {(Gi'/44r) Jp'(Gis Jis")')
)& (16K)'g'(M/24r) ', (58)

—+m' i&. l

= I&.l
=~/~2,

(Ix, [,[x„[)=(ua, o),

(lz, [, [zr, [)=(vz~, o).

(56)

where p'=mx'/4 m—' and 2I = (mrr/m. )'+ (mx/m. )—2. This last factor depends on the assumed kinematic
form of Eq. (44) and is not very reliable; it yields
r(E'4r) =3&&10"sec ' provided that (J ")'= (Ji )'

Here the coeKcients of A decay have an extra factor
1/V2 relative to the others, since the interactions are all
formulated in terms of ZP4 and A= (Z+—ZP )/V2.
Polarization experiments" indicate that for Z+~x+
one of the terms S, or N„vanishes but do not decide
the choice.

The values of A obtained by comparing Eqs. (55),
(56) with the observed decay rates are listed in Table V.
Generous allowances are included for experimental
error, to which is added the uncertainty from the (s,p)
choice for Z+ —+ a+, an average value of Jo' is taken
from Eqs. (48) and (49). The result in Table V is

IA I =2(1+15%), (57)

the Quctuation being of the order expected from neglect
of vertex corrections and Eq. (37). This simple nu-

merical value of A hints at a certain degree of symmetry
in H{P); on the other hand, the present crude com-

parison does not establish assumption (56) as actually
correct.

In the process E—+ 2x the charge space properties
of the G&' and G2 terms are particularly distinct, the 62
interaction being simpler. The first-order absence of
E+—+2m implies equal coefFicients for the two non-

vanishing terms under E2 in Table IV; then in 0' decay
4r+/4rP=2, but the relative signs of the amplitudes are

opposite to those of a two-pion T=O state. For the G~

interaction the absence of E+~ 2x implies vanishing
of two separate terms under Ei, while the 4r+/4rP ratio
in 8' decay is arbitrary.

All such statements apply only to the s-wave parts
of the interaction H(4r); that is, to the combinations

{A.(++;+)+2'(++; —)), etc., in &E~P~'. Since
these same combinations are responsible for pion decay
by hyperons, the decays Z+ —+ ~+ and Z —+ ~ must
be s wave if the corresponding terms (Gi and Gs, re-

spectively) are to contribute to E-+ 24r. Measurement
of the Z+ —& x+ decay processes to distinguish between
s wave and p wave emission would be of immediate
interest in this regard. The hI=~ rule requires that

'4 And may have nothing to do with AI=-', rule: R. H. Dalitz,
Revs. Modern Phys. 31, 823 (1959).

"Cool, Cork, Cronin, and Wenzel& Phys. Rev. 114,912 i1959l.

APPENDIX

This section outlines conditions necessary to prevent
the four-fermion interaction from revealing lepton-

antilepton distinctions. Consider an ordinary P decay,
determinedby IH(P) I'= I& f $410 f, [';herethelepton
functions P and operators 0 all refer to real coordinate

space, and the coefficients f are nuclear matrix ele-

ments. "The covariant Casimir projection operator is

P+ (y„p„+im)/——2p 4,

and for the antiparticle ip'=CD

P+ ——(V„p„—im)/2p4,

(A.1)

(A.2)

so that the only lepton-antilepton distinction observable

here is the sign of the m term. A measurement on lepton

y alone is described by

f

y„p„*Aim*�)

IH(P) I'=& f-f4*&.O-I [Op'&.+c c
a.p & 2p4*

Os'= y4o~-ty4.
(A.3)

The most general condition to eliminate the m term

from Eq. (A.3) is

0, =4Q, (41+ ye)s, e'=1, (A.4)

with arbitrary Q 4, this is necessarily parity-noncon-

serving. "~

"Derivative couplings in Hp introduced by mesonic corrections
can all be cast into the coefBcients f„, so that the 0 comprise
only Dirac matrices.

