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The one-electron wave functions for the d band of body-centered iron are examined and found to have
significantly different character, depending on their energy location in the band. The bottom of the band
is associated with diffuse wave functions, while the top is associated with more compact atomic-like func-
tions. A smooth transition from one behavior to the other occurs as the energy is varied. This gives sub-
stantiation to recent descriptions of transition metals which have been based on "low d" assignments; here
this is explained on the basis that a significant fraction of the d electrons in a solid do not "look" like atomic
d electrons at all.

INTRODUCTION of Pauling' who gave a description of the transition
metals based on the assumption that there were two d
bands —one described by diffuse functions (bonding)
and the other by localized (antibonding) functions.
More recently, I orner and MarshalP have advanced a
scheme for the transition metals based on the experi-
mental results of Weiss and DeMarco' who find for
some transition metals, including iron, a number of 3d
electrons much lower than is expected from conven-
tional band theory. Lomer and Marshall describe the
d band as composed of localized d functions with an
admixture of diffuse functions which they call 4c, pre-
sumably derived from 4s and 4p (and perhaps higher)
functions. In the present description it appears that the
d functions themselves provide this diffuse part without
the necessity of mixing in large quantities of 4s and 4p.

HIS note describes features oI the one-electron
wave functions of angular momentum 2, ob-

tained in the course of an energy band calculation for
body-centered iron. ' The method used for calculation
has the advantage (for present purposes) of describing
the wave function about the nuclei in terms of numerical
integrations of the conventional radial Schrodinger
equation. Thus one may, in large part, examine the be-
havior of the functions (whose eigenenergies define the
energy bands) by looking at the solutions of the radial
equation for appropriate values of the energy parameter.

Atomic iron has a ground configuration 3d'4s' so that
in crystalline iron the bands of interest will be those
arising from the 3d, 4s, and perhaps 4p atomic func-
tions. In transition metals the detailed structure of the
3d band is of great interest for many applications; in
particular, the one-electron wave functions and associ-
ated one-electron charge densities as well as one elec-
tron-energy levels are of interest. We consider here just
what these wave functions look like and how their
behavior changes as we move from one portion of the
band to another. We may briefly characterize our find-
ings as follows.

The bottom (in energy) of the d band is characterized
by one-electron d wave functions which are quite dif-
fuse, being quite di6'erent from the conventional atomic
d function, while at the top of the band we find the
associated d wave function is quite contracted, much
like an atomic function. As one moves upward in energy
from the bottom to the top of the band, smooth transi-
tion from the disuse to the contracted nature is ob-
served. Thus it appears that in transition metals we

may very well have "different kinds" of d electrons

present, and pictures of these metals based on assump-
tions of completely localized d wave functions may
need to be modified.

There will be recognized a similarity to the proposals

CRYSTAL %AVE FUNCTIONS

To expand on the previous statements, we indicate

briefly the construction of the one-electron energy band
functions showing how the solutions of the radial

Schrodinger equation enter. We used. the augmented

plane wave method (APW) of Slater4 as developed and

programmed by Saffren' for the Whirlwind computer.
In this method the approximation to the self-consistent

energy band potential is made as follows.
Around each nucleus of the crystal is drawn a sphere

of radius R (which we took to be half the nearest
neighbor distance). Inside these spheres the one-electron

potential is taken to be a spherically symmetrical atomic-

like potential U(r) chosen appropriate to the particular
crystal. In the region between these spheres the poten-
tial is taken as a constant. One then solves the one
electron Schrodinger equation in this potential taking
advantage of the crystalline symmetry. The resulting

set of one-electron energies and wave functions then

characterize the energy bands.

' L. Pauling, Phys. Rev. 54, 899 (1938).
~ W. M. Lomer and K. Marshall, Phil. Mag. 3, 185 (1958).See

also N. I'. Mott and K. W. H. Stevens, Phil. Mag. 2, 1364 (1957).
4R. J. Weiss and J. J. DeMarco, Revs. Modern Phys. 30, 59

(1958).Also B. W. Batterman, Phys. Rev. Letters 2, 47 (1959);
and R. J. Weiss and J. J. DeMarco, Phys. Rev. Letters 2, 148
(1959).

~ M. M. SaR'ren, Ph.D. thesis, Massachusetts Institute of Tech-
nology, 1959 (unpublished).

*This work was supported in part by the Once of Naval Re-
search, under contract with the Massachusetts Institute of
Technology.' J. H. Wood, Solid-State and Molecular Theory Group, Massa-
chusetts Institute of Technology, Quarterly Progress Report No.
28, April 15, 1958 and No. 31, January 15, 1959 (unpublished).

