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equivalent to exclude the events which, upon reRection,
would hit the unreQected AC counter. If the above
conditions are met, each event will have a difFerent
normalizing factor, but these factors will be independent
of P. The true likelihood of all of the events will then
be expressed by (2')

1.= (constant) g (1+J 1,(8,L), sing). (2')

About 30% ot' the scatterings were discarded because

they did not satisfy this reQection criterion.

APPENDIX II. m —P POLARIZATION FORMULA

The derivation of the polarization formula for pion-
proton scattering, in which only s and p orbital angular
momentum states contribute, is given in reference 6.
The resulting formula is given below.

If a normal right-hasid set of axes, x, y, s, are defined,
with the incident pion momentum along the +s axis,
and the recoil proton momentum in the (x,s) plane
with a component in the +x direction, the polarization

will be given by Eq. (1"),

p(+y direction) —p( —y direction)p-
p(+y direction)+ p( —y direction)

where the p's are probabilities of the spin being along
the direction specified.

For the case of m mesons scattered from protons,
there are two isotopic spin states, T= 2 and T= —'„and
three total angular momentum states, j=-,', —', for p
waves, and j=-,' for s waves. There are thus six phase
shifts. The probability of spin-Rip scattering will, in
general, be difFerent than for non-spin Rip scattering,
thus giving rise to a polarization,

sin8(X*Z —XZ*)+sin8 cos8( Y*Z—F'Z*)
P=i (2")

(X+V cos8('+ (Z sin8('

where X=as+2ar, I'= (2ass+asr)+2(2urs+u~r), and
Z= (asr —ass)+2(arr —ars). The a,, are the p-wave
scattering amplitudes, the a; the s-wave amplitudes.
In terms of the phase shifts, o,;;,

a;,= (1/2i) Lexp (2ia;,)—1j.
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The Thirring model is solved with a variable coupling constant, X =Xof(x,t). It is found that the infrared
divergence is eliminated if f tends to zero along the past light cone. The S matrix is no longer diagonal in
the physical particle representation and is generally not well-de6ned in the sense of Haag's theorem. The
ordered, renormalized Heisenberg operators for P, p P* are computed and production processes are analyzed
by examining matrix elements.

l. INTRODUCTION

HE two-dimensional relativistic model introduced
by Thirring' has served as a valuable tool for

the exploration of the structure of quantum field theory.
There are, however, two aspects of the original model
that limit its usefulness. Because of the small number of
dimensions, an infrared divergence is present in the
wave function renormalization constant, and therefore
some renormalized products of a finite number of field
operators do not exist. Furthermore, the S matrix is
diagonal in the physical particle representation so that
creation of matter does not occur.

In this paper we discuss a modified, but still soluble,
version of the Thirring model with variable coupling,
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h=hof(x, t). In general, the S matrix is not diagonal
and for a large class of functions f(x,t) no infrared di-
vergence appears. Consequences of adiabatic variations
or discontinuous changes in X may also be examined
with the extended model.

Section 2 contains a discussion of the equatioris of
motion, their operator solutions and the construction
of state vectors. Although energy and momentum are
not conserved, the particle-number operators remain
diagonal. It is shown that the S matrix is identical to
the U matrix for certain forms of f, suggesting that the
former is ill-defined in the sense of Haag's theorem.

In Sec. 3, the Heisenberg operators for P and f/*
are ordered and renormalized by using configuration
space techniques which are related to Glaser's methods
for the original model. Matrix elements of these opera-
tors are employed to discuss the elementary production
processes in Sec. 4, and the conclusions are summarized
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in the last section. The integral equations encountered
in the ordering of P and ~*are solved in the appendix.

2. EQUATION OF MOTION

The field operators for the Thirring model satisfy
ill'B„/+2'(~)/=0 I.n the representation with y&"

=ioi, p&'&=P=oa, the equations of motion are

8/1/Bu = $X$2 0'2flq 8/2/8 V='Aljli $1$2q

where u= t+x, n= t x, a—nd the operator relation

g, (x)$'=0 has been assumed. For X=Xbf(x,t), the
general solutions to these equations are

In the representation with a(0)=b~0)=0, )a,p)
= (e*) (b*) t'~ 0), the operators Ei,2 are clearly di'agonal
and correspond to the net number of particles travelling
to the right and left, respectively. The state vectors of
the system are simply the eigenstates of E,.