3' T. D. Lee and C. N. Yang, Phys. Rev. 104, 254 (1956);E. C.
G. Sudarshan and R. E. Marshak, Phys. Rev. 109, 1860 (1958).
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Next consider the two-component reduction of Eq.
(A.3) according to

p

(8+m)

The net difference between the two forms (A.5) is an
operation y5, so that the two-component reduction of

Q„O y„Os'f„will (not) change sign between particle and
antiparticle if the number of factors y„ in O,OI, is odd
(even). The terms in Eq. (A.3) with rr=8 must be
even in y„; to eliminate particle-antiparticle distinction,
odd terms must be absent also when ebb. This sepa-
rates the Q into two noninterfering groups, (A, V) and

(S, 2', P); that is, there are no ordinary Fierz inter-
ference terms.

It seems unlikely that selection between these two

groups can be based on considerations of ~H(P) ~'; one
must resort to algebraic symmetry conditions on Hp
itself, which is not directly observable. Of course (A, V)
are equivalent when multiplied by (1&ps), so that
only one coupling constant need be speci6ed; the other
group requires two independent constants, one for T
and one for (5, P). The (A, V) choice is thus inherently
simpler.

We now suppose that there is a universal four-fermion
interaction

H(P) (%PC }(@P+}, (A.6)

written in some "normal order" where leptons may
substitute for baryons in either bracketed pair. Then
by the above, both P and P' must contain (1&ps)
factors, although the two & need not be correlated.

The above discussion is superficially similar but not
identical with the mass reversal argument, ' which
involves H(P) itself (not ~H(P) ~') and depends on a
strict assumption of particle conservation throughout,
while the present argument stems from a denial of this
principle. The net result is to render the present argu-
ment less precise and detailed in its conclusions: in the
two factors of a four-fermion interaction, it allows
arbitrary sign choices in (1+ps), and it cannot decide
between (A, V) and (5, T, P).

Lepton decay also occurs for bosons, at least through
the mediation of baryon loops, when it must have the
phenomenological form

= (g„L(m —m") —(rN*+m&) eys7$, } (A.7).
This form allows particle-antiparticle comparison of
various x and y unless m or m" always vanishes. Since
the charged leptons have m WO, this provides an argu-

's J. J. Sakurai, Nuovo cinMnto 7, 649 (1958).

ment that (i) the mass of the neutrino and of the )I,s= its

lepton must be identically zero; (ii) the form (A.6)
must contain at least one neutral fermion in each
bracket.

Equations (A.1)—(A.3) neglect the Coulomb field for
the leptons, but the conclusion should be valid in any
case. Suppose P and ~H(P) ~' in (A.3) to be expanded as
power series in Z; then the argument above suffices for
even powers of Z in

~
H(P)

~

', and the odd powers vanish

by the reality of
~
H(P)

~

' since the expansion parameter
of f is proportional to iZ If a. P type interaction like

p+e —+ p+e could occur, it would in principle be
possible to determine leptonness by observing inter-
ference of the Coulomb and P type scattering; but all
such four-charged-fermion interactions are excluded by
(ii) above.

Of course double P decay without neutrino emission
is no longer forbidden by lepton conservation, but the
matrix element vanishes identically because of the
(1&ps) factors:

(P,y„(1+cps)ii „P„y„(1—eysgi;}

where kq is the virtual neutrino momentum. This con-
clusion is contained in the simple statement that the
(1&ps) factors make A(i decay behave as if there were
lepton conservation with two-component neutrinos,
although neither assumption is necessary: this extends
to other cases, such as the absence of inverse P decay
to yield a negatron when the incident neutrinos are
produced during negatron P decay, as in a reactor.

