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Thus we feel at present that the energy band de-
scription can account for some reduction in the number
of d electrons but it seems rather unlikely that this
reduction can amount to more than one or two electrons.
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A re-evaluation has been made of Van Vleck's second-order perturbation theory of dipolar-type anisotropy
in cubic ferromagnets. In the low-temperature limit of strong correlation between the direction of neighbor
spins, the first anisotropy constant Ei varies as the 10th power of the magnetization. The theory is somewhat
analogous to a previous treatment of quadrupolar-type anisotropy in the strong-correlation limit. In both
cases, the results are in agreement with the Akulov-Zener classical theory. For the dipolar case, complete
agreement is also established between the Dyson-type spin-wave analysis of Charap and Weiss and the
Holstein-Primakoff approach. Higher order terms in the latter are shown to lead to the Charap-Weiss
correction from exchange interaction between spin waves, and this correction is extended to S)~. Essentially
the same correction is obtained very easily from a simple modification of the Van Vleck formalism to take
careful account of the average energy involved in simultaneous reversal of neighbor spins. It is shown
that spin-wave theory, in agreement with classical theory, predicts identical values of dipolar-type ani-
sotropy whether measured statically in a torque experiment or dynamically in a microwave resonance
experiment.

I. INTRODUCTION

'HE classical theory of ferromagnetic anisotropy
in cubic crystals was formulated by Akulov. '

He showed that if the anisotropy energy is expanded in
powers of the direction cosines n1, n2, 0.3 between the
bulk magnetization vector and the three cubic axes,
then the lowest nonvanishing term must be of the form

& =E (
' '+ ' '+ ' ')=ET (1)

A rough estimate of the temperature dependence of
E1 was also given by Akulov. He considered the crystal
to be composed of a number of small regions, and
within each region he assumed that the magnetization
vector makes a random small angle 8 with respect to
the average over-all direction of bulk magnetization.
The anisotropy energy of each region is assumed to
take the form (1). As the temperature increases the
angle 0 between regional and average magnetization
becomes larger and larger, and the total anisotropy
energy drops precipitously. The reason for the very
rapid drop is illustrated in Fig. 1. %hen the average
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¹ Akuiov, Z. Physik 100, 197 (1936).

value of the angle 0 is as shown in the figure, the total
anisotropy energy will disappear; however, the sample
magnetization M(T), which is given by the average
value of M„will be quite large. Akulov derived the
expression

E,(T)/E, (0)-1 10LM(0) —M(T)7/M(0) (2)

Zener' has shown by a random-walk calculation of
the average angle 8 that a more precise formulation of
(2) is a "10th power law. "

Er (T)/Er (0)= LM (T)/M(0) 7r'. (3)

Furthermore, Zener has given a general expression for
higher-order anisotropy. In particular, in the first term
beyond (1),

~2 +2&1 &2 &3 ) (4)

the temperature dependence of E2 is as the 21st power
of M(T). Jf the solid curve in Fig. 1 were redrawn to
represent F2 it would cross the dotted curve at smaller

0, which accounts for the higher power. Zener has also
shown that if Es(0) is of comparable magnitude to
Et(0), the temperature falloff of Er increases. This is
clear from Fig. 1 since, if the solid curve were to include
both I"1 and a large Ii 2, it would have many wiggles and
the total anisotropy would vanish as E2.

' C. Zener, Phys. Rev. 96, 1335 (1954).
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The Akulov-Zener macroscopic classical theory is
quite general, and seems to be a correct first approxi-
mation regardless of the type of microscopic quantum-
mechanical source of the anisotropy. The standard
quantum-mechanical theory has been given by Van
Vleck. ' He has expanded the indirect anisotropic
coupling between neighbor spins into a dipole-dipole
term

Xn ——P;» D;;PS; S; 3r;; —(S,'r, ;)(S,"r,;)], (5)

plus a quadrupole-quadrupole term

Here r;; connects nearest neighbors, and D,; and Q;;
are coupling constants, considered temperature inde-
pendent and acting only between nearest neighbors.
The constant D;; is frequently called a "pseudodipolar"
constant to distinguish it from the much smaller (but
long range) normal magnetic dipole constant g'P'r, ; '
In what follows we shall neglect the magnetic dipole
forces since they are too small to lead to observed
magnitudes of ferromagnetic anisotropy. Their long-
range nature does, however, produce important shape-
dependent e6'ects, which shall be ignored.

