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Hartree-Fock calculations have been carried out for the Mn** jon in cubic fields produced by sets of
octahedrally placed point charges. The two types of cubic 3d electrons were allowed to have different radial
dependence. The relaxation of the constraint of having a single 3d radial function led to effects which were
small but which the writer believes should be included in any detailed treatment of a paramagnetic ion in a

crystalline field.

I. INTRODUCTION

TTEMPTS at parameterizing experimental optical
absorption data have been met with a great deal of
success. A number of different sets of parameters have
been used. One that has been frequently used when
studying data for iron series (Sc to Cu) ions in cubic
fields is F2(3d,3d), F*(3d,3d), and D,. The F*(34,3d)’sare
Slater two-electron integrals and D, measures the inter-
action between the ion and the crystalline field. There
are several important assumptions behind this choice of
parameters. First, it is assumed that the iron series ion
can be described as a Hartree-Fock wave function.
Secondly, that for any state of the ion, there is a com-
mon one-electron radial function for all the electrons in
any given shell and lastly, that all the ion states have
a common one-electron radial function for each shell.
Work has been done in trying to make theoretical pre-
dictions of the parameters and the results have been
poor. It has often been the case that the cruder efforts
have led to the best results.

This paper is primarily concerned with the prediction
of D,’s but let us first consider F2(3d,3d) and F*(3d,3d)
and in particular turn to F*(3d,3d)’s for free iron series
atoms and ions. The F*(3d,3d)’s appear as parameters
in the multiplet spectra if the assumptions of the last
paragraph are made. Much work has been done in
fitting parameters to the experimental multiplet spectra.
This work has been only mildly successful. Difficulties
frequently occur when attempting to predict the energy
difference between states of different total atomic
spin (S). For example,! the (3d)* configuration has
sextet, quartet and doublet states and several of the
doublets are violently out of position for any choice
of the F*(3d,3d)’s which give reasonable positions for
the other states. We should note that occasionally
‘there have been difficulties in parameterizing optical
absorption data when the resonance has involved tran-
sitions between states of differing .S. It has been gen-
erally thought that this was due to spin dependent

* The research reported in this document was supported in part
by the Office of Naval Research, and in part by the U. S. Army,
Navy, and Air Force under contract with Massachusetts Institute
of Technology.

1R. E. Watson, Iron Series Hartree-Fock Calculations, Tech-
nical Report No. 12, Solid-State and Molecular Theory Group,
Massachusetts Institute of Technology, June 15, 1959 (un-
published).

D/’s. The free ion fits suggest that there are other pos-
sible causes for this.

The writer!? has done a number of Hartree-Fock
calculations for the iron series atoms and ions. The
resultant F*(3d,3d)’s predict more widely spaced
multiplet spectra than are observed. In other words,
the calculated F*(3d,3d)’s are larger than the “experi-
mental” F*(3d,3d)’s. Accurate predictions of the
observed free ion spectra require the handling of the
“correlation” problem and the abandonment of the
one-electron function, one radial function per shell,
Hartree-Fock description of an ion. This implies that
the “experimental” F*(3d,3d)’s should not be thought
of as exact F*(3d,3d) integrals. Due to the absence of
the exchange interaction between electrons, Hartree
calculations yield one-electron wave functions which
are expanded in comparison with Hartree-Fock func-
tions. As a result, the Hartree F*(3d,3d)’s are smaller
and in better agreement with the ‘“experimental”
F*(3d,3d)’s. One might think that the smaller
F*(3d,3d)’s give us a reason for using Hartree rather
than Hartree-Fock wave functions. The writer does not
agree with this for he dislikes the technique of using a
cruder formalism for which errors happen to cancel
and, as we will see shortly, the extended nature of
Hartree functions can give trouble when one computes
D/s. In contrast with a Hartree solution, a treatment
of the “correlation” problem (for example through the
use of configuration interaction) will lead to an elec-
tronic charge density which is contracted in comparison
with a Hartree-Fock charge density.

