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Motivated by Bainbridge's measurement, we have attempted a theoretical calculation of the change in
lifetime of the internal conversion of Tc" in compressed Tc metal. We have employed the Thomas-Fermi
statistical potential, corrected for the self-potential of the electron in question, to obtain the initial and final
state electronic wave functions for two volumes: the normal uncompressed state, and ten percent com-
pression. Because the energy available is so low ( 2 kev), the only contributions to the internal conversion
coefficient come from the Jjttf and higher shells, and mainly from the 3P and 3d levels. The principal contri-
bution to the change in the internal conversion coefficient comes, however, from the valence electrons,
particularly the 4p, 4d and Ss levels. In order to relate compression to pressure, we have estimated the
compressibility of technetium metal to be 0.27 megabar . From this compressibility and the assumption
that the internal conversion coefficient is linear in pressure, we calculate for the experimental pressure of 0.1
megabar a fractional decrease in lifetime of (2 to 4) X10 ', the quoted variation residing in the uncertainty of
the structure of the 4p band. This result agrees with Bainbridge's measurement, (2.3+0.5) &&10,within the
accuracy of our calculation.

I. INTRODUCTION

HE decay rate of the 2-kev electric octupole
isomeric transition of Tc" is known to be

measurably dependent upon the external environment.
Differences in the lifetime have been observed for
different chemical compounds, ' for the metal under high
static pressure, ' and for the superconducting state. ' Of
these environmental effects, that due to compression
of the metal is most amenable to a theoretical treatment.
In the present work we attempt a calculation of this
effect on the basis of a simple metallic model. Although
technetium is far from being a simple metal it appears
possible to incorporate the most essential features
without excessive complication. The use of a consistent
treatment of initial and final wave functions for
different atomic volumes makes the fractional change
in lifetime, to be compared with experiment, consider-

*Based on a thesis submitted by R. A. Porter in partial fulfill-
ment of the requirements for the degree of Doctor of Philosophy,
Department of Chemistry, University of California, Los Angeles.

'Bainbridge, Goldhaber, and Wilson, Phys. Rev. 84, 1260
(1951);90, 430 (1953).

K. T. Bainbridge (private communication). We are much
indebted to Professor Bainbridge for permission to quote this
result prior to publication. Previous mention of his work has also
been made by Chem. Eng. News BO, 654 (1952) and by R. Daudel,
J. phys. radium 13, 562 (1952).' D. H. Byers and R. Stump, Phys. Rev. 112, 77 (1958).

ably more reliable than any single element of the
calculation.

II. THEORY OF THE DECAY RATE OF Tc"

Because of the very low transition energy and the
large change in angular momentum involved, the decay
of Tc" occurs almost entirely by internal conversion.
The decay rate is therefore proportional to the internal
conversion coefficient n, which is given by the relation4

where W is the transition energy, @ the interaction
Hamiltonian, i and f are the initial and final electronic
wave functions, and 8 indicates summation over all
directions of emission and all substates of the initial
(bound) and final (continuum) states. The present
calculation will be nonrelativistic, since only valence
and near-valence electrons are involved. %'e shall treat
the metallic problem as spherically symmetric, and
thus ignore effects of the lattice structure except for the
periodicity of the Bloch waves. The interaction Hamil-
tonian is therefore

ieBr~ V+ (se/2) .V. BIM+eC, rM

4 In this section we employ the notation and units of M. E.
Rose, Mnltipole Fields (John Wiley and Sons, New York, 1955).



796 R. A. PORTER AN D W. G. McM ILLAN

where Bz,~ and C z~ are the vector and scalar potentials
for an outgoing electromagnetic wave of multipole
order I. Since we are dealing with an electric-type
transition, it is convenient to use the conventional
gauge, for which

Bz =P(2L+1)(L+1)jihz z(hr)Tz, z, g~(8,y), (3)

C z =st L/(L+1) j&hz, (hr) Yz, (|t,g), (4)

where h~ is a spherical Hankel function, P'~M a spherical
harmonic and Tz, z t~ an irreducible tensor on the unit
sphere.