In the Van Vleck theory the temperature dependence
of the macroscopic anisotropy is caused by statistical
deviations of S; and S; from maximum alignment.
Because he evaluated these deviations in a molecular
field, that is, assuming complete lack of correlation in
the alignment of neighbor spins, Van Vleck obtained
too slow a temperature dependence of Ei. It has been
shown4 that if correlation is properly taken into account,
Van Vleck's BCo leads to the 10th-power law, Eq. (3).
This may be demonstrated in a general way, and also
by means of a spin-wave analysis. Pal has independ-
ently made a spin-wave calculation leading to an
equivalent result. In an excellent recent review article6
Van Uleck has exhibited a very powerful and com-
pletely general extension of our correlation concept.
Thus the anisotropy arising from 3C@ behaves according
to the Akulov-Zener theory, and the quadrupolar-
coupling problem is now well-understood.

In contrast, the dipolar-coupling problem, until very
recently, had the aspects of an involved comedy of
errors. The temperature dependence of that part of Ei
arising from SC&, as originally calculated by Van Vleck,
varied as the second or third power of the magnetization.
In some remarks about BC~ which were included in 'the

paper4 devoted mainly to K@, we compounded Van
Vleck's error and claimed that the spin-wave theory
gave an even lower power of the magnetization. The
first step in the right direction was taken by Kasuya, 7

who showed that interactions between spin waves must

' J. H. Van Vleck, Phys. Rev. 52, 1178 (1937).
F. Keffer, Phys. Rev. 100, 1692 (1955).' L. Pal, Acta. Phys. Acad. Hung. Sci. 3, 28/ (1954).

6 J. H. Van Vleck, J. phys. radium 20, 124 (1959).
r T. Kasuya, J. Phys. Soc. Japan 11, 944 (1956).

FIG. 1. Cross section of energy surface of a cubic ferromagnet,
taken in the (010)plane. The dotted curve represents the isotropic
magnetic energy, the solid curve the isotropic plus (exaggerated)
anisotropic energy F&, with K1 positive. According to the Akulov-
Zener theory, the angle 9 increases with temperature, and when on
the average it is the size shown above, the anisotropy energy will
be negligible. However, the magnetization M, will still be appreci-
able. (This is a low-temperature approximation. )

be taken into account. He obtained a 16th-power law,
but he made an error of a factor of 2, as was discovered
by Charap and Weiss. ' The latter authors claimed an
8th-power law until we located some terms missing in
their analysis which just account for two extra powers.
Thus, after all these corrections, it now appears that
the anisotropy arising from 3'.& also behaves according
to the classical Akulov-Zener theory.

This classical temperature behavior is not entirely
obvious. In his original paper Van Vleck pointed out
that K& is incapable of yielding cubic anisotropy in a
classi. cal approximation. This is because KD is only
quadratic in the direction cosines of r;;, whereas Ii j is
at least quartic in the direction cosines of the resultant
bulk magnetization. Quantum-mechanically, however,
because of terms nondiagonal in P; S;*, the interaction
X& does give rise to cubic anisotropy. This has been
calculated by Van Vleck by means of second-order
perturbation theory. We discuss this calculation in
Sec. V.

A physical picture of the origin of dipolar-type
anisotropy is as follows. As noted above, the energy of
a cubic array of classical dipoles which all point in the
same direction is independent of that direction. Quan-
tum dipoles, however, are not rigidly aligned; the spin
vectors can be pictured as precessing about the axis of
quantization. Thus the energy may depend upon the
direction that axis takes with respect to the crystal
axes. As Tessman' has shown, the anisotropy energy
at O'K can be expressed as a zero-point energy of
ferromagnetic spin waves. Tessman's results for Zr(0)
are identical to Uan Vleck's; both authors use a mo-
lecular field approximation. By another method not
involving this approximation Van Peype" arrived at a
slightly different result for E&(0), and Van Peype's
ground state has recently been confirmed by Charap
and Weiss 8

S. H. Charap and P. R. Weiss, Phys. Rev. 116, 1372 (1959).
~ J. R. Tessman, Phys. Rev. 96, 1192 (1954).
"W. F. Van Peype, Physica 5, 465 (1938).
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Thus the calculation of Et(0) arising from Xz& is
definitely a quantum-mechanical problem, and it is at
first sight puzzling that the temperature dependence of
this E~ should follow the classical Akulov-Zener theory.
'What seems to happen is that as the temperature
increases and spin waves are excited, these spin waves—
which at low T are of long wavelength —cause the local
magnetization to vary in direction throughout the
ferromagnet, just as in Akulov's model. This may be
thought of as a variation of the axis of quantization
with respect to which the zero-point spin-wave energy
arises. The classical result will be correct up to temper-
atures at which the excited spin waves begin to have
wavelengths comparable to the lattice spacing. How-
ever, Et(T) becomes negligible before this temperature
is reached.