Let us now consider the problem of predicting D,
values for the optical absorption of iron series ions. To
do this we need a 3d one-electron radial function and a
cubic field. With these we have

D~ f Cusa(r) BV (i, )

where #34(7)/7 is the radial part of the 3d wave function
(¥3q) and V4(r) gives the dependence of the cubic field
on the distance () from the iron series ion. One would
like to obtain the 3d function by a self-consistent field
calculation for the ion inside an appropriate potential.
No such calculations have existed and in fact until

2 R. E. Watson (to be published).
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recently,® no truly self-consistent Hartree-Fock calcu-
lation has existed for a free, unclosed 3d shell, iron
series ion. As a result, workers have used Hartree or
even cruder functions. The V4(r)’s which have been
used have generally been even more crudely based. To
illustrate this, let us consider the case of an iron series
ion surrounded by an octahedral array of six nearest
neighbor negatively charged ions. Such a situation
occurs on the insertion of an iron series ion into an ionic
NaCl structure crystal. The simplest model for the
crystalline field is one where the nearest neighbor ions
are treated as point charges and the rest of the crystal
is neglected. The resultant V4(r) is illustrated in Fig. 1
for neighboring ion charges of —1 and —2. A somewhat
more realistic environment would be one where the
point charges are replaced by the free ion charge
densities. This would give a V4(r) of the form also
illustrated in Fig. 1. This V4(r) has some interesting
features. As one moves out from the iron series ion
(the origin), V4(r) is small and positive and then it
becomes large and negative in the region of the nearest
neighbor ions. This is easily understood, for we can
draw a sphere about a nearest neighbor ion such that
the total charge inside the sphere is zero. Outside of the
sphere the ion’s charge appears to be negative [and
hence V4(r) is positive for a negatively charged electron ]
and inside the sphere the ion appears to be positively
charged [with V4(r) negative]. This means that there
is a region where the integrand of Eq. (1) contributes
positively to D, and another region where a negative
contribution is made. This can cause difficulties as
Kleiner’s* work shows. Kleiner used a similar V4(r) in a
crystalline field calculation for chrome alum. Six H,0O
molecules form an octagon about a Cr**+ ion in this
substance. A 3d function from a Hartree calculation by
Mooney® for Crt* was used and a negative D, was
obtained. This is the wrong sign. The author’s more
recent H-F calculations!? for Crt+ (the ion for which

Yaa(me=+2)
Yza(mg=+1)
if {Ysa(me=0)
Yaa(mp=—1)
Yaa(me=—2)

If the 3d radial functions are constrained to be the
same, the 3d shell is spherical and will not interact with
V4(r). As a result, a Hartree-Fock calculation for the
ion in a cubic crystalline field would yield the free ion
results. In the calculations to be described, the two
types of cubic 3d functions, the 22—3? and 3z2—r2

3 The first truly self-consistent Hartree-Fock calculation for a
nonclosed 3d shell atom or ion was published by B. H. Worsley,
Proc. Roy. Soc. (London) A247, 390 (1958). Since then, there has
been work by D. F. Mayers [to be published in Proc. Roy. Soc.
(London)] and the author.t2

¢ W. H. Kleiner, J. Chem. Phys. 20, 1784 (1952).