Because virtually all the internal conversion occurs
in the near zone of the radiation 6eld, only the electro-
static term Cz, contributes significantly to n (A.

rough calculation showed that the terms in Bz~
contribute about 0.1% to the total decay rate. ) In
addition, the spherical Bessel function part of hl, is
negligible compared to the spherical Neumann function
part el, in the region of interest near the nucleus. Thus,
on dropping the small terms just mentioned and
performing the angular integration which results when
Eqs. (2) and (4) are combined with (1), we obtain

(L(2L+1)(2l,+1)i
*

~(W,L)=4~sWesg
~

E4 (Ly1)(2t,+ 1))
2

XC(L/clz, 00) &tfrt+Rt r'dr, (5)

where Rt; and Rty are the radial wave functions of the
initial and final states of angular momentum /; and lf,
respectively, and C (Li,lf, 00) is a Clebsch-Gordon
coeScient.

III. INITIAL STATE WAVE FUNCTIONS

The present calculation of wave functions for Tc
metal makes use of the spherical Thomas-Fermi (TF)
potential as applied to metals. ' We have attempted to
remove the electron self-interaction present in this
model by investigating two types of corrections. In the
first, the potential is taken to be

V(r) = Vpp(r), Vys&e/r,

V(r) =e/r, otherwise,

where t/'~F is the TF potential. This method, which
approximates the proper behavior near the atomic cell
boundary, r =r„will be referred to as the cutoG method.
It was employed by Latter' in his TF calculations for
free atoms. In the second method an electron wave
function is calculated for a given level in the un-
modified TF potential. This wave function is then used
to calculate the electron self-potential, which is in turn
subtracted from the TF potential. Finally this corrected

'P. Gombas, Dse Statsstsche Theorse Des Atoms (Springer-
Verlag, Vienna, 1949).' R. Latter, J. Chem. Phys. 24, 280 (1956).

TABIE I. Energy term values (in Rydbergs) for technetium.

boundary Normal volume (y =1) (~ =1.1)
Level condition TF CutoB SPC Experiment SPC

i il 111 1V v V1 ' vii

2$
2P
3$
3P
3d
4s
4p

iP =0
ttt =0
g =0
ttt =0
/=0

fyl 0
l4 =o

—200
-183—32.6
-26.3—15.1—2072-1.21-1.00
+0.69
+1.69
+0.51
+3.34

-200
-183—32.6
-26.3—15.1—2.74

—1.04

+1.59

—212
-197
-36.8
-30.5—19.6-4.31-2.50—2.47-0.19
+0.44-0.30
+2 32

-225
-206, -197—40.1—33.0, —31.5—19.0, —18.8—5.29-3.09—3.09

—30.4—19.4

-2.42—2.35-0.16
+0.58-0.23
+2.70

potential is used to obtain a new wave function for the
given level. This method will be referred to as the self-
potential correction (SPC) method.

For core electrons (M shell and below) the initial
wave functions P; are computed by requiring that
ii;(r,)=0, where r, is the radius of a sphere of volume
equal to that of the atomic cell. For the near-valent;e
4p band and the valence (4d and Ss) bands, wave
functions are computed for the top t'ai;(r, )=0j and
bottom g (r,)=0j of the band. The values of matrix
elements for intermediate positions in the band are
obtained by an interpolation scheme which will be
discussed later (Sec. V).

The energy term values computed with the TF
potential and its two modifications at the normal volume
(r,=2.84 Bohr radii) are given in the third to fifth
columns of Table I. No direct experimental values of
these quantities for Tc exist; however, interpolated
values from neighboring elements have been given by
Siegbahn. ' These are listed in the sixth column of
Table I. The two values given for some of the low-lying
levels reRect relativistic splittings, which are ignored
here. It can be seen that the cutoG method is only a
slight improvement on the TF potential, while the
SPC method is a substantial improvement. This latter
method was therefore made the basis for subsequent
calculations.