The above picture seems to be the interpretation of
the very beautiful calculation of Charap and Weiss.
These authors use the powerful new spin-wave tech-
niques introduced by Dyson, " whereas Kasuya used
the more familiar Holstein-PrimakofP' formalism.
Elsewhere" we have shown that the results of Dyson,
for the exchange Hamiltonian only, can be achieved in
a simple fashion by a careful expansion of the Holstein-
Primako6' operators. In Sec. II we extend this expansion
to Kasuya's calculation. The results are in complete
agreement with Charap and gneiss. In particular, they
have discovered that exchange interaction between spin
waves increases the value of E& by 15%. This is for
individual spin quantum number S=-,', the only case
they considered. In Sec. III the interaction is calculated
for all S; the percentage increase in E~ is found to be
proportional to 1/S. The same correction can be
obtained most easily from a simple improvement of
Van Vleck's method, as is shown in Sec. V. It comes
from simultaneous reversal of neighbor spins.

It is clear that the above considerations apply to
ferromagnetic anisotropy as measured in a static torque
experiment or as inferred from magnetization curves.
But anisotropy may also be measured in a ferromagnetic
resonance experiment; we shall call this the dynamic
anisotropy. Several years ago" we pointed out that the
static and dynamic anisotropy are not necessarily
the same. This is because the static anisotropy involves
the zero-point energy of all, the spin waves, whereas
the dynamic anisotropy involves the energy of only the
spin waves of very long wavelength which are excited
by a microwave field. These spin waves, representing
as they do a classical in-phase motion of all the spins,
carry very little anisotropy. Indeed, the bulk of the
static E& arises from the zero-point energy of the very
short wavelength spin waves.

On the other hand, classical considerations clearly
require the static anisotropy to appear in the dynamic

"F.J. Dyson, Phys. Rev. 102, 1217 (1956)."T.Holstein and H. Primakoff, Phys, Rev. 58, 1098 '(1940).
"T.Oguchi, Phys. Rev. 117, 11/ (1960)."F.Kefier, Phys. Rev. 91, 206A (1953).

experiment. '~ In Sec. IV this discrepancy is resolved in
favor of the classical picture. It is shown that the
dynamic anisotropy arises from spin wave interactions.
The excitation by microwaves of a long wavelength
spin wave produces a change in the zero-point energy
of all spin waves, and this in eGect shifts the energy of
the long spin wave. The eGect is very similar to the
shift of zero-point energy with temperature.

To return to the temperature problem, it is tempting
to apply the results to a real ferromagnet. Certainly
that part of the temperature behavior of E~ arising
from statistical fiuctuations should obey the 10th-
power law. However, a number of other temperature
eGects may tend to overbalance this simple law. Carr"
has shown how change of lattice spacing with tempera-
ture can make the coupling constants D,; and Q,;
temperature dependent. In metals any band-like prop-
erties of ferromagnetism may cause other variations
in Et(T).

Furthermore, there are numerous convicting experi-
mental results. Iron was once thought to obey the
10th-power law with amazing fidelity, ' but recent
measurements by Graham" indicate a much lower
power. It is possible that shape-dependent demagnet-
izing eGects may cause some of the differences. Nickel
is perhaps the most interesting case since its Et(T) falls
off very roughly as the 50th power' of M(T). It is
now clear, however, that any more involved theory of
a real ferromagnet must take into account the universal
statistical 10th-power law.

II. SPIN-WAVE ANALYSIS

with
XD=X'+X+++X +X++X,

X =Q;~; E;;(S,"S;—3S,*S ),
X++=+;„a,,S;+S;+, X—=P;„;&,,*S;-S;—, (9)

X+—P . . P . .S~+S.* X =Q;w, Ii;;*S; S;*,

in which

E; = —,'D;, (1 3y ')——
&'~ = —sD'i(~'~—+' )'

'D p "(n sP; )—-"—
(10)

"C. Kittel, Phys. Rev. 7&, 155 (1948).
"W.J. Carr, Jr., Phys. Rev. 109, 1971 (1958).