& R. L. Mooney, Phys. Rev. 55, 557 (1939),

743

Mooney made his calculation) and Cr*+ (the ion in
chrome alum) yield 3d functions which are more
contracted than Mooney’s function. Either of the
author’s 3d functions would yield a positive D, when
integrated with Kleiner’s V4(r). A calculation with the
cruder point charge Va4(r) would have, of necessity,
yielded a positive D,. Kleiner’s experience is illustrative
of the problems connected with a calculation for a D,.
It is clear that the choice of 3d functions and V4(r)’s
is critical. This matter has not been extensively ex-
plored due to the computational difficulties associated
with the work. The purpose of this paper is to investi-
gate the choice of 3d functions with particular emphasis
on the question of whether or not it is reasonable to
restrict the 34 electrons to a single radial function. The
choice of V4(r)’s will not be investigated. The writer
has attempted to gain insight into these matters with
a series of Hartree-Fock calculations for the Mnt+
ion in a cubic field due to a set of six octahedrally
placed point charges. Point charge V4(r)’s were used
because they could be handled with existing Hartree-
Fock procedure computer programs. The “strong field”
approximation was used (i.e., the individual 3d one-
electron functions have cubic symmetry) and the two
types of cubic 3d functions were allowed different
radial functions. The point charges were placed at a
distance of 3.971 a.u. (the MgO nearest neighbor
distance) from the Mnt*t ion and calculations were
done for charges of —1 and —2 at each charge site.
Mn**, with its half filled 3d shell, is a rather special
case. As a free ion its ground state is (3d)° 8S which has
a spherical charge distribution. When all the radial
functions of any given shell are the same and when

Ms=S=3,

the Hartree-Fock ion wave function is a single determi-
nant with all 3d functions of one spin included. The
determinant remains a 85 state if the five 3d functions
are put into their cubic form, i.e.,

¥z which equals 2 [Ysa(me=+2)+sa(my=—2)]
¥3:2_p2 Which equals Y34(mg=0)

are replaced by < ¥., which equals 2 sa(me=~42)—¢sa(me= —2)]
¥y. Which equals 274 Ysa(me=+1)—Ysa(me=—1)]
Y.z which equals 2= [Ysa(me=+1)+sa(me=—1)].

(henceforth denoted x#*—%?) on one hand and xy, y2,
and zx (henceforth denoted xy) on the other, are
allowed to have different radial functions. They will
have different radial functions since they interact
differently with a V4(»). Once the radial functions are
not the same, the single determinant ceases to be a &S
state.

The point charge version of V4(r) was chosen of
necessity but I believe that it will serve very well for
my purposes. A survey of the signs of experimental
D./’s tells us that it is the inner positive region of V,(r)



744

which is most important and this region will be quite
well described by a point charge V4(r) (perhaps with a
charge between —1 and —2 for a doubly negative
nearest neighbor ion). The purpose of this work is to
explore the behavior of 3d functions when solved for
in cubic fields. The author is more interested in ob-
serving this behavior than in duplicating an experi-
mental D, thus an ‘“‘accurate” V,(r) is unnecessary.
Comparison will be made between the results for
different V4(7)’s and not with experiment.

II. CALCULATIONS

The calculations were done on the Whirlwind
computer with the Roothaan procedure® as modified
by Nesbet.” This is an analytic Hartree-Fock method
and it produces one-electron radial wave functions
(#:(r)’s) which are linear combinations of normalized
basis functions (z,s), i.e.,

wi(r)=2_; Cismj (2)
and in our case,
ny= N rmie—sr, ®)

I have used the set of #,’s which was used in my free
Mnt+ 6§ Hartree-Fock calculation.!? They are

nj 2 N;
for the construction
of s functions 1 1 26.0651 266.14547
2 2 22.7184 2840.6235
3 2 11.4540 512.69885
4 3 10.5661 1616.7403
5 3 6.0612 231.15000
6 3 3.8730 48.206424
for the construction
of p functions 7 2 16.0787 1197.0068
8 2 9.5095 322.00567
9 3 8.7370 831.20281
10 3 4.9595 114.54373
11 3 3.0743 21.480808
for the construction
of d functions 12 3 2.0235 4.9693541
13 3 3.9754 52.816745
14 3 7.4822 483.10479
15 3 13.4624 3774.5700

An octahedral array of six point charges produces a
spherical [Vo(r)] and a cubic [V4(r)] potential. Vo(r)
interacts with the s, p, and & functions while Vy(r)
interacts with only the d functions. Vo(r) is constant
in the region inside of the point charges and falls off
as 1/r outside. The writer carried out Hartree-Fock
calculations with Vo(r) included in the Hartree-Fock
equations. It had almost no effect on the results as one
would expect since only a small part of the Mnt+
electronic charge is outside of the region where Vo(r)
is constant. V() is neglected in the calculations which
will be reported. Let us consider the V4(r) contribution