The wave functions for higher pressures can be most
easily found by repeating the calculation for smaller
values of r, and relating the compression st=Vs/V to
the pressure by means of a separate pressure-volume
relation. Unfortunately, no experimental pressure-
volume data exist for technetium metal, but the
compressibility can be estimated satisfactorily enough
for the present purpose. This estimate will be discussed
in Sec. VI. Only one compression in addition to the
normal volume was investigated, this being q= 1.1.The
energy term values from the SPC method for this
compression are given in the last column of Table I.
From this table it can be seen that only the 3f and
higher shells can contribute to internal conversion,
since for lower levels the electron binding energy is

s K. Siegbahn, Beta and Gamma Ray Spectros-co-py (Interscience
Publishers, N'ear York, 1955).
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greater than that available from the nuclear transition
(2 kev= 147 Rydbergs).

The band structure of the 4d and Ss bands was
approximated by the second-order perturbation method
of Silverman. ' In this method the energy Ez of a
valence electron characterized by a wave number
vector k is represented by

4d band
y =1.0 77 =1.1

5s band
y =1.0 77 =1.1

~0

E
E

—0.19
1.98
0.69
5.26

—0.16
2.13
0;72
5.47

—0.30
1.74
0.81
1.74

—0.23
1.53
0.80
1.53

TAsLE II. Valence band parameters for technetium
metal (in atomic units).

Eg= Ep+k'Es+O(k'). (7)

For the 5s band'

Es(5s) = sr, 'NP(r, )[r,f~'(r,)/f„(r,)],
where Np is the radial wave function for k=0 and f„is a
radial p-function which satisfies the radial part of the
equation

(V'+ V—E,)f,=o. (9)

This result was first obtained by Bardeen. "By a method
exactly analogous to that of Silverman for s bands, we
have derived for the 4d band the expression

Es(4d) =r,'np'(r, )L27r,fi'(r, )/f ~ (r,)
+28r,f„'(r,)/f„(r,)]/105, (10)

where fy is a radial f-function satisfying (9).
Assuming that all seven valence electrons above the

4p level lie in the 4d and 5s bands, the numbers 1V4q

and Xs, of electrons in these bands can be calculated
from the following conditions: (i) the number of
electrons in the bands must add to seven, and (ii) the
energies (chemical potentials) of the highest filled level
in each (partially filled) band must be the same. Since
the density of states p(k) is assumed to have the free-
electron form t a consequence of neglecting terms of
order higher than k' in Eq. (7)], the first condition
leads to the relation

7 =X4s+Xs,——(4r s/9z. ) (5E4s'+Es, s), (11)

where the E's are the maximum occupied values of k
in the bands. The second condition leads to the relation

Ep(4d)+Es(4d)Z4s'=Ep(5s)+Es(5s)Es, '. (12)

Equations (11) and (12) can be solved simultaneously
for the E's, from which the E's can be obtained. For
each band the values of E2, E, and E, along with the
values of Eo from Table I, are listed in Table II for
g=1.0 and g=1.1. It will be noticed that as expected,
electrons pass from the Ss band to the 4d band on
compression.

IV. FINAL STATE WAVE FUNCTIONS

In calculating the wave function of the ejected
electron in its final state, we have assumed that (a)
inside an atomic cell, the potential is the same as for

s R. A. Silverman, Phys. Rev. 88, 227 (1952).
'The wave function ep in Eq. (8) is normalized such that

Jp"Np'r tfr =1.
'P J.Bardeen, J.Chem. Phys. 6, 367 (1938).

the initial state; and (b) outside the cell, the radial part
of the wave function eventually has the form of a
spherical wave,

Rig ——A sin(kr)/r.

The kinetic energy is determined by the difference
between the binding energy of the electron in its initial
state and the energy available from the nuclear transi-
tion, 2 kev. The values of lf are determined by the usual
vector model selection rules. Our procedure was to
calculate the wave function in a region which included,
besides the atomic cell, a small region outside the cell
(extending in our calculations to 2.25r,) in which the
potential was set equal to e/r. The purpose of this
outer region was to enable the wave function to settle
down to a constant amplitude A by which it could be
characterized outside the cell. In all cases the amplitude
of the last two extrema in rRiy agreed to better than
one part in 104. The portion of the wave function inside
the atomic cell is used to calculate the matrix element;
in the final calculation, the square of the matrix element
is then multiplied by (2rN/E)'*/A're, where E is the
energy of the final state, in order to normalize the final
state wave function to unit energy range.