C. D. Graham, Phys. Rev. 112, 1117 (1958).' The measured values of E&C'1') of nickel only approximately
match a simple power law; however a rough 6t can be made and
it appears that the statement of a 20th power law in references 2
and 4 is a gross underestimate, except possibly at very low
temperatures. We are indebted to Mr. Victor Rehn for a careful
analysis of available data.

The exchange Hamiltonian is

Xg ———P J"S"S

and the perturbing pseudodipolar Hamiltonian (5) may
be written in the form
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In the above equations n;;, P;;, y;, are direction cosines
of r;; with respect to the axes of quantization. The
exchange integral J;;will be taken to equal J for nearest
neighbors, zero otherwise; and the pseudodipolar con-
stant D;; will be taken to equal D for nearest neighbors,
zero otherwise.

It will prove of use to introduce

Ak ——2S+k Jl 1—exp(ik rk)j,
Ek——2S pk Ek exp(ik rk). ,

Bk 4S —
g—k Bk exp(ik rk),

Fk (2S)&——Qk Fk exp(ik rk),

B. 3."Term

The dipolar term 3C' can be written

K =X +K + ' ' ' Xp=gk Eknk

and with X00 similar to (15). Here we have used the
relations valid for cubic symmetry

Q E =0 "QkEk=0

Similarly, if nk is isotropic in k, Xp will vanish. Further-
more, the corrections introduced by K2' are very minor.
Thus K' makes no significant contribution to anisotropy
in cubic ferromagnets.

where r~ stands for r;; between nearest neighbors.
The Holstein-PrimakoG" formalism will be used,

which introduces creation and annihilation operators
a;* and u;.

with

S,+= (2S)'f;a;; S; = (2S)4;*f;;
S'=S—a ~u.

4)

f'= L1—(~'*~'/2S) j'

(12)

(13)

As we have shown elsewhere, "higher-order terms may
correctly be taken into account (except for Dyson's
very small "kinematical interaction" between spin
waves) by the simple expansion

f;= 1—(4S) 'a *a + (14)

Spin waves are introduced by the following Fourier
expansions in terms of wave vectors k within a Brillouin
zone of the reciprocal lattice:

a;=&V-& Pk exp( —ik r;)ak,

a =E—&Pkexp(ik r;)uk*,

Gg Gg=Sg.

Here nk is the number of spin waves of wave vector k,
and S is the total number of spins in the sample.

A. Exchange Term

By means of the expansion (14) the exchange can be
written (with C0——constant):

XE—Xs&+XE0+ ' ' '
p

XE1 CO++0 Ak(nk+0)y

X@0=(41VS) gk. ..k «B(k+k —k' —k )
)( (2A kg knez

—A k —A kite) gk gkt gkrzgkezz,

(15)

The expression GCg2 takes account of "exchange
interact&on" between spin waves, and we have shown
elsewhere" that it leads to Dyson's" corrections of
order T4 to the temperature dependence of the magnet-
ization. In Sec. III it will be shown that X'~~ leads to
the Charap-Weiss' anisotropy corrections.

Xl 0 Qk Bk+k+ k)—
Xk++= —(4XS) ' Pk. ..k- b(k —k' —k"—k"')Bk"

egg ggiggt t ggtr s

(17)

with K expressed as the complex conjugate of the
above.

Second-order perturbation, with 3C~I taken as the
unperturbed. Hamiltonian, gives rise to three important
terms. The erst is of the form

E~=E.(g IXx++
I v) (v

I
X~

I g)/(E, —E,)+c.c. (18)

where g is the ground state (no spin waves). The other
two terms, both of order E ', are

E0=Z.(glX~++I v)(vlX0 lg)/(E. —E)+cc.
Es——&,(g I

xk++
I v) (v I xx I g)/(Eu E„)+c.c. —(19)

A further term involving Xk++X0 +c.c. is of order
X ' and may be neglected. By use of the spin-wave
operators the important terms can be expressed as
follows (note that Ak=A k)

Ei= —
0 Z.(I B.

I /A. ) (nk+ 0), (2o)

Ek=E0 (4$s) ' Qk(IBkl'/Ak——)/k' nk. . (21)

It should be remarked that Holstein and Primako6
were able to diagonalize the Hamiltonian

XHP Xzl+Xl +Xl
obtaining

EHP ~0+2k(Ak IBkl ) (nk+0) (22)

If the square-root in (22) is expanded in a Taylor series,
the 6rst two terms are our XP~+E~.