8 C. C. J. Roothaan, Revs. Modern Phys. 23, 69 (1951).

7R. K. Nesbet, Proc. Roy. Soc. (London) A230, 312 (1955);
Quarterly Progress Reports 15, 16, and 18, January, 1955,
April, 1955, and October, 1955, Solid-State and Molecular Theory
Group, Massachusetts Institute of Technology (unpublished),
pp- 10, 38, 41, and 4, respectively.
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v, (1)

— V,{ridue to a charge of
-2 atr /

“““ V,(r)due to a charge of \ /
=1 at r,

=== V,()due to an ion of total \
charge-2 at r,

fo is the interionic distance \ ]

1 2
3% 3% o

F1c. 1. V4(r) as a function of ».
and define
V)= [ wtu Vi, @

where
Vi(r)=rt/rdd for r<r, )
ret/r5 for r>ro,

where 7, is the nearest neighbor distance (3.971 a.u. in
these calculations). The crystalline field splitting is
normally defined as 10D, and if the two types of 3d
functions have the same radial dependence, 10D,, for
the point charge V4(7), is

10D,=+53([7+ (70)1]/21} V4(3d,3d).  (6)

¥ is the magnitude of a single point charge or 1 and 2
in these calculations. The “crystalline field splitting”
must be redefined for the case of two different 3d radial
functions. This requires an investigation of the contri-
butions V,(r) makes to the 3d one-electron energies.
The contribution to the xy one-electron energy is

—25{[7+(70)*]/21} V*(xy,xy), ()
and for the x2—y? function it is
+35{[7+ (70)}]/21} VAP —y%, = 7).  (8)

It should be noted that the magnitude of each contri-
bution is proportional to the degeneracy of the other
type of function. The 10D, is normally defined as the
change in the crystalline field contribution to the ion’s
total energy when an xy function is replaced by an
x?—+? function and when each type of one-electron
function has the same radial dependence for both the
initial and the final ionic state. In other words, 10D, is
simply Eq. (8) minus Eq. (7). This yields Eq. (6) if
V4(xy,xy) equals V4(x2—9? x2—3?%) and if the integrals
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are not equal, one obtains

10D,=3{[7+ (70)]/21}[2V* (xy,x)
+3V(@ =y, =) ] (9)

This expression will be used below.

The Hartree-Fock equations for the 3d functions
appear in Appendix I. They are rather different than
the free Mn*+ 3d Hartree-Fock equations despite the
fact that they become the free ion equations when
V4(r) is removed and #,,(r) equals #,2_,2(r). Except for
the contributions from two rather than one type of 3d
function, the Hartree-Fock equations for the other
occupied shells are identical with the free ion ones and
will not be reported by the author. ’

III. RESULTS

The combining coefficients (Cj;), which define the
final #;(r)’s in terms of the basis set, are to be found in

TaBLE I. Combining coefficients (Cj;).