V. RESULTS FOR THE CONVERSION COEFFICIENT

It was shown previously that only the M shell and
above contribute to internal conversion in Tc" . A
rough calculation was performed using the unmodified
TF potential to determine the relative importance
of the different levels and of different values of ly. It
was found that the 3s and 4s levels contribute less than
1% to the absolute value of n, and an even smaller
percentage to its charge on compression. Values of /y

above the lowest for a given initial state were also found
to give insignificant contributions to hn/n (It was at.
6rst thought that the 3d, ly=3 matrix element might
be important, and it was carried in the more reined
calculation; however, its contribution to hn/n turned
out to be negligible. ) The reason for these results has
been indicated by the work of Slater, "who calculated
the relative contributions of the different electron levels
of the free Tc atom to the decay rate of Tc" . He
found, as we also have found, that almost the entire
contribution to the matrix element occurs in the region
0&r/r, &0.1. The reason that the s levels contribute so
little is that the s wave functions have a node in the

"J.C. Slater, Phys. Rev. 84, 1261 (1931).
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TABLE III. Contributions of various types of wave functions to the
conversion coefficient (SPC).

Initial Boundary
state condition /y.

4pb

5$

/=0
/=0
/=0

PI 0
/=0
P'=0

14=0
Pf 0
/=0

P1 0
/=0

q =1.0
N; 10-8(Nicsfi)

5.4486
7.9140
0.0610
0.4911
0.2360
0.2754
0.4940
0.0860
0.1704
0.0004
0.0008

6
10
10
4.28
1.72
2.4
3.6
3.20
2.06
0.79
0.95

Ni

6
10
10
4.28
1.72
3.6
2.4
3.27
2.19
0.76
0.77

=1.1
10-8(Nicrfs)

5.4492
7.9165
0.0610
0.4735
0.2376
0.2655
0.4973
0.0892
0.1899
0,0005
0.0015

a Using Eq. (17).
b Using Eq. (18).

I I I I
t

IO

I

"a
O

E
Q) 3~
E

FrG. 1. Metallic bond force
constant k as a function of
nearest-neighbor bond length
Do for some elements of the
second transition period, after
Pauling and Was er." The
dashed line represents the
nearest-neighbor distance in
technetium.

3Q

D (A)

middle of this region, causing a partial cancellation.
The p and d functions do not have a node in this
region. (The contribution of the 5s band to n is also
very small, but it makes a larger contribution to An/n
since the effect of compression is greatest for this band. )
Similarly the higher values of /y do not contribute
significantly because the indicial behavior of Rt~ is
like r'J'; thus for high /y the important part of the wave
function near the nucleus is smaller.

Before proceeding to a description of our more
accurate calculation, we must describe our method of
estimating the matrix elements for values of k between
k=0 (f =0 boundary condition) and k=k, ($,=0
boundary condition) in the 4p and valence bands. We
express the initial state wave function as a Bloch wave,

tp;=uq(r) exp(ik r).

Expanding both N~ and exp(ik r) in powers of k and
keeping only terms up to k' gives

lg~=lp+k[li+irNo cos(k r)7+k'[N2+irli cos(k r)
—(r'/2) eo cos'(k r) 7. (13)

But Ni ——i cos(k r) [ma+terms in fi,+i such as to
make Ni(r, )=07. Thus the term linear in k makes no
contribution to the matrix element due to the vanishing

ny;= ni;(k)p(k)dk p(k)dk
f
0 0

(15)

For both the 4d and Ss bands, we have made the
approximation that p(k) k', so that, using Eq. (14)

ng; ——[1—(3E'/5k . ')7ng;(0)
+ (3E'/5k, ')ng;(k ). (16)

E is obtained from Table II, and k, from the free-
electron relation k, = (9m/2)&/r, .

