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Nuclear Spin Relaxation and Nuclear Electric Dipole Moments
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Proposals that nuclear spin relaxation in an appropriate system could serve as a test for the existence of a
nuclear electric dipole moment are examined with attention to the consequences of the fact that the electric
field at the nucleus is proportional to the nuclear acceleration. It is found that low-frequency fluctuations
of the local electric 6eld are suppressed. In particular, the necessarily negative correlation of the momentum
transferred in consecutive collisions of an atom in a gas alters the spectral density of the perturbation, from
that of uncorrelated puises, by the factor oPr,s/(1+co'r, s), where r, is the mean time between collisions. It
follows that fairly low gas density is preferable to high. At optimum density a light gas at room temperature
carrying electric dipole moments of magnitude e&(10 ' cm should have a spin relaxation time, in the absence
of competing processes, of around 10 minutes. A formula is given for the electrically induced spin relaxation
rate in a crystal. The process is hopelessly slow. In the electric coupling of the lattice vibrations to the spin
the ordinarily dominant "two-phonon" or "Raman" process is absent, because of the linearity of the connec-
tion between local electric field and nuclear. motion.

' 'T has been suggested that nuclear spin relaxation
~ - may aGord a test for the existence of nuclear
electric dipole moments. Most recently Franken and
Boyne'' have discussed the possible role of nuclear
electric dipole coupling in nuclear relaxation in gases;
also Bloom, ' in an abstract, refers to nuclear relaxation
by electric dipole coupling in crystals and to some other
related sects. The general idea is that an electric field
acting on the hypothetical nuclear electric dipole and
modulated by thermal agitation of the environment
would bring about spin relaxation, just as magnetic
interactions do. Several years ago Ramsey and the
author4 in a search for experiments which might be
sensitive to the presence of a nuclear electric dipole,
canvassed a variety of processes, among them nuclear
spin relaxation. This eQ'ect, attractive at first glance,
was summarily dismissed when closer examination
showed it to be hopelessly insigniGcant for dipoles of
reasonable strength. The revival of the question may
justify a short quantitative discussion with special
attention to a peculiar feature of the interaction, a
feature which is to blame for the extreme weakness of
the process. Franken and Boyne, in reference 1, did
not take this feature fully into account, and were led to
overestimate by a large factor the relaxation rate to be
expected with a nuclear dipole of given strength. This
was corrected subsequently' and the source of the

difficulty was qualitatively explained. The following
discussion will not lead to diGerent conclusions but it
will provide a theoretical formula, accurate for a
particular model, for the partial relaxation rate due to
electric dipole coupling in a gas whose nuclei carry
electric dipole moments. Also, stimulated by Bloom's
proposals, we shall look into the question of relaxation
in crystals. Here we shall find the theory surprisingly

simple, and the result quite disappointing to anyone
looking for an indicator of nuclear electric dipole
moments.

The coupling of the assumed nuclear electric dipole
of strength p. to the electric field at the nucleus is
described by a term p E in the Hamiltonian. The field
E is in some sense a random function of the time; its
Quctuations are a manifestation of the thermal agitation
of the system. The probability of spin transitions leading
to spin-lattice equilibrium can be determined if we
know the spectral density, at the appropriate frequency,
c0, of the "local field" E(t). In other words we proceed
exactly as we do in the familiar "local Geld" approach
to magnetic relaxation. Indeed, for the problem at hand
the "local field" method is entirely appropriate (as it
rarely is in the magnetic case) for the perturbation
involves no coupling between spins of the system; we

may properly consider the spins independent of one
another.