The relations tp, (x,t) = U*(t)p, '"(x,t) U(t), U*U= 1,
define a unitary matrix which yields Eq. (1) if

f t'
U(t) = exp —iXb dt' dx'f (x', t')

X:pi(t' —x')::p2(t'+x'):, (7)

and Pi, $2 are completely arbitrary. The stress-energy
tensor, T„I"=$71'(8„$) (8„$)yg—g,I"2, no—longer satis-
fies B„T„"=0,reQecting the role of f(x,t) as an external
6eld which supplies energy and momentum to the
system. However, the equations of motion still yield
conservation laws, 8„(iPyg) =0, 8„(gy&y&b&P) =0, y&"
=go'y~", and. these lead to two constants of motion,

dx P, ,,*(x,t)P, ,,(x,t)

dy 4i, 2*(y)4i,2(y) (3)

The theory is quantized by treating g, (=P,'") as
free spinor operators, as in Glaser's treatment' for
f(x,t) = 1. Then @ has the properties

$i ~ ——(2s) '* dp Ci, 2(p) expip(u, e),

{C,(p),C, (p')}=0, {C,(p),C, *(p')}=b„b(p—p'),

(4)

and the C, may be decomposed into particle La(p)$
and antiparticle fb(p) j operators as follows

C, (P) =Le(+P) (P)+~(~p)b*(—P)3 (~)

With the definition p, =p,*@,=g,~f„Eq. (4) yields

G.(~),p. (b)1=5:p.(~):,:p. (b):J=0. »n«[piA27
=L:pi. ,&2)=0, etc. , Eqs. (2), (3) may be interpreted
as operator equations as they stand, or with the re-
placement p, ~:p, We choose to make the latter
identification so that Eq. (3) becomes

&pe(~p)l *(p) (p) —b*(p)b(p)3 (6)

' V. Glaser, Nuovo cimento 9, 990 (1958).
3. F. L. Scarf, Nuclear Phys. 11, 475 (1959).

ipi(x, t) =pi(i) exp iso~ «' f(u', i)&2*(u')&2(u'),

(2)
pV

&2(x,t) =$2(u) exp iAb du' f(u, e')pi*(v')$i(n'),
—oo

and the S matrix, S= U(t=+~), is not diagonal in
the representation discussed above, although PS,1V',j
=0. The reason for this becomes apparent if one sets
E=E(a)—N(b). Then, in a state with ~1,0)=a*~0),
E(a) ~1,0)= ~1,0), E(b) ~1,0)=0. However, the same
eigenvalue of X occurs for a state ~1+m, nz) with
1l&(g)

~
1+m, m) = (1+kg)

~
1+m, m), A (b)

~
1+nz, m)

=m~1+m, m). Thus, ~1,0)'"'=S~1,0) is a state con-
taining ~1,0) plus an infinite number of real parti-
cle-antiparticle pairs (when f=1, such production is
forbidden by energy-momentum conservation'). In
principle, it is possible to diagonalize S and E,simultane-
ously, but it is more interesting to consider ~n,P) as a,

physical particle state and to allow production of real
pairs.

Finally, we note that for many discontinuous changes
in X Lfor example, f=0(T—t)] the S matrix is identical
to the U matrix of a problem with f= 1. Since Haag's
theorem~ applies to the latter, it may be inferred that
the S matrix is not a well-defined quantity when )
varies with space and time.