The filled 4p band presents a diKcult problem, since
the values of the matrix element for the /=0 and P'=0
boundary conditions differ much more than might
naively be expected from the narrowness of the band.
We have not attempted a detailed calculation of the
structure of this band, but have instead employed two
approximations to the density of states p(k) which
we feel represent limits to the true band structure.
The first is a symmetrical band shape p(k) k'(IC —k)',
for which

(5/7)+f ''(0)+(2/7)+r '(k ) (17)

The second is a parabolic shape, p(k) k', cut off at
k=E, for which

This uncertainty in the 4p band calculation is one of the
major sources of error in our calculation of hn/n

In our more refined calculation of n and hn/a, we
employed the SPC potential described previously. The
grid used was fine enough to guarantee an accuracy in
the amplitude of Pr of 1 part in 10'. The matrix elements
found to be unimportant in the earlier crude calcu-
lation were neglected. The results" are summarized in
Table III. The electron number weighting E; for a
given initial wave function and boundary condition is
obtained by using Eq. (16) together with Table II for
the 4d and Ss bands, and Eq. (17) or (18) for the 4p
band. With the notable exception of the 4P, iP'=0

"After the calculations were completed, it was discovered that
a value of 137 Rydberg=1. 82 kev had been used by mistake for
the transition energy instead of the intended value 147 Rydberg
=2.0 kev. We have since found that recent measurements by
M. S. Freedman et al. , Phys. Rev. 108, 836 (1957), give the value
of 2.15%0.03 kev =159&2 Rydberg. We do not believe that the
essential conclusions regarding the comparison of our results with
the experimental results of Bainbridge are affected by this error.

of the angular integral. Since Pi is nearly independent
of k, the contribution nr; t jiP;+Sgg~dr~' of a given
initial and Anal state can therefore be approximated
reasonably by a form parabolic in k:

Q f (k) ='ny, (0)+ (k'/k .') [ny;(k, „)—nr;(0)]. (14)

Higher terms in k should have little eGect since the
higher terms in (13) are proportional to higher powers
Of f.

The total contribution to the conversion coefFicient
averaged over a partially filled valence band is found
from
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Tam, E IV. Sensitivity of internal conversion matrix elements to the potential.

Initial
state

Boundary
condition

/=0
/=0
P'=0

g =1.0

8.5110
7.3097
0.0985

1 ~ 1

8.5100
7.3081
0.0948

105(hay;/e) a

—0.17—1.1
2.7

Uncorrected TI& potential
10 loafs

g =1.0

9.0810
7.9140
0.1147

Self-potential correction
10 7afs

104(hay;/n) a

+0.7
+1.8—2.9

9.0820
7.9165
0.1106

a loafs —=cxfs(g =1.1) —
cxfi ('g = 1.0), e taken as 1.44 )(109 for both cases.

case, all matrix elements increase upon compression.
We cannot say whether the strikingly anomalous
behavior of this matrix element reflects physical reality
or is simply a mathematical quirk.

The total conversion coefficient is obtained by
summing the contributions given in Table III. Using
(17) for the 4p band, we obtain

n = 1.4408X 10', g = 1.0,
n= 1 4419X10', g= 1.1.

Using (18) for the 4p band, we obtain

~= 1.4451X 1.0', q= 1.0,

o.= 1.4471X10', g = 1.1.

The uncertainty in the 4p band calculation thus
introduces an uncertainty of about a factor two in Ae.

To test the sensitivity of our calculation to the
potential, a few matrix elements were also computed
in the uncorrected TF potential with better numerical
accuracy than in the crude TF calculation mentioned
before. The values of nf; and Anf, /n are listed in
Table IV for both the SPC and TF potentials. It is seen
that the absolute values of ny, deviate by 5 jo. The
values of Any;/n differ even as to sign for the 3p and 3d
matrix elements, but surprisingly the large negative
value of d,ny~/n for the 4p, f'=0 matrix element is
fairly accurately reproduced. The self-potential correc-
tion is therefore seen to be a most essential feature of
the calculation.

from the zero-pressure compressibilities of neighboring
elements, which are listed in Table V.""The analogous
elements from the row below technetium are also listed,
since they have similar atomic volumes and crystal
structures. Because the elements in these groups are
fairly incompressible, there is probably no great error
in assuming that the compressibility of technetium is
constant up to g=1.1. From Table V one can infer for
technetium a compressibility P 0.3 megabar '.

