
P H YSI GAL R EV I EW VOLUME 117, NUMBER 3 FEBRUARY 1, 1960

Hartree-Fock Calculations for Mn++ in Cubic Fields*
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(Received August 31, 1959)

Hartree-Fock calculations have been carried out for the Mn~ ion in cubic fields produced by sets of
octahedrally placed point charges. The two types of cubic 3d electrons were allowed to have diBerent radial
dependence. The relaxation of the constraint of having a single 3d radial function led to effects which were
small but which the writer believes should be included in any detailed treatment of a paramagnetic ion in a
crystalline field.

I. INTRODUCTION

TTEMPTS at parameterizing experimental optical
absorption data have been met with a great deal of

success. A number of different sets of parameters have
been used. One that has been frequently used when
studying data for iron series (Sc to Cu) ions in cubic
fields is F'(3d,3d), F'(3d, 3d), and D, . The F'(34,3d) 's are
Slater two-electron integrals and D, measures the inter-
action between the ion and the crystalline field. There
are several important assumptions behind this choice of
parameters. First, it is assumed that the iron series ion
can be described as a Hartree-Fock wave function.
Secondly, that for any state of the ion, there is a com-
mon one-electron radial function for all the electrons in
any given shell and lastly, that all the ion states have
a common one-electron radial function for each shell.
Work has been done in trying to make theoretical pre-
dictions of the parameters and the results have been
poor. It has often been the case that the cruder eGorts
have led to the best results.

This paper is primarily concerned with the prediction
of D,'s but let us first consider F'(3d, 3d) and F'(3d, 3d)
and in particular turn to F"(3d,3d)'s for free iron series
atoms and ions. The F (3',3d)'s appear as parameters
in the multiplet spectra if the assumptions of the last
paragraph are made. Much work has been done in
fitting parameters to the experimental multiplet spectra.
This work has been only mildly successful. Difficulties
frequeritly occur when attempting to predict the energy
difference between states of diferent total atomic
spin (S). For example, ' the (3d)s configuration has
sextet, quartet and doublet states and several of the
doublets are violently out of position for any choice
of the Fs(3d,3d)'s which give reasonable positions for
the other states. We should note that occasionally
there have been difficulties in parameterizing optical
absorption data when the resonance has involved tran-
sitions between states of diR'ering S. It has been gen-

erally thought that this was due to spin dependent
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D, 's. The free ion 6ts suggest that there are other pos-
sible causes for this.

The writer' ' has done a number of Hartree-Pock
calculations for the iron series atoms and ions. The
resultant Fs(3d,3d)'s predict more widely spaced
multiplet spectra than are observed. In other words,
the calculated F"(3d,3d)'s are larger than the "experi-
mental" F"(3d,3d) 's. Accurate predictions of the
observed free ion spectra require the handling of the
"correlation" problem and the abandonment of the
one-electron function, one radial function per shell,
Hartree-Pock description of an ion. This implies that
the "experimental" Fs(3d,3d)'s should not be thought
of as exact F"(3d,3d) integrals. Due to the absence of
the exchange interaction between electrons, Hartree
calculations yield one-electron wave functions which
are expanded in comparison with Hartree-Pock func-
tions. As a result, the Hartree F~(3d,3d)'s are smaller
and in better agreement with the "experimental"
F'(3d, 3d) 's. One might think that the smaller
Fs(3d,3d)'s give us a reason for using Hartree rather
than Hartree-Pock wave functions. The writer does not
agree with this for he dislikes the technique of using a
cruder formalism for which errors happen to cancel
and, as we will see shortly, the extended nature of
Hartree functions can give trouble when one computes
D,'s. In contrast with a Hartree solution, a treatment
of the "correlation" problem (for example through the
use of configuration interaction) will lead to an elec-
tronic charge density which is contracted in comparison
with a Hartree-Pock charge density.