The peculiar aspect of the electrical perturbation is
the unique connection between the electric Geld at a
nucleus and the nuclear velocity v, namely

Zs Edt=M(vs —vi),
J]j
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where M is the nuclear mass. Owing to (1), the random-
ness of E(t) is severely restricted in any ordinary
physical system. Consider a monatomic gas, for
example. In a collision, the nucleus of one of the
colliding atoms feels a "pulse" of electric field, exactly
proportional to the momentum transfer. After a
relatively long field-free interval the next collision
applies another pulse, and so on. Now these pulses
cumeot be independent; an atom which receives an
eastward impulse in one collision is more than likely
to receive a westward impulse in the next. Were this not
so, a typical atom would execute an unrestricted
random walk in velocity-space and. the expectation
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&o(Po)~Po= ' ** exp( Po'/4)~Po. (2)

By the joint distribution of Po and Pi we mean a function
poi such that poidpodpi is the probability that the
initial collision involved momentum transfer P, in dPO

and the next collision thereafter a momentum transfer
Pl in dPi. To find poi we note that under the rules
assumed an atom with x-velocity v is associated with
a distribution of momentum transfer in its sext collision
of the form (2') '

*expL —
2 (v+Pi)'$ and with a distri-

value of its kinetic energy would increase proportional
to the time without limit. Actually v remains within the
appropriate Maxwellian distribution. Remembering
that, we can see from (1) that J'Edt is essentially
bounded, which implies that the average of E over a
long period T must vanish nzore strongly with increasing
T, than would the corresponding average over a
random sequence of uncorrelated pulses.

We therefore anticipate that the spectral density of
the perturbation E(t) will approach zero at low fre-
quencies, in contrast to the behavior of the spectrum
of the usual random perturbation, which is constant
in the neighborhood of co=0. The nucleus, in other
words, is automatically safeguarded against the
application of low frequemc-y electric fields. The safe-
guards are provided by nothing more mysterious than
Newton's Second Law and the fact that the atom
can't move with constant acceleration for a long time
without bumping into something.

To make these ideas precise we shall examine the
, correlation function G(~) of the perturbation E(t)
experienced by a nucleus which moves as follows: the
nucleus, of mass M and charge Ze, is carried within an
atom which moves in a Maxwellian gas at temperature
T. This atom suffers random collisions at the average
rate 1/r. . The probability of collision, per unit time, is
assumed independent of the atom's speed. That is, we
shall ignore the actual correlation between v and the
time between collisions. The duration of a collision ~,
is short compared to the mean time between collisions,
v &(v-,. Immediately after each collision the velocity
of the atom has its expectation distribution according
to the Maxwell distribution, regardless of its velocity
just before the collision. That is, the velocity after a
collision is completely uncorrelated with the velocity
before the collision. These assumptions specify our
model completely.

We are interested in the impulse p acquired by the
atom at each collision. As the three coordinates are
independent, it will su8Rce to discuss a component of
p only, say p„which we shall write simply p. Suppose
we observe an atom making a collision and note the
impulse it received, Po. We then note the impulse Pi
received by the atom in its next collision. I et us
measure P in units of (3IIAT)', the rms x-momentum
characteristic of the Maxwellian distribution. Then the
distribution of Po is

bution of momentum transfer in its last collision

(2~) & expI —-', (e—Po)'$. Here v is expressed in units of
the rms x-velocity. Hence

poi ——(2n.) & dv expL —-', (v —Po)'j

Xexp( —2i') expL —k(&+Pi)'j

=(2 ) '3 'expel(Po'+P '+P P'».

The correlation of successive momentum transfers is
exhibited in the quantity (Popi) which, computed from

(3), is ——',. For the model we have assumed, correlation
cannot extend beyond. d the next collision. That is,

(POP, )=O, v) 1, so there is no need to compute further
joint probability distributions po„. In fact we do not
need the exact value of (Popi) in the following argument.
It is enough to know that it is negative and of course
we knew it had to be negative before we calculated it.

We now inquire about the correlation function of the
x-component of electric field, G(v) =(A;(t)E,(t+7)). ,

G(r) will have a big positive spike at the origin, of
width about ~, whose exact shape is not important.
Outside this interval G(r) is determined by the proba-
bility of occurrence of a collision at t and a collision
at /+7 together with the correlation between the
impulses in these collisions. Remembering that the
probability of the next collision occurring in dt is,
proportional to exp( —7/r, ) and that the correlation of
successive momentum transfers is negative, we see that
G(v) must have the form, for v )7, and r( —r„

G(~)= IconstantXexp( I~I/") I.