71



%AVE FUNCTIONS FOR Fe d BAN D

I I I Otrect toh
(EI CC)

/
Has

2.0
I

A

I's
1

5

P

Fio. 1. Plot of the quantity (6/r') —U(r) where U(r) is
that of reference 8. Atomic units.

Outside the sphere we have

P„(r; A,E)=P; A; exp(ik; r).

The A; are determined from a secular equation among
the functions indexed by k;. The set {k,} is that gen-
erated from k by adding to it the vectors of the re-
ciprocal lattice. e and P are polar coordinates about the
origin; fi; and P; are the polar coordinates of k, .' The
ui(r; E) are the solutions of the radial Schrodinger
equation for angular momentum l and energy E=E„(k).

1 d ( dl, i )l(i+1)
I+1 —U(r) 1=«i.

)r'dr & dr ) (2)

If, as in atomic self-consistent field calculations, we
define P(r) =ru(r) then P(r) satisfies

d2Pg
=g(r)Pi(r),

df

a(r) = l(l+1)
r2

U(r) —E . —
(3)

BEHAVIOR OF WAVE FUNCTIONS

Now it is clear that our energy band wave functions
and energy levels will be strongly dependent on U(r)

' J. C. Slater, Phys. Rev. Sl, 846 (1937).
~ Such a function must, of course, have certain transformation

properties under the operations of the group of the wave vector.
The result of this demand is that certain k; and l are absent from
the sum; also obtained are sets of relations among the A;.

If we pick a particular point k in the Brillouin zone
for which the rsth energy band has the value E=E„(k),
then the associated wave function inside the sphere
located at the origin can be written'

P„(r; k,E)
oo +2 Ni(r; E)=P~;P P (2t+1)i'q, (1l,Z1)

i 2=0 m N, (E; E)

(l 1m1)—!
X Pi~" ~ (coso)P&~ ~ (cose,) exp'(P —@,). (1)

(l+
/
m1)!

I
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Fin. 2. Plot of energy bands E„(k) for bcc iron obtained via
APW method (reference 3) using potential of reference 8. Energy
in Rydbergs. Labeling that of Bouckaert, Smoluchowski, and
Wigner. '

inside the sphere. (This sphere, inscribed in the Wigner-
Seitz unit cell, accounts for about 70'%%uo of the total
volume of that cell. ) Also, it is known from atomic
calculations that P(r) for l=2 is very sensitive to the
value of the energy parameter E; small deviations from
the energy which defines a P(r) properly bounded at
infinity lead to quite large deviations in P(r).

Consider what this might lead to in the case of the
d band of a solid. The d band is described by functions
ll „(r;k,E,) whose leading term in the expansion (1) will
be l=2. Now if the spread in energy (bandwidth) of
the d band is sizeable we may expect, in analogy with
the atomic case, considerable changes in Ns(r; E) which
describes the radial behavior of this leading term, as
we range from the bottom to the top of the band.

In Fig. 1 we have plotted the quantity (6/r') —U(r)
t see Eq. (3)], where the U(r) is that of Manning' as
used in the band structure calculation. This quantity
is the effective potential energy for the determination
of u, (r). In Fig. 2 we have plotted the band structure
E„(k) along the L111)direction in k space. s As it turns
out, the energy corresponding to B» is the lowest
energy in the d band while that corresponding to B»'
is almost at the top. All energies between are allowed
and cover a range of a little more than 6 electron volts.
We have indicated this range of the d band on Fig. 1
as a shaded band; the signi6cant feature of this picture
is that in the region beyond about 1 atomic unit any d
band energy lies very close to the effective potential
curve. A small change in energy can move the right.
hand classical turning point and thus the inQection
point of Ps(r) considerably )see Eq. (3)j. In Fig. 3 we
show the results of integrating Eq. (3) for the lowest
and highest energies in the band, as well as several
intermediate energies.