I.et us now consider the problem of predicting D,
values for the optical absorption of iron series ions. To
do this we need a 3d one-electron radial function and a
cubic field. Kith these we have

~
t Nse(r)71"4(r)«

where Use(r)/r is the radial part of the 3d wave function
(Pse) and V4(r) gives the dependence of the cubic field
on the distance (r) from the iron series ion. One would
like to obtain the 3d function by a self-consistent field
calculation for the ion inside an appropriate potential.
No such calculations have existed and in fact until
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recently, ' no truly self-consistent Hartree-Fock calcu-
lation has existed for a free, unclosed 3d shell, iron
series ion. As a result, workers have used Hartree or
even cruder functions. The V4(r)'s which have been
used have generally been even more crudely based. To
illustrate this, let us consider the case of an iron series
ion surrounded by an octahedral array of six nearest
neighbor negatively charged ions. Such a situation
occurs on the insertion of an iron series ion into an ionic
NaCl structure crystal. The simplest model for the
crystalline field is one where the nearest neighbor ions
are treated as point charges and the rest of the crystal
is neglected. The resultant V4(r) is illustrated in Fig. 1
for neighboring ion charges of —1 and —2. A somewhat
more reaIistic environment would be one where the
point charges are replaced by the free ion charge
densities. This would give a V4(r) of the form also
illustrated in Fig. 1. This V4(r) has some interesting
features. As one moves out from the iron series ion
(the origin), V4(r) is small and positive and then it
becomes large and negative in the region of the nearest
neighbor ions. This is easily understood, for we can
draw a sphere about a nearest neighbor ion such that
the total charge inside the sphere is zero. Outside of the
sphere the ion's charge appears to be negative [and
hence V4(r) is positive for a negatively charged electron)
and inside the sphere the ion appears to be positively
charged [with V4(r) negative). This means that there
is a region where the integrand of Eq. (1) contributes
positively to D, and another region where a negative
contribution is made. This can cause difhculties as
Kleiner's' work shows. Kleiner used a similar V4(r) in a
crystalline field calculation for chrome alum. Six H20
molecules form an octagon about a Cr' ' '

ion in this
substance. A 3d function from a Hartree caIculation by
Mooney' for Cr++ was used and a negative D, was
obtained. This is the wrong sign. The author's more
recent H-F calculations' ' for Cr++ (the ion for which

Mooney made his calculation) and Cr' ' ' (the ion in
chrome alum) yield 3d functions which are more
contracted than Mooney's function. Either of the
author's 3d functions would yield a positive D, when
integrated with Kleiner s V4(r). A calculation with the
cruder point charge V4(r) would have, of necessity,
yielded a positive D,. Kleiner s experience is illustrative
of the problems connected with a calculation for a D,.

It is clear that the choice of 3d functions and V4(r)'s
is critical. This matter has not been extensively ex-
plored due to the computational difhculties associated
with the work. The purpose of this paper is to investi-
gate the choice of 3d functions with particular emphasis
on the question of whether or not it is reasonable to
restrict the 3d electrons to a single radial function. The
choice of V4(r)'s will not be investigated. The writer
has attempted to gain insight into these matters with
a series of Hartree-Pock calculations for the Mn~
ion in a cubic Geld due to a set of six octahedrally
placed point charges. Point charge V4(r)'s were used
because they could be handled with existing Hartree-
I'ock procedure computer programs. The "strong field"
approximation was used. (i.e., the individual 3d one-
electron functions have cubic symmetry) and the two
types of cubic 3d functions were allowed diGerent
radial functions. The point charges were placed at a
distance of 3.971 a.u. (the Mgo nearest neighbor
distance) from the Mn++ ion and calculations were
done for charges of —1 and —2 at each charge site.

Mn++, with its half ulled 3d shell, is a rather special
case. As a free ion its ground state is (3d)' sS which has
a spherical charge distribution. %hen all the radial
functions of any given shell are the same and when

the Hartree-rock ion wave function is a single determi-
nant with all 3d functions of one spin included. The
determinant remains a '5 state if the five 3d functions
are put into their cubic form, i.e.,

'P,g(my=+2)
It,g(my=+1)

if ~ Psg(my=0)
It sg(my= —1)
Psg(my= —2).