Mn** in cubic Mn** in cubic

field with field with
Free Mn*+ F=1 F=2
7 i=1s
1 +0.92029428 -+0.92029500 +0.92029333
2 +0.09863379 +0.09863225 +0.09863773
3 —0.00313726 —0.00313536 —0.00314522
4 -+40.00225118 +0.00224963 +0.00225925
5 —0.00055350 —0.00055296 —0.00055769
6 +0.00011878 +0.00011861 -+0.00012049
1=2s
1 —0.27738741 —0.27738803 —0.27738782
2 —0.16713964 —0.16714428 —0.16714516
3 +0.76012694 +0.76014226 +0.76014292
4 +0.38685587 . +0.38684234 +0.38684394
5 +0.02478087 +0.02478395 +0.02478226
6 —0.00143917 —0.00144142 —0.00144357
1=3s
1 +0.10216923 +0.10217357 +0.10218396
2 +0.05842931 +0.05842772 +0.05841713
3 —0.27459472 —0.27459093 —0.27455994
4 —0.32927989 —0.32933381 —0.32948726
5 +0.39384716 +4-0.39396989 +0.39426818
6 +0.79950612 +0.79942190 +0.79922133
1=2p
7 +0.15937739 +0.15938378 +0.15937851
8 +0.84954106 +-0.84952920 +0.84954172
9 +0.00512492 -+0.00513839 +0.00512818
10 +0.01961790 +0.01960454 +0.01960767
11 —0.00422519 —0.00422027 —0.00422369
1=3p
7 —0.04780407 —0.04781460 —0.04783557
8 —0.33758535 —0.33758470 —0.33758282
9 —0.01405616 —0.01409630 —0.01418821
10 +0.63249462 +40.63265198 +0.63298088
11 +0.49397930 +0.49384790 -+0.49357649
1=23d 1=x2—9y?
12 +0.44792419 +0.42604735 +0.40519961
13 +0.55374026 +0.57452833 +0.59402656
14 +0.13477286 +0.13236102 +0.13015887
15 +0.00633154 -+0.00737900 +0.00834895
1=xy
12 +-0.46290931 +0.47822797
13 +0.53928142 +0.52433174
14 +0.13652402 +0.13837197
15 +0.00559107 -+0.00481742
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F16. 2. 3d radial wave functions as a function of r for the
Hartree-Fock calculation for Mn**+ in the —2 charge V4(r)
potential.

Table I. The C,/’s for the author’s free Mn*+ 8§ calcu-
lation appear there along with those for calculations
with 3 equal to 1 and 2. The #,2_,2(r) and #,,(r) for the
=2 calculation are graphed in Fig. 2. Table II lists
a number of one- and two-electron integrals. The
K (7)’s are the one-electron kinetic plus nuclear potential
energy integrals. V*(3d,3d) contributions are not
included in the K(3d)’s. All the two-electron F*(%,7)
and G*(7,7) integrals that contribute to the ion’s total
energy are included in the table. Inspection of the table
shows that the F*(xy,xy)’s and F*(x?—14?, 22—4?) differ
with each other by about ten percent and the V*4(3d,3d)’s
show a twenty percent difference for the 3=2 calcu-
lations. The differences are approximately half as great
for the =1 calculation.

The total energies of the ions will be found in Table
III. The energies have been tabulated both with and
without the contributions from the cubic fields. We
should note that the V4(3d,3d) contributions to the total
energies would equal zero if the two types of 34 radial
functions were constrained to be the same. Lack of
common radial functions leads to total energy contri-
butions of ~—370 cm™ (0.0034 ry) for the 3=1
calculation and ~—2180 cm™ (0.0199 ry) for &=2.
Another feature of interest is the fact that the free ion
total energy is stable for rather substantial variations
of the 3d electrons.

If we use Eq. (9) and calculate 10D, for the =1
solution, we would obtain

10D,=4275 cm™, (10)
and for the =2 solution,
10D,=8412 cm™ for a 3=2 field, a1

or 4206 cm™ for a 3=1 field.

Note the rather good agreement when 10D, is computed
for the same field.
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TaBLE II. One- and two-electron integrals all integrals
are in Hartree units (1 a.u.=2 ry).