As noted by Charap and Weiss, Kasuya's expression
corresponding to E& is too small by a factor of 2. This

C. X+++X—Term

This term, as Tessman has shown, gives rise to the
anisotropic zero-point spin-wave energy. It also con-
tains a small temperature dependence which was
originally missed both by Kasuya and by Charap and
Weiss. With the aid of the expansion (14) the term can
be written

X++—X~+++X +++. . .
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D. X++X Term

This term was first evaluated by Kasuya. It can be
written

As de6ned above, the direction cosine yg is with
respect to the axis of quantization. It may be expressed
as

3:+=1V & gg, g, g" b(k' —k —k")Fgagag*aj, , (23) (30)|A=IXl~h+~2pk+&8 rhea

mistake, plus omission of E2 and E3, led Kasuya to an free energy

FD= (9—&S/32s J)D'Z~l (1 »—')'
—(2/»)Z. n. (1—6v'+5vd)3. (29)

F.,=—X 'P~(~ F,~'/A-, )P,.n, (25)

This approximation of Kasuya's is that of a temperature
independent perturbation denominator and is related
to the approximation of a temperature independent
molecular field Hs in Van Vleck's method (see Sec. V).

with X expressed as the complex conjugate of the
above. Further terms are much smaller and may be
neglected at low temperatures. Second-order pertur-
bation yields

&4=& (el~'I ~) (~l&-lg)/(~. —&.)+c.'
= (2&) ' Z~.~,~- &(k' —k—k") ~F~+Fg- ~'ng

X(AI, —As —Ag") '. (24)

This expression includes only terms of 6rst order in n&

(low-temperature approximation —few spin-waves ex-
cited). Kasuya evaluated (24) by a further assumption
that since n& involves only long wavelength spin waves
at low temperatures, one may approximate A& =Ao=o.
This gives

Ei(0)= (ES/16sJ)Q4, (33)

and C~ is isotropic.
The temperature independent anisotropy Ei(0)1'

was first obtained from spin waves by Tessman, and is
in agreement with the early results of Van Vleck.
Since the magnetization is given by

LM(0) —M(T) j/M(0) =Pg ng/SS, (34)

where o,j, o,2, n3 are direction cosines of the axis of
quantization, and ai„Pi„yi, are direction cosines of ri„
all taken with respect to the cubic crystal axes. On
invoking cubic symmetry one can express the sums in

(29) in terms of I', as defined by Eq. (1),and of a lattice
sum introduced by Van Vleck'.

04= 3D' Qi,L1—5(0'i,'Pi'+Pi'ya'+pi, 'ai') j. (31)

The result is

Fn ——Ci+Ei(0) t
I' —(10/AS) (1'—5)Qg ngj, (32)

where

E. Total Anisotroyy Energy-
the result (32) may be written in the form

Fi)=C2+Ei(T)1', (35)
Because the coupling constant D is much smaller

than J, the entropy contribution to the dipolar free
energy is negligible, as shown in detail by Kasuya.
This free energy is therefore

Fn= F-i+F-2+&3+F-4, (26)

neglecting higher-order corrections considered in Sec.
III. For a rough evaluation of (26) one can approximate
all denominators A& by

with C2 isotropic and Ei(T) given by the Akulov

expression, Eq. (2). Thus classical and quantum theory
are in agreement.

As noted by Vari Uleck, since D appears squared in

D4, the sign of Ei(0) is independent of the sign of D.
The sign is determined by the sign of the lattice sum

04. Van Vleck gives the following values of 04 for simple

cube, body-centered cube, and face-centered cube,
respectively: +18D' —16D'& —9D'

Ag=2S Qi, J=2SsJ, (27)
III. HIGHER APPROXIMATIONS

where z is the number of nearest-neighbors. This
approximation was used by Tessman, and is equivalent
to replacing the exchange Hamiltonian by a molecular
field Hamiltonian. In a detailed analysis, which we

discuss in Sec. III, Charap and gneiss have shown that
this approximation is remarkably good. The dipole
sums are then evaluated as follows:

Charap and. gneiss have made two rather involved
corrections to the dipolar energy as given by Eq. (32).
The first correction removes the approximation (27)
and evaluates (20), (21), and (25) by complicated
integration over k space. The result is that Ei(0) gets
multiplied by the factor

(36)q= 1.26, 1.072, 0.974,g~[B~['=16S'1V+~]Bi,['
= (9ES'/4)D' pi, (1—yi,')'

= (9&S/2) D' Z~ v~'(1 —v").

for s.c., bcc, and fcc, respectively. It is seen that the
correction is sxnall for bcc and fcc.