'f ~ „~ which equals 2 &[Psq(my=+2)+Psq(my= —2))
II's,~ „~ which equals /san(my=0)

are replaced by ~ P „which equals 2 &Q,z(my=+2) Ps&(mg—= —2))
f„.which equals 2 i[Ps&(my=+1) —Its&(my= —1))
.P» which equals 2 '[f z( sg=m+1)+g sz(my= —1)).

If the 3d radial functions are constrained to be the
same, the 3d shell is spherical and will not interact with
V4(r) As a result, a. Hartree-Fock calculation for the
ion in a cubic crystalline field would yield the free ion
results. In the calculations to be described, the two
types of cubic 3d functions, the x' —y' and 3s' —r~

'The first truly self-consistent Hartree-Fock calculation for a
nonclosed 3d' shell atom or ion was published by B.H. Worsley,
Proc. Roy. 'Soc. (London) A247, 390 (1958). Since then, there has
been work by D. F. Mayers [to be published in Proc. Roy. Soc.
(London) j and the author. "' W. H. Kleiner, J. Chem. Phys. 20, 1784 (1952).' R, L. Mooney, Phys. Rev. 55, 557 (1939).

(henceforth denoted x' —y') on one hand and xy, ys~
and sx (henceforth denoted xy) on the other, are
allowed to have diferent radial functions. They will
have diGeremt radial functions since they interact
differently with a V4(r). Once the radial functions are
not the same, the single determinant ceases to be a 'S
state.

The point charge version of V4(r) was chosen of
necessity but I believe that it will serve very well for
my purposes. A survey of the signs of experimental

D, s tells us that it is the inner positive region of V4(r)
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which is most important and this region will be quite
well described by a point charge V4(r) (perhaps with a
charge between —1 and —2 for a doubly negative
nearest neighbor ion). The purpose of this work is to
explore the behavior of 3d functions when solved for
in cubic fields. The author is more interested in ob-
serving this behavior than in duplicating an experi-
mental D, thus an "accurate" V4(r) is unnecessary.
Comparison will be made between the results for
different V4(r) 's and not with experiment.

II. CALCULATIONS

The calculations were done on the Whirlwind
computer with the Roothaan procedure' as modified
by Nesbet. ~ This is an analytic Hartree-Fock method
and it produces one-electron radial wave functions
(e;(r) s) which are linear combinations of normalized
basis functions (r) s), i.e.,

(2)
and in our case,

V4(r)

and define

V4(r) os o

V4(r)due to a charge of
—2atrp

V4(r) due to a chorge of
l at rp

V4(r)due to an ion of total
charge-2 at rp

rp is the interionic distance

l
rp

e—fp3

FIG. 1. V4(r) as a function of r.
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I have used the set of p 's which was used in my free
Mn++ '5 Hartree-Fock calculation. ' ' They are where

V'(s,j )=)N(—r)u;(r) V4(r)dr,

for the construction
of s functions

for the construction
of p functions 7

8
9

10
11

ni

2
2
3
3
3

26.0651
22.7184
11.4540
10.5661
6.0612
3.8730

16.0787
9.5095
8.7370
4.9595
3.0743

266.14547
2840.6235
512.69885

1616.7403
231.15000
48.206424

1197.0068
322.00567
831.20281
114.54373
21.480808

V4(r) —=r4/rs' for r &rs,
rs'/r' for r) rs,

where rs is the nearest neighbor distance (3.971 a.u. in
these calculations). The crystalline field splitting is
normally de6ned as 10D, and if the two types of 3d
functions have the same radial dependence, 10D„ for
the point charge V4(r), is

10Ds +58(L7+ (70)&]/21}V4(3d 3d) (6)

for the construction
of d functions 12

13
14
15

2.0235
3.9754
7.4822

13.4624

4.9693541
52,816745

483.10479
3774.5700

' C. C. J. Roothaan, Revs. Modern Phys. 25, 69 (1951).
~ R. K. ¹sbet, Proc. Roy. Soc. (London) A230, 312 (1955);

Quarterly Progress Reports 15, 16, and 18, January, 1955,
April, 1955, and October, 1955, Solid-State and Molecular Theory
Group, Massachusetts Institute of Technology (unpublished),
pp. 10, 38, 41, and 4, respectively.