. 3. ORDERING AND RENORMALIZATION

In a representation with $~0) =0, the above expres-
sions for f, and U LEqs. (2), (7)$, or those for products
such as P, (a)f,*(b), are well-defined, but in the physical
representation, a~0)=b~0)=0, they are not. To obtain
well-defined operators, the exponentials must be re-
written as ordered products so that, for example

pl(+)0'i (b) $1(8 )$1 (vb)el(u 0 )81 (ub 'vb) (Sa)

ei(u, v) = exp iXb~ «'f(u', v):p2(u'):, (gb)
—00

becomes

A(~)4 i*(b)=4 i(&.)4 i*(»)&~i(~)~i '(b))0

f
exp ds ~y Bi(s y ti b)4'2 (s)42(y) ~ ~ (9)

4 W. K. Yhirring, Nuovo cimento 9, 1007 (1958).' R. Haag, Kgl. Danske Videnskab. Selskab, Mat. -fys. Medd.
29, 12 (1955).
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An analysis equivalent to that already made for the
Thirring model with f= 1 o shows that gi is given by

[y, (s),ei(a)ei '(b)J=Gi, q4(s)eiei-',

dy gi(s,y; a,b)

These equations are solved in the appendix and th
kernels of G~&+& are

{LQ(s+)/Q(y+) j—[Q(s+)/Q(y-) 3}
gi(+)(s y) =

2zri(y s—i—o)

X[4»~+&(y)eiei '+eiei '4»& &(y)$. (10) where

When Eq. (8) is differentiated with respect to Xo, and ~o (
t

"' d& f(&,&a) t' ' d& f(&,&b) )
the expectation value is taken, one finds [using Eq (9.)) Q(s+) = exp

2'" ~ co x s zo ~ g) s s zo I
8(elei ')o z(elel )0

(2zr)'

dy gi(s,y; a,b)
(11)

(u' —s—io) (u' —y —io)

The ordering of Pi(a) is carried out by setting
in Eqs. (8)-(11) Dor this calculation, the

second integral over u' must be omitted from Eq. (11)
before the integration is performed). Equation (11)shows

that the renormalization "constant, " Zi&= (ei(a))o,
formally depends on x, t, if fA1.

The kernel gi is computed by using

eius(s)ei '=exp[ ihof(—s,zt)8(u z) jpo—(s), (12)

which leads to

[ps(s),ei(ib)ea i(b)$= {[1—exp''Aof(s, s,)58(u, s)—
+expzAof(s, v )[1—exp —z4f(s, sb)]8(ub —z)}

Xps(s)ei(a)ei
—'(b). (13)

[Equation (12) is derived by noting that both sides obey
the same erst order differential equation in) 0 and have
the same initial value. g The transition from Eq. (13) to
Eq. (10) is effected by applying positive and negative
frequency projection operators to (13) and by rearrang-
ing'terms. The algebraic details are identical to those
already encountered in the calculation with f=1,' and
we merely quote the results: the integral operator G&

equals G&& ' —G&&+& where G&&+~ are defined by the
solutions g= [1+Gi&+&)k to the following integral
equations

= [Q(s-)3*. (16)

When u,)ub, gi ——0 if (z,y))u„etc. At this point, the
calculation of Pi and fifi* as explicit ordered and re-
normalized functionals of the incoming field operators,
p„has been reduced to a sequence of quadratures. The
corresponding expressions for lt&, Pops* follow by space
reflection; figs and PiP&* are already ordered if Pi, f&
are.

In general (ee ')P(=(ee ')oZ '*Z* &) does not exist,
but if f &0 as u, —o —+ —~, there is no infrared di-

vergence and the renormalized matrix element is finite.
In order to proceed, the functional form of f(u, o) must
be specified. The choice f(u, o) =8(u+L)8(v+L) leads
to particularly simple expressions for (ee ')o and Z&

[see reference 6$; this value yields

~»'(~lb) =i({A(~)Ai*(b)})o'

((L+u,)(L,+ub) ) "
=ib(v.—.b)

~ ~, (17)
(u& ub)s j

where nb=ho)io'/8ors, )io'=Xo+2zrrz and
(
bio'/2zr

~
(1.All

other causal functions have the same ) 0-dependent

singular factor. Inspection of the renormalized operator

{fi,Pi*} shows that it can be written as c+0 (c is a
singular c-number, 0 is a bounded operator) near u, = ub

but that it has the form c 0 for v ~~. Thus, the de-
composition {PpP}"=c+0is not valid on the entire

light cone. It also follows from Eq. (17) that an ex-

pansion in u/I. or Xo is not meaningful as L~ ~.These
results are insensitive to the precise form of f(u, v) as
long as f-+0, u, e —b —oo.