Mn*+ in cubic Mn*+ in cubic

One-electron kinetic

+-nuclear potential field with field with

energy integralss Free Mn*+b F=1 F=2
K(1s) = —312.3568 —312,3568 —312.3568
K(2s) = —76.34235 —76.34245 —76.34249
K(3s) = —29.24340 —29.24393 —29.24516
K(2p) = —75.66955 ~75.66961 —75.66963
K(3p) = —27.44747 —27.44840 —27.45030
K(x2—y?) = —22.95467 —23.18053 -—23.38148
K(xy) = —22.95467 —22.79803 —22.64472
Cubic potential

integrals
Vi(x2—92 x2—92) = e +40.005093 +40.004783
Vi(xy,xy) = oo +0.005669 +0.005918
Two-electron

integrals
F°5ls.ls) = +15.27457 +15.27458 +15.27457
Fo(1s,2s) = -+4.527865 +4.527879 +4.527881
Fo(1s,3s) = +1.525485 +1.525534 +1.525647
Fo(2s5,25) = +3.222584 +4-3.222595 +-3.222598
F(2s,3s) = +1.370124 +1.370162 —+1.370247
F0(3s,3s) = +1.045595 +1.045625 +4-1.045692
GO(1s,2s) = -+0.4120717 +0.4120749 +0.4120748
GO(1s,3s) = -+0.0514755 +40.0514795 -+0.0514885
G9(2s5,3s) = 4-0.0879206 -+0.0879270 +0.0879410
F2(2p,2p) = +1.740557 +1.740561 +1.740565
F°(2p,2pg = +3.689427 +3.689435 +3.689441
F2(2$,3p) = +0.2586813 +0.2587060 +0.2587584
F°(2p.3p; = +1.345266 +1.345330 +1.345628
F2(3p,3p) = +0.4983987 +0.4984278 +0.4984874
Fo(3p,3p) = +40.9909815 +0.9910341 -+0.9911421
Fo(1s5,2p) = +5.064964 +5.064976 +5.064979
F0(2s5,2p) = +3.406107 +3.406117 +3.406121
Fo0(3s,2p) = +1.389760 -+1.389799 +1.389888
Fo(15,3p) = +1.479725 +1.479805 +1.479971
F0(25,3p) = +1.320804 +1.320866 +1.320993
F9(3s5,3p) = +1.017079 +1.017121 +1.017210
G2(2$,3p) = +0.1029035 +0.1029145 +-0.1029390
G°(25,3p) = +0.0984245 +0.0984344 -+0.0984566

(15,2p) = -+0.8413449 +4-0.8413503 +0.8413494
Glgzs.uz) = +41.969162 +1.969166 +1.969170
Gt 35.2?; = +0.1092325 +0.1092400 +4-0.1092585
G‘éls,:’ﬂ = -+40.0922210 +0.0922322 +0.0922557
G!(2s5,3p) = +40.0759137 +40.0759221 -+0.0759400
G'(35,3p) = +0.6771183 +0.6771471 +40.0677208
Fo(1s, 22 —3?%) = -+1.182755 +1.197706 -+1.211790
Fo(1s,xy) = o -+1.172445 +1.1618297
Fo(2s, x2 —32) = +1.163578 +1.177993 +1.191563
F°§2s,xy) = cee +1.153633 -+1.143389
Fo(3s, x2 —3%) = +4-0.9267982 -+0.9351254 +0.9429348
Fo(3s,xy) = see +0.9210356 -+0.9150887
F2(2p, 22 —y%) = +0.2091691 +0.2141237 +0.2188225
Fo(2p, x2 —y?) = +1.168254 +1.182797 +1.196490
F2(2p,xy) = s ~+0.2057758 -+0.2022991
Fo(2p,xy) = cee +1.158221 +1.147888
F2(3p, x2—y2) = -+0.4299220 +4-0.4352828 -+0.4402856
Fo(3p, 22 —32) = -+0.9047634 +4-0.9126404 <40.9200358
F2(3p,xy) = e +0.4261950 -+0.4223340
Fo(3p,xy) = cee +0.8993297 -+0.8937290
G2(1s, 22 —y?) = -+40.0015268 +4-0.0015785 +0.0016279