An octahedral array of six point charges produces a
spherical LVs(r)] and a cubic t V4(r)] potential. Vs(r)
interacts with the s, p, and d functions while V4(r)
interacts with only the d functions. Vs(r) is constant
in the region inside of the point charges and falls oG
as 1/r outside. The writer carried out Hartree-Fock
calculations with Ue(r) included in the Hartree-Fock
equations. It had almost no eGect on the results as one
would expect since only a small part of the Mn~
electronic charge is outside of the region where Vs(r)
is constant. Vs(r) is neglected in the calculations which

will be reported. Let us consider the U4(r) contribution

5 is the magnitude of a single point charge or 1 and 2
in these calculations. The "crystalline field splitting"
must be redefined for the case of two different 3d radial
functions. This requires an investigation of the contri-
butions V4(r) makes to the 3d one-electron energies.
The contribution to the xy one-electron energy is

—2 8(L7+ (70)l]/21}V'(xy, xy),

and for the x' —y' function it is

+38{L7+(70)"*]/21}V'(x' —y', x' —y'). (8)

It should be noted that the magnitude of each contri-
bution is proportional to the degeneracy of the other
type of function. The 10D, is normally defined as the
change in the crystalline field contribution to the ion's
total energy when an xy function is replaced by an
x' —y' function and when each type of one-electron
function has the same radial dependence for both the
initial and the final ionic state. In other words, 10D, is
simply Eq. (8) minus Eq. (7). This yields Eq. (6) if
V'(xy, xy) equals V'(x' —y', x' —y') and if the integrals
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e-Fock equations
x ression wi

for the uThe artre - o

3d Hartree-Pock equthe free Mn++
e become h fe io qa

~ shells are i en i
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j Z=1$
1
2
3

5
6

z=2$

2
3

5
6

z=3$

Free Mn++

+0.92029428
+0.09863379—0.00313726
+0.00225118—0.00055350
+0.00011878

—0.27738741—0.16713964
+0.76012694
+0.38685587
+0.02478087—0.00143917

Mn++ in cubic
field with

+0.92029500
+0.09863225—0.00313536
+0.00224963—0.00055296
+0.00011861

—0.27738803—0.16714428
+0.76014226
+0.38684234
+0.02478395—0.00144142

Mn++ in cubic
field with

8f =2

+0.92029333
+0.09863773—0.00314522
+0.00225925—0.00055769
+0.00012049

—0.27738782—0.16714516
+0.76014292
+0.38684394
+0.02478226—0.00144357

1
2
3

5
6

+0.10216923
+0.05842931—0.27459472—0.32927989
+0.39384716
+0.79950612

+0.10217357
+0.05842772—0.27459093—0.32933381
+0.39396989
+0.79942190

+0.10218396
+0.05841713—0.27455994—0.32948726
+0.39426818
+0.79922133

z=2P
+0.15937739
+0.84954106
+0.00512492
+0.01961790—0.00422519

7

9
10
11

z=3P

+0.15938378
+0.84952920
+0.00513839
+0.01960454—0.00422027

+0.15937851
+0.84954172
+0.00512818
+0.01960767—0.00422369

7
8
9

10
11

12
13
14
15

12
13
14
15

—0.04781460—0.04780407

—0.01409630
+0 63265198+0.63249462

+0.49397930

+0 57452833
+0.13236102+0.13477286

+0.00633154
Z=Xy

+0.46290931
+0.53928142
+0.13652402
+0.00559107

—0.04783557—033758282—0.01418821
+0.63298088
+0.49357649

+0.40519961
+0.59402656
+0.13015887
+0.00834895

+0.47822797
+0.52433174
+0.13837197
+0.00481742

W
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TABLE II. One- and two-electron integrals all integrals
are in Hartree units (1 a.u. =2 ry).

TABLE III. Ion total energies.