Similar complicated integrals were involved in Van
Peype's work, " and Charap and %eiss establish an

Thus by use of (27) and (28) one obtains for the dipolar equivalence between their zero-point result and Van
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Peype's ground state. It might be mentioned that for
the case of dipolar ferromagnetism (no exchange, only
long range magnetic dipole forces), the evaluation of
the zero-point anisotropy cannot be well-approximated
by any simple expansion. Instead the expression (22)
must be numerically integrated. It is found that a large
anisotropy constant E2 is also present. "

The second Charap-gneiss correction is much more
interesting and important. It comes from exchange
interactions between spin waves and has been evaluated
according to the Dyson formalism. It can also be
obtained in the Holstein-PrimakoG formalism by use
of (14). The term in question appears in third-order
perturbation:

(g Incr++
I ~) (~ I3'» I ~) (~ I ~i I g)Es=Z. ~ +c.c.

(E.—E.)(E.—Eg)

= (41VS) 'Qg 4,.(2Ag g
—Ag —Ag)BgBg*

X(1+0')(1+m ~)(1+nj,.)(1+6 g)

terms. For details the reader is referred to the Charap
and gneiss paper.

IV. STATIC VS DYNAMIC ANISOTROPY

As discussed in the introduction, the dynamic
anisotropy measured by ferromagnetic resonance should
agree with the static anisotropy measured in a torque
experiment. This agreement will now be derived.

Consider the uncorrected zero-point anisotropy ob-
tained in Sec. II. (The Charap-Weiss corrections will
simply multiply all our results by a common factor. )

Fg)(0) =Cg+Kr(0)I". (41)

This may be considered as a macroscopic anisotropy
energy leading to an eGective anisotropy "Geld" in a
resonance experiment performed near O'K.

For simplicity we assume zero external static applied
field. For a simple cubic (04 and hence K& positive) an
easy direction will be (001). Let 8 be a small angle
away from this axis. Then it is easy to show that

&((Ay+A g) '(Ay+A g) '. (37)

The constant-denominator approximation (27) is
now introduced. The only part of the numerator
contributing to zero-point anisotropy involves Az &.
This anisotropy reduces to

8Fg) (0)/88 =2K'(0)8.

By definition, the anisotropy field H& is given by

BFn(0)/88= M sin8H~ =M8H~.
Thus

Hg= 2K'(0)/M =2K'(0)/XgPS.

(42)

Eso= (2Ss) Kr(0) ~ Lr1/2»)Kr(0) (3g) The resonance energy in this field will be given by

The bracketted relation comes from improving the
constant denominator approximation by (36).

For S=~, the only case considered by Charap and
Weiss, our bracket Lg/s) equals their v;. They then
derive a series of corrections, corresponding to pertur-
bations beyond (37). The final result, extended to
general S, is to replace the bracket of (38) .by a simple
power series in (r1/2Sz). When this result is added to
Tessman's zero-point energy, as corrected by (36), the
anisotropy constant becomes

E =K (0)(10/ES)(-', —I').

For the easy direction (001), I'=0, and hence

Eg(001)=Eg(001)=2K'(0)/&VS.

(46)

(47a)

Ep(001) =gPHg=2K'(0)/NS.

Now let us see if this energy is contained in the k=0
spin wave excited by the microwaves. From (32) the
additional spin-wave energy to be added to A& is

with
pKr (0))„„„t,d = (41XS/16sJ)$04,

$= 1+(r1/2Ss)+ (41/2Sz)'+ ~ ~ ~

(2Ss/41)

(39)
Thus the equivalence of static and dynamic anisotropy
is established. Similarly for E& negative as in fcc and
bcc, with (111)as an easy direction, one can show that

Eg(111)=Eg (111)= —-4sK, (0)/ES. (47b)

(2Ss/q) —1

It is to be noted that the correction factor P approaches
unity for large S. In Sec. V it is shown that the factor
$, in the constant-denominator approximation ran=1,
can be obtained very easily from Van Vleck's method.

The above corrections have been made in the zero-
point anisotropy only. Charap and gneiss have applied
similar corrections to the temperature-dependent part.
To obtain this we would have to consider terms of
order 44' in (37) and also carry (23) out to higher order.
The j.0th-power law is not aGected by these higher

"M. H. Cohen and F. KeRer, Phys. Rev. 99, 1155 (1955).

The result has been derived for simple cases with no
applied field and near O'K. But it is clear that there is
a general equivalence between the spin wave and
classical theories of dipolar-type anisotropy.