(1s,2y) = e +0.0014917 -+0.0014559
G2(2s, 22 —y?) = -+0.1357821 +0.1393893 +40.1428270
GZEZS,xy) = cee +0.1333253 +0.1308172
G2(3s, x2—y2) = +0.4072187 +0.4135672 -+0.4194496
G2(3s,xy) = se +0.4027675 +0.3981314
G‘EZP. 2 —y2) = +4-0.0838768 +0.0861199 +40.0882477
G'(29, 22 —3%) = -+0.1478107 +0.1517688 +0.1555409
G8(2p,xy) = L] +4-0.0823530 +40.0807976
Gl§2p,xy) = e +0.1451140 -+0.1423610
G3(3p, x2—y2) = +0.3241195 +0.3288204 +0.3331787
G'(3p, x2—32) = +0.5364174 +0.5433762 —+0.5497815
G3(3p,xy) = e +0.3208290 +40.3174036
G (3p,xy) = e +0.5315151 +0.5263860
Fi(x2 —y2, x2—3?%) = +0.2421857 +4-0.2476004 +0.2528356
F2(x2 —y2, 22 —~y%) = -+0.3887046 +0.3967594 -+0.4045186
Fo(x2—32 x2 —y2) = -+0.8365658 +0.8499700 +40.8627338
F4(x2—y2 xy) = [ +0.2429033 -+0.2432059
F2(x2—y2, xy) = LR +4-0.3897936 +-0.3903004
Fo(x2—y2, xy) = ae +-0.8385069 +0.8396903
Fi(xy,xy) = +0.2385296 4-0.2348411
F2(xy,xy) = . +40.3832489 +40.3777284
Fo(xy,xy) = . +0.8274010 -+0.8180426
G (x2—92, xy) = . +4-0.2428799 -+0.2431146
G2(x2—9?2, xy) = . -40.3897187 -+0.3900068
GO(x2—9?, xy) = . +0.8381233 -+0.8381864

a V4(3d,3d) is not included in the K (3d) integrals.
2b Tzhe integrals involving the free Mn*+ 3d function will be listed as
22 —92,

If one inserts individual V*(3d,3d)’s into Eq. (6) one
can produce other estimates of 10D,. If we do this for

R. E. WATSON

TaBLE III. Ion total energies.

Free Mn*+ —2298.2098 rydbergs
¥=1 Mn** with =1 cubic field —2298.2127
¥=1 Mn** with no cubic field —2298.2093
¥=2 Mn** with =2 cubic field —2298.2203
¥=2 Mn** with no cubic field —2298.2004

the 3=2 solutions we obtain

10D,=2X 5{[ 7+ (70)¥]/21} V¥(32— 32, 12— 3?)

=~7680 cm™, (12)
and
10D,=2X S{[7+ (70)¥1/21} V(wy,a9)

=~9500 cm™. (13)

IV. CONCLUSIONS

If one wishes to calculate a 10D, to a numerical
accuracy of 100 to 400 cm™, one should obtain one-
electron wave functions by doing a calculation for the
ion in a crystalline field with solutions for two different
#3a(r)’s. A single #34(r) could be used if one is attempting
a less accurate crystalline field calculation.

There is no obvious best way for obtaining the single
#34(r). A Hartree-Fock calculation for an ion in a
crystalline field will not always be a better source than
a free ion calculation. For example, let us consider an
ion with a single 3d electron. We wish a #34(r) which
can reasonably represent either #,,(r) or #,2,:(r)
but a Hartree-Fock calculation for the ion in a cubic
field, with an «xy electron present, would lead to a
#34(7) which is a quite unreasonable #,2 ,2(r). A large
V4(3d,3d) and in turn a large D, would occur. A
Hartree-Fock calculation with an #?—23? electron
present, would lead to amuch smaller D,. Equations (12)
and (13) indicate the sort of thing which would happen
(although the Mn*+ situation is really different).
Perhaps the most reasonable source for a single #34(7)
would be a calculation where Hartree-Fock equations
have been derived for two states of the ion (one state
with one more xy and one less #*—4? function than the
other) and where the averages of the Hartree-Fock
equations for the two states are solved.