We do not need to compute the constant for the fact
that fEgt is bounded guarantees that J' „"G(7)df,=0..

The "negative tails" given by (4) just balance the area
of the positive spike. In Fig. 1(a) this correlation
function is compared with the familiar correlation
function of a random sequence of uncorrelated pulses.
Fig. 1(b) shows the corresponding spectral densities,
these functions being as always the Fourier cosine
transforms of the correlation functions. If r,)&7.„as
assumed, the addition of the negative tails to G(r)
simply multiplies the ordinary spectrum by the factor
[1—(1+oPr,') '). Thus for frequencies co)&r, " the
spectral density is simply that of an uncorrelated
sequence reduced by the factor co'7,'.

It is easy to compute the spiv relaxation rate for
Nmcorrelated collisions with given mean square momen-
tum transfer in each coordinate. Consider a nucleus with
spin -'„ initially in the state m, =+-', , and follow the
motion of the vector which represents the expectation
value of the angular momentum. A pulse of electric
6eld E of duration ~ tips the vector about the x axis
by a small angle 5=21J,,Z r,/5. In our model the mean

' l am indebted to P. A. Franken and H. S.Boyne for straighten-
ing out this point, on which my original conclusion was wrong.
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square x-momentum transfer in a collision is 2MkT, so
that P=gp'MkT/(O'Z'e') Also .each collision con-
tributes a pulse E„r,with the same mean square value.
After a time ht»r„when the large number Dt/r,
collisions have occurred, the vector will have been
carried in a random walk away from the pole by an
angle 8 (itself still small) such that (8')=2Pht/r, .
Projecting the vector on to the axis we find the proba-
bility to observe, at time ht, the spin in the state
m, = ——,'. It is —',(1—cos8) or, since 8«1, 48' approxi-
mately. The transition probability 9' is therefore
43M Tp s/(lt'Z'e') But this is simply related to the
relaxation time T& for our two-level system by
1/Tt 2W. Hence the p——artial relaxa, tion rate which
would arise from electrical perturbations if the mo-
mentum transfers were uncorrelated, would be (in
agreement with reference 1)

8p,23Ek T

jg2g2g2

In view of the above, the actual rate is, instead,

81,2Mb To 2r,

Tt ts'Z'e'(1+(v'r ')
(6)

where co is the spin precession frequency determined,
of course, by some other circumstance of the experiment,
such as an applied magnetic field.

Now cur, is typically 10 2 to 10 4 in a gas under
reasonable experimental conditions, so the reduction
by correlation is severe. In fact a dipole moment as
large as Q(10 '4 cm would only allow relaxation in

-I
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FIG. 1. (a) G(r) for a random sequence of uncorrelated pulses
(dotted curve) and for a sequence with negative correlation of
consecutive pulses (solid curve); (b) the spectral densities corre-
sponding to the two cases.

days, at one atmosphere. The shortest possible relaxa-
tion time is attained for cur, =1.Suppose, - for instance,
&a=10s sec ', Ã/Z'=proton mass, T=300'K and
p,,=e&(10 " cm. Then the shortest attainable spin
relaxation time Tj is 400 seconds.

This looks encouraging until one examines possible
competing relaxation processes. Under the conditions
assumed, any ietrumolecular magnetic coupling to a
nuclear magnetic moment arising from other nuclei
in the molecule or, more generally, from molecular
rotation, would cause very rapid relaxation. Such
processes too are most effective when cur, =1. Indeed
they are described by a relation much like Eq. (6)
except that the factor in front, which now involves the
nuclear magnetic moment and the internal magnetic
Geld, is typically 10' times larger than in our electric
example above. So it is essential to use a monatomic
gas. Of course, we must require further that the atom
be electronically nonmagnetic, and in view of Eq. (6)
a low atomic number is desirable. He' is perhaps as
good a choice as any, a priori. Relaxation by magnetic
spin-spin interaction occurring during collisions is
relatively negligible if the electric dipole moment is as
large as assumed above. Possibly more serious is the
question of relaxation at the walls of the container. A
collision rate of 10' sec ' implies a mean free path so
long that the time to diGuse several centimeters would
be less than a second. On the other hand, increasing
the gas density will not only reduce the electric relaxa-
tion, but will also increase the rate of relaxation by
magnetic spin-spin interaction. Perhaps, as Franken
and Boyne suggest, ' a judicious compromise can still
make accessible an interesting range of electric dipole
strengths. It all depends on what range one considers
interesting. A limit on dipole strength as low as has
been established experimentally for the neutron'
(p.&eXSX10 "cm) is obviously far beyond reach.