V. VAN VLECK'S METHOD

Van Vleck' expresses the unperturbed exchange
Hamiltonian in the molecular Geld approximation

Sea= gpHs g, S,', —

where the exchange field H~ is taken as temperature
independent Lsee the remarks below Eq. (25)). The
partition function is then expanded in powers of the
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dipolar perturbation. "
Z=g„e p(—8„/k T)L1—(k,T) '(-a+b+c+d) j,
u= (p, ixpip),
b= —(2JssT) 'P-, (p [SC'[ v) (v

i
3."

i p),
c=g, (p[X++[v)(viX- (p)/(E„—E,)+c.c.,
d=P, (la fX+i v)(v fX—fp)/(8„—8,)+c.c.

(49)

A quite different value is obtained for (52), however,
with the assumption of strong correlation between
neighbor spins. In the limit of complete correlation
(which corresponds to the approximation of Sec. II
that only k=0 spin waves are excited) we must take
(53) as zero. Furthermore, for neighbor spins, S,"S;=S'.
With the aid of (16), the correlated approximation
yields

Here E„are eigenvalues of (48). Since Z is given by a
spur, any system of representation may be chosen, and
for convenience Van Vleck picks that system in which
each spin is separately space-quantized. Terms which
would ordinarily have vanishing energy denominators
in second order perturbation appear in Z in the form 6
above, that is, the degeneracy problem can be handled
in a simple fashion if one is interested only in the
partition function. For details the reader is referred to
a very interesting discussion in Van Vleck's paper. '
The matrix expansion (49) is equivalent to an operator
expansion of Z which is frequently used in current
papers. "

I.et

then
Z= Zp(1+ s),

P= —P~T lnZ —AT lnZp —kgb&,

to a erst approximation. Thus the dipolar portion of
the free energy is given by

where
Fg) = (a+b+c+d). (50)

(g)=—Zp ' P„xexp( —E„/AT) (51)

is the temperature dependent statistical average of x
in the molecular 6eld.

It is obvious that (a) cannot exhibit cubic anisotropy.
The term (b) is evaluated as follows:

(b) = —(2&sT) 2'~~. Z' ~~' KA"
X((S; S,—35'5 *)(S,' S; —3S; *5;*)). (52)

The value of (52) depends upon the correlation assumed
between neighbor spins. Van Vleck assumes complete
lack of correlation, i.e., each spin is free to Quctuate in
the molecular Geld without regard to the direction of
its neighbor spin. Thus, for example

(5 'S '*—(S,*)')= (m)' —(m'), (53)

(S,+5; )= LS'+5—(m')+(m))b;;, (54)

where (m") is the statistical average, in the molecular
6eld, of the eigenvalue of the eth power of the operator
5 . With this assumption, and with use of (16), Van
Vleck 6nds

(b)vv= (27raT) '& Qa(&a)'C (5'+5—(m'))'
—(m)'+8(ms)s —16(m')(m)'+8(m)4$. (55)

~ R. Serber, Phys. Rev. 43, 1011 (1933); J. H. Van Vleck,
J. Chem. Phys. 5, 320 (1937)."M. L. Goldberger and K. N. Adams, J. Chem. Phys. 20, 240
(1952).

(a)cor =&b)car= 0q (56)

corresponding to the results of Sec. II B.The remaining
terms of (49) are expressed as follows:

&)=-L(2g».)- Z'.;Z"; ~;;~;;*
X&5~+5,+5; Sp )—c.c.];

(d)= —L(gPHs) '2'~ 2'~ F,,F'; *

X&5,+5 '5 S")—c.c.j.
Van Vleck's evaluations are

(57)

where
(m') =5'(1—e)'=S'(1—2e),

e= LM(0) —M(T)]/M(0),

(61)

this portion contains

1—2e—Se= 1—10', (62)

in agreement with the Akulov expression (2).
Equation (60) is to be compared to the spin-wave

result (29). They are equivalent if

gPHs =2JSs. (63)

It is possible to improve this simple relation, at least
insofar as it enters into (59a), which equation gives the
zero-point anisotropy. The denominator of (59a) is

() = —(2g&H ) '&E.Ifl I'
X8(5'+S—(m'))(m); (58)

(d) vv= —(gj9Hv) 'cV Qa j Fa
~
'2(m)((m') —(m)');

whereas the correlated approximation yields

(c)...= —(2gPHv) '1V Qa~Ba~'8&m'); (59a)

(d)...= —(gPHs)-'X Za IF, I'2LS' —(m')3. (59b)

To obtain (59) most simply one carries out the commu-
tation of spin operators in (57) and rearranges the
results so that S" operators are to the right. Sums
containing S; S;"S;+8;;,etc. , are then taken to be
zero, as can most easily be seen from spin-wave con-
siderations (these sums are quadratic in na).