It has been the author’s experience!:*® that free ion
Hartree-Fock calculations for different states of the
same ion lead to variations of the one-electron wave
functions which are energetically significant. In other
words, the assumption of a common set of radial
functions for different states of the ion is a poor one and
perhaps we must abandon thinking of the parameters
[F*(:,7)’s, etc.] as simple one- and two-electron
integrals. If we wish accurate predictions of the optical
absorption spectra, we will have to investigate the
added contributions to the parameters. This in-

8R. E. Watson, Quarterly Progress Report No. 27, Solid-State

and Molecular Theory Group, Massachusetts Institute of Tech-
nology, January, 1958 (unpublished), p. 10.
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vestigation will be difficult. One possible starting w#,2,2(r) differ. These are appreciable energy shifts and
point would be a set of variational calculations for their source should not be neglected.

individual ion states and then a comparison of the

differences in their total energies with the experimental ACKNOWLEDGMENTS
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APPENDIX 1. THE 3d HARTREE-FOCK EQUATIONS
The 3d Hartree-Fock equations are

& 27 L{+1)
ezz_yzuzz__yz(r) e (——-—-—+

arrt r 72

)uzf_,,z(r)-}—[2Y"(ls,ls)+2Y°(23,23)+2Y“(Ss,Ss)+6Y°(2p,2p)

+6Y(3p,3p)+2V0(a2— 42, 62— 32)+3V0(xy,xy) +1.21428571 V4(a2— 42, 22— %)
—1.21428571 V4 (xy,xy) Lttz2_y2(r) /7 — (1/7) LV 2(22— 32, 18) 21, (7)F V2 (a2 — 32, 25) 45 ()
+ V2(a2— 92, 35)at35 () + 1.2V (a2 — 32, 2p)th2,(r)+ 1.8V 3 (52— 32, 2p) 142, (7)
+1.271(x>— 92, 3p) 13, (r)+1.8Y3 (22— 92 3p)utsp(r)+ 1.0V o (2 — 32, 22— ) m,2_2(r)
+0.81632653V2 (a2 — %, a®— 3" uz2_,2(r)+-1.04081632 74 (a2 — 3%, a?—y?)u,2_,2(r)
+0.61224490Y2 (xy, 4%~ y*) 14z, (r)+1.53061224 V4 (xy, 22— y*) 14, (7) ]
and +{3[7+(70)*]/21} 3V s (r)uzry2(r),

@ 2Z L+1)
€xylhay (’) = ( -t

drt v 72

)u,y(r)+[2Y°(1s,1s)+2Y°(2s,2s)+2Y°(3s,3s)+6Y°(2p,2p)+61/°<3p,3p)

+2Y9(a2— 32, 22— y2)+ 3V (xy,xy) — 0.80952381 V(22— 3?2, 22— 4%)+0.80952381V*(xy,xy) Jotzy (7)/7
— (1/7)[ V2 (xy,15) 15 (r)+ V2 (29,28) 1025 (7) + V2 (29,35) 1035 () + 1.2V (9,2 142, (1)
+1.8Y3(xy,2p)th2, () + 1.2V (5,3 p) 143, (r) + 1.8 V3 (9,3 p) 143, () +0.40816326 Y2 (xy, 2% — y)mz22(7)
+1.02040816 Y*(xy, 22— y*)u,2_,2(r)+ VO (xy,29) 14, (r) +1.02040816 Y2 (xy,y) 44, (7)
+1.55102041 Y4 (xy,29) 142, (r) ]— {274 (70)¥]/21} 3V 4 (1) 142, (7),
where Z is the ion nuclear charge and

YV*(3,7)=2 f ru,- (ui(r') (7' [r)kdr'+2 f ui(rui(r') (r/7r')E1dy’ .

Note the Y*(x2—14?, x2—4?) and Y*( y,xy) terms in the second brackets. These terms do not appear in the free ion
equations. Their effect is to repell like d electrons and attract unlike 3d electrons thus resisting the effect of the
Va(r) terms.