[1—expand of(y, s.))g(y)
dy

2zrz (y

spaz

o)— 4. MATRIX ELEMENTS
g(s)~

[1—exP& isof(yPb) g[exP& i)iof(y,s.)gg (y)
dyJ 2zri(y —saic)

=k(s).
' F L. Scarf, Ph.ys. Rev. 115, 463 (1959).

In order to understand how real pairs of physical
particles are created, we examine the temporal de-

velopment of the bare particle operators. Consider

(O~PP(x, t)~zz), the amplitude for finding one bare
(14) particle in a state of zz physical particles. If

~
1)=ci(p) ~

0)
=8(—p)b*(—p) )0), then (Ojppt1)=(0)@i(s) (1), and
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a bare particle in state 7 =1 "contains" a physical par-
ticle going to the left at all times.

For m=3, the only nonvanishing matrix element has

I3)=ci(p)c,*(q)c,(k) Io); this gives

~(k)e( —q)
&olfr'I3) = (o I &i(~) I1)

2

ds dye, (y,s) expi(qy —ks), (18)

showing that PP also develops into pairs of physical
particles going to the right. The amplitudes for ran= 5, 7,
etc. , simply represent iterations of the fundamental
radiation process and no pairs going to the left appear;
the diagram which changes a right-pair into a left-pair
is not prohibited by energy-momentum conservation in
this model, but it is still ruled out by the differential
conservation laws, cipi/Du=0, 8p2/pin=0. Thus, at a
6nite time a bare particle going to the left is a physical
particle going to the left plus radiated pairs of bare or
physical (fs*P&=Ps*&&) particles going to the right.

The limit of &0!iPP!3) as u~ —po is zero since
For the out-fields, Q(s~) =exp[&z)Ipf'+'(s, n)]

[Eq. (16) With u =+ pe, m, =S, ub ———po] Where f&+&

are the positive and negative frequency parts of f, and

&0!p iz!3)oui (CO M

=e(k)e( —
q) ~

« ~ dy
olp, I1)

expi() p[f '+'(s, s) —f '+'(y, ~)]+qy —ks)
X (19)

(2pr)'i (y—s+ is)

[the matrix element for Ps depends on fi &7. In the
interaction representation,

I t) = U(t) I zzz) has virtual
pairs for any f, but if f= 1, they are all reabsorbed as
t ~ + po so that

I
out)= lzzz) to within a phase factor.

Iff is not constant, the reabsorption is incomplete;
I out)

contains real pairs and Eq. (19) is a measure of the
pair population. In the high-energy limit, k —+ ~,
(k+q) (~, the distribution tends to zero since
&OIL'I3) o.

The behavior of the wave function X~@(a,b)= (2 limni(ass(b) !0) illustrates the effect of matter
creation on the two-body interaction. Equation (12)
enables one to factor Xi2 as

Xi@(a,b) =Xis exp[—z&pf(ub, s,)0(u,—ub)7

&&Fr(a,b) Fs (b,a), (20)
where

)=(1ly, (~)c,(y) IO)/&1I@,(*)IO

(2!=0(—p)&(q)&0!b(—q)b( —p) the matrix ele-
ments can be evaluated with the ordered expressions
for e„giving

Fi(ck) =
I

1— . ,
~ ds dy

2vri (s.—s+ie)

0(q) t'" t
" Bi(s,y; u, —~) expiq(y —ub) yF,(b,.)=I 1+

~

«dy-
2pri~ " „(ub—s—ze) )

(21)

The ~n-operators are deQned by I =~/= —~ and y'"'
has u, =nb=+ ~. The phase shift [Eq. (20)7 contains
)ipf(u, s) at u=ub, 8=8, wlllch is the point of collision.