One-electron kinetic
+nuclear potential
energy integrals'

K(1s) =
K(2s) ~
K(3s) =
K(2P) =
K(3P) =
K(xl -ym) =
K(xy) =

Free Mn++ b

—312.3568
-76.34235
-29.24340
-75.66955
-27,44747—22.95467
-22.95467

Mn++ in cubic
field with

/=1
—312.3568—76.34245—29.24393—75.66961
-27.44840
-23.18053—22.79803

Mn++ in cubic
field with

5=2
—312.3568—76.34249—29.24516—75.66963—27.45030
-23.38148—22.64472

Free Mn++

5=1 Mn~ with 5=1 cubic field
5'=1 Mn~ with no cubic 6eld
5=2 Mn++ with 5=2 cubic field
5=2 Mn++ with no cubic 6eld

the 8 =2 solutions we obtain

-2298.2098 rydbergs

—2298.2127—2298.2093—2298.2203—2298.2004

Cubic potential
integrals

y4(xs yu x2 y2)—
V4(xy, xy) =

Two-electron
integrals

Fo(is, 1s) =
Fo(is,2s) =
Fo(is,3s) =
Fo(2s, 2s) =
Fo(2s,3s) =
Fo(3s,3s) =
Go(ls, 2s) =
Go(1s,3s) =
Go(2s, 3s) =
F&(2P,2P) =
F (2P', 2P) =
F&(2P,3P) =
»(2P.3p) =
F&(3P,3P) =
Fo(3P,3P) =
-Fo(is,2p) =
Fo(2s,2p) =
Eo(3s,2p) =
Eo(is,3P) =
Fo(2s,3p) ~
Fo(3s,3p) =
G (2P.3p) =
«(2P,3P)-
Gi(is, 2p) =
Gi(2s, 2p) =
G (3s,2p) =
G (is,3p) =
Gi(2s,3P) =
G (3s,3p) =
Fo(is x~ —y2) =
Fo(1s,xy) =
Fo(2s, x~-y2) =
Fo(2s,xy) =
Fo(3s, xo-y~) =
Fo(3s,xy) =
Fo(2p, xo —y') =
Fo(2p, x~ —y2) =
F2(2p, xy) =
Fo(2p, xy) =
F~(3P, x~ —y2) =
E'(3P. x'-y') =
E2(3p,xy) =
Fo(3p,xy) =
G'(»t x' —y') =
G2(1s,xy) =
G2(2s, xm-y2) =
G2(2s, xy) =
G~(3s, x~-y2) =
G2(3s,xy) =
Gs(2P. x~-y~) =
G (2p, x~ —y&) =
Go(2p, xy) =
Gi(2p, xy) =
Go(3P, xm —ym) =
Gi(3p, x~-ym) =
GI 3p,xy) =
Gi 3p,xy) =
F4 x2 ys x2 y2)
F2 (xR y2 x2 y2)
Fo (x2 yQ xQ y2)
F4(x~ —y~, xy) =
Fm(xo -yo, xy) =
Eo(xm —yo, xy) =
F4(xy, xy) =
E2(xy, xy) =
Fo(xy, xy) =
G4(x~-yo, xy) =
G2(x~-y~, xy) =
Go(xo-y~,

'
xy) =

+15.27457
+4.527865
+1.525485
+3.222584
+1.370124
+1.045595
+0.4120717
+0.0514755
+0.0879206
+1.740557
+3.689427
+0.2586813
+1.345266
+0.4983987
+0.9909815
+5.064964
+3.406107
+1.389760
+1.479725
+1.320804
+1.017079
+0.1029035
+0.0984245
+0.8413449
+1.969162
+0.1092325
+0.0922210
+0.0759137
+0.6771183
+1.182755

~ ~ ~

+1.163578
~ ~ ~

+0.9267982
~ ~ ~

+0.2091691
+1.168254

~ ~ 0

~ ~ ~

+0.4299220
+0.9047634

~ ~ ~

~ ~ ~

+0.0015268
~ ~ ~

+0.1357821
~ ~ ~

+0.4072187
~ ~ ~

+0.0838768
+0.1478107

~ ~ ~

~ ~ ~

+0.3241195
+0.5364174

~ ~ ~

~ ~

+0.2421857
+0.3887046
+0.8365658

+0.005093
+0.005669

+15.27458
+4.527879
+1.525534
+3.222595
+1.370162
+1.045625
+0.4120749
+0.0514795
+0.0879270
+1.740561
+3.689435
+0.2587060
+1.345330
+0.4984278