On the present view the interactions internal to
charge space (i.e., not involving the electromagnetic
and gravitational fields, which are external) are "strong"
or "weak" according as they do or do not distinguish
between fermion and antifermion. This is the primary
distinction, from which follow corollary" differences in
parity conservation and degree of charge symmetry. If
heavy bosons are not elementary but simply fermion-
antifermion pairs with much greater "binding" than
fermion-fermion pairs, ' then the mere existence of
heavy bosons implies a strong interaction that dis-
tinguishes between fermion and antifermion. Only
baryons can participate in this interaction, since leptons
and antileptons are intrinsically indistinguishable. This

"The present view is not in accord with the idea of dis-
tinguishing strong and weak interactions by requiring CP in-
variance for both and extracting P invariance for strong inter-
actions by virtue of symmetries in charge space: S. N. Gupta,
Can. J. Phys. BS, 1309 (1957);J.J. Sakurai, Phys. Rev. 113, 1679
(1959);G. Feinberg and F. Gursey, Phys. Rev. 114, 1153 (1959).
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observed fact suggests that the strong interaction has
invariance under C and hence under I' if only CI' in-
variance is assumed. Also, the necessity for exchange
antisymmetry in the baryon-antibaryon model of the
boson implies rather simple charge space properties for
the interaction. On this compound model the statement

. that strong interactions conserve strangeness is a
tautology.

The interaction that does not distinguish fermions
from antifermions can be—and presumably is—univer-

sal to both baryons and leptons. It must be weak
enough not to form bound boson states, or free leptons
would not be observed; according to the argument
above it must also contain (1&ps) factors and be
parity-violating. The choice of a charge space vector
form for the interaction, required to avoid revealing
relative leptonness through (tie)sr interactions, implies
2 =CI'= —1 rather than invariance and also a lower
degree of charge symmetry than in the strong inter-
action.
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Inconsistency of Cubic Boson-Boson Interactions
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It is shown that there does not exist a ground state for a system of spin zero bose Gelds coupled only by
local interactions involving three powers of the fields. Thus these interactions alone are not suitable for a
model of interacting fields.

I. INTRODUCTION
' 'T is necessary, if a 6eld theory is to give a consistent
~ - description of physical reality, that there be a state
of lowest energy. If the energy spectrum has no lower
bound, then the system can undergo a "radiative"
collapse. We shall be concerned in this paper with a
group of local interactions of spin zero bose fields that
do not give rise to a state of lowest energy. These are
interactions that involve three powers of the fields, i.e.,
for one field, p, intera, cting with itself, '

H;„,=)t)t y'(x)d'x,

for two fields, P and x,

inverse length. These three interactions are the so-called
"super-renormalizable" ones. '

For each of the interactions given above we shaH
show that the assumption of the existence of a ground
state leads to a contradiction, and hence that these
interactions alone between the fields are not physi-
cally realizable.

II. PROOF OF THE NONEXISTENCE OF
THE GROUND STATE

First consider the case of one scalar 6eld with the
cubic self-interaction (1). The dynamics are described
by a Lagrangian

L,= ', ~d'xPy(x) (a„ao—srts)d (x)—)~y'(x)$,

IJ;„,=) "x(x)y'(x)d'x,
where

8„8&= V' —(8/ct t)',

and for three fields, P, x, and 0,

H;.t——)~ t g(x)8(x)y(x)d'x.

and ns' is taken to be a finite real number which may
be zero. The requirement of invariance of I under
spatial reQection implies that p must be a scalar field.
From I. is derived the form of the energy operator, Po,
for the field

The 6eld operators are taken to be Hermitean and
thus I, must be a real constant, with dimensions of an

*National Science Foundation Predoctoral Fellow.
' M. Fierz has already pointed out that in the classical limit

this interaction (1), does not lead to a positive definite energy.
Proceedilgs of the Fifth drtrtga/ Rochester Conferertce oI High
Energy Physics (Interscience Publishers, Inc. , New York, 1955),
p. 67.

where
yo(x) = aors(x).

Integrating by parts and introducing the real symmetric

s W. Thirring, Helv. Phys. Acta 26, 33 (1953).