When f is constant, F'"'=1, IX»'"'/X»'"I =1, and
the phase shift is the only effect of the scattering. ~ How-
ever, wher. f is variable the final state has

t'( P) t' expzLP(y r.)—)~pf + (yPb)+~pf '(r. ub)7Fr'"'(a b) = 1+ I dy
2m' ~ (s.-y- ie)

0(q) i" expz[q(y ub)+) pf i(y,~ ) xpf' '(ub v )7Fs'"'(b, u) = 1—
I dy

2~i ~ . (ub —y —Ze)

(22)

Thus, IX»'"'/X»'"I is not unity and real particles are
radiated during the two-body scattering. For high-
energy collisions, the matter production is again negli-
gible and the above ratio tends to its valuefor constant f.

$. CONCLUSIONS

When ) =) pf(x, t), the Thirring model has several
new features of interest. For instance, the wave func-

tion renormalization constant depends on x,t, although
Z ' is still represented by a divergent integral. For a
large class of couplings the divergence is merely of the
ultraviolet variety, so that renormalized propagators,
such as S(+", are well-defined and contain no infinite
constants. With a particular choice of f, it has been
shown that the anticommutator does not have the form
predicted by Heisenberg' [i.e., &iPiP~) "Wc+0 near the

r F. L Scarf, Phys. Rev. 111, 1433 (1958). P W. E. Heisenberg, Revs. Modern Phys. 29, 269 (1957).
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light cone). Moreover, arguments previously advanced
for the ill-defined f= 1 case' now can be applied rigor-
ously to show that perturbation theory and expansion
over intermediate states give poor approximations to
the exact causal functions.

When f is not constant, production of real physical
particle pairs occurs. This creation can be attributed
directly to the variation of ) as a source of energy and
moInentum. Although the 5 matrix is ill-defined, ex-
amination of the matrix elements of tp(x, t) shows how
the production occurs and yields the energy spectrum.

We conclude that the Thirring model with variable
interaction provides a soluble relativistic quantum field
theory which contains production processes, and for
which all renormalized quantities exist if ) —+ 0 along
the past light cone.
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APPENDIX

Let P(s) =g(s) —k(s), A(y) =exp) i) Of—(y,v,)), B(y)
= expLzhof(y v&)). Then the first of the equations given
by (14) is (u,)ui,)

t
"dyC1 —A(y))Lp(y)+k(y))

(z)—
2vri(y s i&—)—

1 k(y)dy'ttg

s(s+) = (A.3)-- -Q(y—) Q(y+)-2~i(y —z—i~)

We assume that p(s), as given by (A.1), is the limit-
ing value of a function, p(s+), analytic in the entire
complex plane except for branch cuts between —~ andu„~ and ui, We define a function p(s ) by letting
i(y z—i—z) go to its complex conjugate in (A.1). Then,
using P(y z—zz—) ' (—y —s+ie)—') =2m-ib(y —s), Eq.
(A.1) becomes

p(s+),—p(s ) =0, s)u.,

A (s)p(z+) —p(s ) = L'1 —A (s))k(s), u,)s&ug, (A.2)

A(s)B(s)p(s+) —p(z ) = p1 —A (s)B(s))k(z), uq) s,

and p(s ) may be interpreted as the continuation of
p(z~) below the branch cuts.

We now wish to construct a function, Q(z), which is
analytic everywhere except for the above branch cuts
and has

Q(s-) = L1; A (z); A (z)B(z))Q(z+)
Ls)u, ; u )s)u~', ub&s).

If f(y,v) is sufficiently well-behaved, the function given
in Eq. (16) has all of these properties. LI am indebted
to Professor V. Glaser for suggesting the form of Q.)
With this definition, the relation p(s) =Q(z)s(z) allows
one to rewrite Eq. (A.2) as s(z+) —s(s ) = {L1/Q(s ))—L1/Q(s+)))k(s), and contour integration gives

t
"' A(y)L1 —B(y))Lp(y)+k(y)) =0.

2zri(y —s—iz)
(A.1)

Equation (15) follows af ter the substitution q (s+)
=(g—k)/Q(s+) is made. A similar analysis leads to
pit ~ when the lower set of signs in Eq. (14) is used.