0.9910341
5.064976
3.406117
1.389799
1.479805
1.320866
1.017121
0.1029145
0.0984344
0.8413503
1.969166
0.1092400
0.0922322
0.0759221
0.6771471
1.197706
1.172445++1.177993

+1.153633
+0.9351254
+0.9210356
+0.2141237
+1.182797
+0.205 7758
+1.158221
+0.4352828
+0.9126404
+0.4261950
+0.8993297
+0.0015785
+0.0014917
+0.1393893
+0.1333253
+0.4135672
+0.4027675
+0.0861199
+0.1517688
+0.0823530
+0.1451140
+0.3288204
+0.5433762
+0.3208290
+0.5315151
+0.2476004
+0.3967594
+0.8499700
+0.2429033
+0.3897936
+0.8385069
+0.2385296
+0.3832489
+0.8274010
+0.2428799
+0.3897187
+0.8381233

+0.004783
+0.005918

+15.27457
+4.527881
+1.525647

3.222598
1.370247
1.045692
0.4120748
0.0514885
0.0879410
1.740565
3.689441
0.2587584
1.345628
0.4984874+

+0.9911421
+5.064979
+3.406121
+1.389888
+1.479971
+1.320993
+1.017210
+0.1029390
+0.0984566
+0.8413494
+1.969170
+0.1092585
+0.0922557
+0.0759400
+0.0677208
+1.211790
+1.1618297
+1.191563
+1.143389
+0.9429348
+0.9150887
+0.2188225
+1.196490
+0.2022991
+1.147888
+0.4402856
+0.9200358
+0.4223340
+0.8937290
+0.0016279
+0.0014559
+0.1428270
+0.1308172
+0.4194496
+0.3981314
+0.0882477
+0.1555409
+0.0807976
+0.1423610
+0.3331787
+0.5497815
+0.3174036
+0.5263860
+0.2528356
+0.4045186
+0.8627338
+0.2432059
+0.3903004
+0.8396903
+0.23484ii
+0.3777284
+0.8180426
+0.2431146
+0.3900068
+0.8381864

& V4(3d, 3d) is not included in the K(3d) integrals.
b The integrals involving the free Mn++ 3d function will

xs
be listed as

If one inserts individual V'(3d, 3d)'s into Eq. (6) one
can produce other estimates of 10D,. If we do this for

10D,=2)&5{$7+(70)&j/21)V'(x' —y' x' —y')
=~7680 cm ' (12)

and

10D,=2&&5{L7+ (70)&j/21) V'(xy, xy)
9500 cm '. (13)

IV. CONCLUSIONS

If one wishes to calculate a 10D, to a numerical
accuracy of 100 to 400 cm ', one should obtain one-
electron wave functions by doing a calculation for the
ion in a crystalline Geld with solutions for two diGerent

usq(r) 's. A single uM (r) could be used if one is at tempting
a less accurate crystalline Geld calculation.

There is no obvious best way for obtaining the single
usq(r). A Hartree-Fock calculation for an ion in a
crystalline field will not always be a better source than
a free ion calculation. For example, let us consider an
ion with a single 3d electron. We wish a usq(r) which
can reasonably represent either u „(r) or u, ~ „~(r)
but a Hartree-Pock calculation for the ion in a cubic
field, with an xy electron present, would lead to a
usq(r) which is a quite unreasonable u, m „2(r). A large
V'(3d, 3d) and in turn a large D, would occur. A
Hartree-Fock calculation with an x'—y' electron
present, would lead to a much smaller D, .Equations (12)
and (13) indicate the sort of thing which would happen
(although the Mn++ situation is really different).
Perhaps the most reasonable source for a single usq(r)
would be a calculation where Hartree-Fock equations
have been derived for two states of the ion (one state
with one more xy and one less x'—y' function than the
other) and where the averages of the Hartree-Fock
equations for the two states are solved.