We turn now to the question of electric relaxation in
crystals. The fact that the relaxation rate is a gas
decreases with increasing density is already an indi-
cation of what to expect. If we substitute into Eq. (6)
a collision time 7, appropriate to a Quid with its
molecules nearly in contact, say 10 " second, we
obtain for our "nominal" dipole of strength e)&10—'4

cm and the other quantities, M, Z, co, and T assumed as
before, a relaxation time in the neighborhood of one
year. However, the correct figure for T~, as we shall
see, is even greater, and by a very large factor.

In the crystal, as in the gas, the motion of the nucleus
uniquely determines the electric Geld acting on the
nucleus. The acoustic spectrum of the lattice therefore
provides all the information needed to determine the
intensity at any frequency in the spectrum of E(t).
Our problem is especially simple because we are con-
cerned with frequencies very much lower than the
Debye frequency, frequencies, that is, for which the

s Smith, Purcell, and Ramsey, Phys. Rev. 108, 120 (1957).
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lattice may be treated as an elastic continuum. To
find the intensity in the spectrum of E, say, in the
neighborhood of or, we have only to write down the
density of elastic modes in the neighborhood of co,

assign energy kT per mode (since 5&v((kT) and calculate
the corresponding nuclear acceleration. We are thus led
directly to a transition probability and thence to a
formula for the spin-lattice relaxation time:

2p 'M'o)4k T

Tz ~'A'Z'e'pc'

In Eq. (7) p is the crystal density and c is the velocity
of sound in the crystal, taken to the same for longi-
tudinal and transverse waves. With p = 1 g/cm',
c= 10' cm/sec, and the other quantities assigned
their earlier values, Eq. (7) gives for T~ about 10"
years.

The process we have considered bears some re-
semblance to magnetic spin relaxation in crystals, a
problem first treated in a classic paper of Wailer. 7

One is there concerned with the magnetic interaction
between neighboring spins and its modulation by
lattice vibrations which occurs because the dipole-
dipole interaction depends on the distance between the
spins. We recall that Wailer identified two processes.
In the 6rst or "direct" process, lattice vibrations at the
frequency corresponding to the nuclear spin transition
frequency ~ modulate the spin-spin coupling at this
frequency, producing transitions with consequent

7 I. Wailer, Z. Physik 79, 370 (1932).

relaxation. The second process involves lattice vibra-
tions at two frequencies, o&' and co", much higher than
ao but satisfying the relation co'—or"=co. Thanks to the
nonlinear dependence of the dipole coupling on inter-
nuclear distance, the resulting modulation of the
interaction has a component at the difference frequency
or which can cause the spin transition. Because the
process can be described as the inelastic scattering of a
lattice phonon by the spin system, it is often called the
"Raman" process. Now this "indirect" or "Raman"
process is under most circumstances vastly more
effective than the "direct" process. It is the latter,
obviously, whose electrical analog we have just been
analyzing. One naturally wonders whether a two-
phonon, or "Raman" process will dominate in the
electrical problem.

The answer is very simple: there is eo Raman process
in electric dipole relaxation. It is rigorously excluded by
the linearity of the connection between the nuclear
coordinates and the nuclear acceleration, which apart
from a constant factor is the same as the local electric
field. To put it another way, the spectral intensity of
lattice vibrations and the spectral intensity of the
perturbation p, E are directly related, freqleecy by
freqleecy. There is no such correspondence in the case
of magnetic dipole-dipole interactions.
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