It is to be noted that (59) is quite different from
(58) for T)0. On using the relations (10) one obtains
for the dipolar free energy

F~ (c),,+(d)...——
= —(9+Ss/16gPH@)D' gaL(1 —y ')~5 s(m')

+4yas(1 —ya') (1—5 '(m')) ) (60)

The anisotropic portion of the above is the coeKcient
of yJ,4. YVith the approximation
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BZs= 2J(Ss—1).

Thus in (59a) we replace

2gPH I;=AEr+ hL's
=2J (2Ss—1),

and now the result differs from (29) by the factor

(65)

(66)

the energy involved in reversing in succession two
neighbor spins. From (7) the average energy to reverse
the first spin is

hEg= 2JSs.

The average energy to reverse the second spin, in the
presence of the reversed first spin, is

This is equivalent to the exchange-interaction correction
of Sec. III, Eq. (40), in the constant-denominator
approximation g = 1.

The g correction cannot be obtained easily from Van
Vleck's method. This is because the state with a spin
reversed is not an eigenstate of the entire exchange
Hamiltonian, but only of the S S portion. Therefore
the improvement embodied in (66) replaces the mo-
lecular-field approximation by an Ising model. The
correct energy denominator, as exhibited by the spin-
wave calculation, has an additional Quctuating term.
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Time-Dependent Internal Friction in Aluminum and Magnesium Single Crystals*)

R. H. CHAMBERS) AND R. SMOLUCHOWSKI
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Magnesium and aluminum single crystals subjected to varying amounts of oscillatory strain of audio
frequency have been investigated by measuring the strain amplitude-dependent complex dynamical-
mechanical modulus at audio frequencies as a function of temperature and time. If the amplitude of the
applied excitation exceeds a critical breakaway strain, an excited mechanical state is manifested in a modi6-
cation of the amplitude dependence of the complex modulus. Upon cessation of the excitation, the excited
state decays. The decay following short excitation times obeys a t& law, becoming a t& law as excitation ap-
proaches saturation. The short excitation decay rate is found to be governed by an activation energy in the
range of 7-10 kcal per mole.

The time dependence is considered to be caused by the dispersal and condensation of a pinning atmosphere
which has high diffusivity and is easily dispersed by a dislocation segment undergoing pinning interactions
with the atmosphere.

INTRODUCTION

HK literature relating to nonlinear mechanical
behavior of metal single crystals has increased

steadily ever since Read's' ' early experiments and his

interpretation of the amplitude dependence of internal
friction and Young's modulus in terms of the motion
of dislocations. It was early recognized that amplitude
dependent internal friction measurements also showed

*Work supported in part by the U. S. Atomic Energy Com-
mission.

t Submitted in partial fulfillment of the requirements for the
degree of Doctor of Philosophy at the Carnegie Institute of
Technology.

f Now at the John Jay Hopkins Laboratory for Pure and
Applied Science, General Atomic Division of General Dynamics
Corporation, San Diego, California.' T. A. Read, Phys. Rev. 58, 371 (1940).

2 T. A. Read, Trans. Am. Inst. Mining Met. Petrol. Engrs. 143,
30 (1941).

s T.A. Read and E.P. T.Tyndall, J.Appl. Phys. 17, 713 (1946).

marked time dependence. ' ' At temperatures well below
the recrystallization temperature, rapid recovery of
internal friction occurs following deformation of metal
single crystals (Koester effect, after Nowicic') and is
attributed to the redistribution of dislocation lines.

The following is a study made of a time-dependent
phenomenon in amplitude-dependent internal friction
and modulus measurements of aluminum and mag-
nesium. single crystals resulting from controlled oscil-
latory deformations.

EXPERIMENTAL TECHNIQUE

A resonant bar technique is used to measure the
decrement and effective Young's modulus of 16 cm long

4 I.H. Swift and J.E.Richardson, J.Appl. Phys. 18, 417 (1947).
5 A. S. Nowick, Symposium on Plastic Deformation of Crystal-

line Solids, Ofhce of Naval Research, 1950 (unpublished).
6 T. A. Read (quoted in discussion to reference 5).
s A. S. Nowick, J. Appl. Phys. 25, 1129 (1954).