It has been the author's experience' that free ion
Hartree-Fock calculations for diGerent states of the
same ion lead to variations of the one-electron wave
functions which are energetically significant. In other
words, the assumption of a common set of radial
functions for diGerent states of the ion is a poor one and
perhaps we must abandon thinking of the parameters
LFs(i,j)'s, etc.j as simple one- and two-electron
integrals. If we wish accurate predictions of the optical
absorption spectra, we will have to investigate the
added contributions to the parameters. This in-

R. E. Watson, Quarterly Progress Report No. 27, Solid-State
and Molecular Theory Group, Massachusetts Institute of Tech-
nology, January, 1958 (unpublishedl, p. 10.
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vestigation will be difficult. One possible starting

point would be a set of variational calculations for
individual ion states and then a comparison of the
differences in their total energies with the experimental
spectra. The author's results show that it will be
imperative to handle the two types of 3d' electrons
separately. We have seen shifts of 370 and 2180 cm '
in the ion's total energy due to letting u,„(r) and

u 2 „2(r) difkr. These are appreciable energy shifts and
their source should not be neglected.
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APPENDIX L THE 31 HARTREE-FOCI EQUATIONS

The 3d Hartree-Pock equations are

d' 2Z 4(8+1))
e, „u, „(r)= ~

— — + ju, ~ „~(r)+r 2YO(is, 1s)+2Y0(2s,2s)+2YO(3s,3s)+6YO(2p, 2p)
dr' r r'

+6Y'(3p,3p)+2F'(x' —y', x' —y')+3Y'(xy, xy)+1.21428571Y'(x' —y', x' —y')

—1.21428571Y4(xy, xy) jLu~~ „~(r)j/r —(1/r) t Y2(x~—y', 1s)u&, (r)+ Y'(x' —y', 2s) u&, (r)

+F (x'—y', 3s)u»(r)+1.2Y'(x' —y', 2p)u»(r)+1. 8Y'(x' —y', 2p)u»(r)

+1 2Y'(x' —y' 3p)u3 (r)+1 8F'(x' —y' 3p)ua (r)+1.0YO(x' —y' x'—y')u ~ *(r)

+0.81632653Y'(x' —y'& x' —y')u, ~ „~(r)+1.04081632Y4 (x'—y', x' —y') u, ~ „~(r)

+0.61224490 Y'(xy, x' —y') u,„(r)+1.53061224 F4(xy, x' —y') u „(r)g

+{3/7+(70)&j/21}3V4(r)u. „(r),
d' 2Z 4(/+1) ~

c yu y(r) =
(

— — + ~u.„(r)+$2Y0(1s,1s)+2Yo(2s,2s)+2Y'(3s, 3s)+6Y'(2p, 2p)+6Y'(3p, 3p)
dr' r r'

+2Yo(x2—y', x' —y')+3 Yo(xy, xy) —0.80952381Y4(x' —y~, x2—y2)+0.80952381Y4(xy, xy) )u,„(r)/r
—(1/r) t Y'(xy, 1s)u»(r)+ F'(xy, 2s)u&, (r)+ F'(xy, 3s)u3, (r)+1.2Y'(xy, 2p)u2~(r)

+1.8F'(xy, 2p)u»(r)+1. 2Y'(xy, 3p)u»(r)+1. 8Y'(xy, 3p)ua„(r)+0.40816326Y'(xy, x' —y')u, ~ „I(r)

+1.02040816Y'(xy, x' —y')u, * „2(r)+Yo(xy, xy)u, „(r)+1.02040816Y'(xy, xy)u, „(r)

+1.55102041Y'(xy, xy)u, „(r)]—{2)7+(70)'j/21} SV4(r)u, „(r),
where Z is the ion nuclear charge and

QO

Y~(i&j ) =2 u;(r')u;(r') (r'/r) ~dr'+2 u;(r')u;(r') (r/r') "+'dr'
r

Note the F'(x' —y', x' —y') and F'( y, xy) terms in the second brackets. These terms do not appear in the free ion
equations. Their effect is to repell like d electrons and attract unlike 3d electrons thus resisting the eGect of the
V4(r) terms.