A semiempirical estimate of the compressibility can
also be made by utilizing the regularity, observed by
Kaser and Pauling, " between the nearest-neighbor
bond length Do and the inverse cube root of the metallic
bond force constant k, defined by

k =9Vp/eDp'P,

where Vo is the normal volume of the unit cell contain-
ing e equivalent nearest-neighbor bonds. This regularity
is indicated in Figs. 1 and 2, which correspond, respec-
tively, to the two periods listed in Table V. In Fig. 2
it will be seen that rhenium, the analog of technetium,
unfortunately lies between the two linear sequences.
Assuming a similar behavior for technetium, we estimate
a value k & 2.1, corresponding to P 0.27 megabar '.

The crude result just obtained can be used to orient
the results of the last section with respect to Bain-
bridge's pressure experiment. It indicates that a
compression of ri= 1.1 corresponds to a pressure p 0.34

VI. COMPRESSIBILITY OF Tc METAL

In order to relate the results quoted in the last
section to the pressure experiments of Bainbridge,
we must make an estimate of the compressibility of
technetium metal. A rough estimate can be obtained

TABLE V. Zero-pressure compressibilities (megabars ') and crystal
structures of elements neighboring technetium.

Fro. 2. Metallic bond
force constant k as a
function of nearest-
neighbor bond length D0
for some elements of the
third transition period,
after Pauling and
Was er." The rhenium
point is calculated from
the data of Bridgman. 1

lO

I

C
Oa$-

E
O

0.581
bcc

42
Mo

0.367
bcc

43
Tc

hcp

44
Ru

0.349
hcp

45
Rh

0.368
fcc 2.5 M

D, (A)
73
Ta

0.488
bcc

74
W

0.324
bcc

75
Re

0.269
hcp

76
Os

hcp

77
Ir

0.273
fcc

"Except for rhenium, the compressibilities in Table V are
taken from the compilation of J. Waser and L. Pauling, J. Chem.
Phys. 18, 747 (1950).

"The rhenium datum is taken from P. W. Bridgman, Proc. Am.
Acad. Arts Sci. 84, 111 (1955).
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TABLE VI. Relative contributions of electron
states to the decay rate of Tc"~.

Electron state
Pp of Total decay rate

Slater This work

3p
34
4p
4d

0.60
0.27
0.10
0.03

0.38
0.53
0.05
0.01

megabar. Thus if we assume that the internal con-
version coefficient is linear in compression (or pressure)
and use Eq. (17) for the 4p band, we find

Ln(p=0. 1 megabar) —n(p=0))/n=2. 3&(10 ',

while if Eq. (18) is used for the 4p band, we obtain

fn(p=0. 1 megabar) —n(p=0) j/n=4. 0)&10 '.
These theoretical results agree with the experimental
value of Bainbridge, '

Ln(p=0. 1 megabar) —n(p=0))/n= (2.3+0.5))&10 ',

within a factor of two. The coincidental agreement of
experiment with the first of our theoretical numbers is
not to be taken as evidence that Eq. (17) is necessarily
a better representation of the 4p band structure, since
other errors in the calculation may be of the same order
as the difference between the two theoretical results
quoted.

VII. DISCUSSION

The absolute value of n for technetium is of interest
in its own right, since it is the highest ever calculated.
Using the experimental half-life t~ of 6.0 hours, the rate
of gamma emission X~ is given by

ln2
E~= 0X10 'yr '.

1;(1+n)

This can be compared with the independent estimate of
S~ based on some nuclear model. For example, on a
simplified model in which transitions are ascribed to
a single nonrelativistic proton moving in a uniform
central velocity-independent field, " one obtains, using
a transition energy of 1.82 kev, "

X&=88X10 'yr '

The agreement between these two numbers for E~ is
respectable considering the many approximations
involved.

The relative contributions of the diGerent electron
levels have been computed by Slater" for the free atom.
His results are compared with ours in Table VI. The
divergence between the two sets of results seems large
even when account is taken of the diGerence in physical
state (free atom vs metal) and the fact that Slater used
1/r' for the radial dependence of the electromagnetic
field rather than the spherical Hankel function used
here. A measurement of the spectrum has been made by
Freedman et al. ,"but they obtain the relative contri-
butions Ml'. %~3'.3II4+5'.E::3:3:1:0.9, in violent dis-
agreement with both Slater's and our calculations.
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