These curves illustrate the greatly diferent char-
acters of which we have spoken. At the bottom of the
band we have a quite diGuse function retaining large

s M. F. Manning, Phys. Rev. 63, 190 (1943).' The notation is that of Souckaert, Smoluchowski, and Wigner,
Phys. Rev. 50, 38 (1936).
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Fro. 3. Plot of radial wave functions Ps(r) [see Eq. (3)] for d
band energies. Functions are not normalized. (a) E=E(Hqs)=0.41
Rydberg (bottom of d band); (b) E=0.45 Rydberg; (c) E=0.55
Rydberg; (d) E=0.65 Rydberg; (e) E=0.75 Rydberg; (f) E
=E(N3) =0.88 Rydberg (top of d band); and (g) atomic 3d func-
tion Pj. H. Wood and G. W. Pratt, Jr., Phys. Rev. 107, 995
(1957)j.

amplitude right out to the sphere radius (half the
nearest neighbor distance). At the top of the band we
have switched over to a highly contracted functions;
as a matter of fact, this function is more localized than
a free atom d function (also plotted on Fig. 3). As we
move up through the band we switch over smoothly
from the diffuse to the contracted behavior. At an
energy located halfway up in the band, we find the
value of P(r) at the sphere radius to be almost precisely
half its maximum value.

Thus our one-electron energy band functions here
written as sums of augmented plane waves, are going
to describe quite diGerent behaviors as we range across
the d band. Now the expression (1) for the wave func-
tion inside the sphere involves a sum over angular
momentum /. As we mentioned previously, for some
states certain of the / are not present because of sym-
metry but this is not true in general —a general state
in the d band will contain terms from all angular mo-
menta. The question then arises as to whether the
behavior of the other stt(r;E) might not seriously
modify our description in terms of /= 2 only. This does
not seem to be the case although there are modifications
of a quantitative nature for some states.

IMPORTANCE OF ANGULAR MOMENTA
OTHER THAN TVfO

The energy band calculation carried the sum on /

through /=12. Our initial expectation is that if / other
than /=2 is needed in expressing the wave function
they will be /=0 and. 1, corresponding to an admixture
of 4s and 4p. We have looked at this admixture in the
following way, as suggested by M. M. SaBren.

From Eq. (1), one can form iP~iP giving us a one-
electron charge density. If we integrate over angles and
sum over the index i we are left with a charge density

R
I

FIG. 4. Plot of C(r) [see Eq. (4)g for the state P4. A includes
eRect of p term in wave function; 8 includes only eRect of d
term.

having the form'

and if we wish we can define

( Nt(r; E)
C(r)=rl E&t

Nt(R; E)

which is an analog of the P(r) for atomic functions, the
square of which gives the radial charge density.

We have examined C(r) for several states in the d
band where mixing of angular momenta is allowed by
symmetry. The largest mixing we have found to date
is for the function corresponding to the representation
P4, where pd mixing is allowed. Here the 8 for /= 1 and
/=2 turn out to be 1.108 and 1.131. In Fig. 4 we plot
C(r) for this case. The curve labeled A is that in which
both l=1 and 1=2 are included in computing C(r)
while that labeled 8 is that for /=2 alone. We see here
that while there has been a substantial quantitative
modification, qualitatively the picture is pretty much
the same. Such has been the case for all those states so
far examined; the behavior of the d radial wave function
gives a rather good qualitative picture of the "radial
wave function" C(r).

The energy band calculation was also carried out for
fcc iron using again the Manning potential. Here too,
we have examined the resulting wave functions and find
a similar situation. Thus the present results do not seem
to depend critically on the crystal structure, and, as is
explained later, do not appear to be a result of using
the particular numerical potential of Manning.

DISCUSSION

It is clear from the previous discussion that this
picture of d electrons in a transition metal gives some

substantiation to the Pauling and I.orner and Marshall
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descriptions. However, we need a good. deal more in-
formation before we can have complete conGdence in
the picture. In particular, it is obvious that one should
investigate the behavior of P*P for many more values
of k and E. Here we have restricted ourselves to k for
which symmetry makes computation of C(r) a tractable
job by hand. Next it wouM be useful to have a density
of states function for the band structure. This will give
information regarding the number of occupied states
per unit energy range which together with the behavior
of the one electron charge density can give us informa-
tion about the total charge density.

There is, of course, the question as to whether this
behavior is just a peculiarity of the numerical potential
we have chosen for the problem. We do not believe this
is so since in addition to the band calculation mentioned
here we have also carried out another, using a quite
diferent potential, and found the same situation with
respect to the d wave functions in spite of the fact that
the width of the d band nearly doubled. In order to see
if this behavior will prevail across the series of transition
metals, we have examined the wave functions of copper
as calculated by Chodorow. "We find that he too ob-
tains this behavior.

If, as appears at present, a sizeable fraction of the
valence electrons are described by the "spread-out" d
functions it is evident tha, t the potential function U(r)
will be somewhat modified from the predominately
atomic character which it has usually been assumed to
have. Suppose we construct the crystal potential out
of the argon cores centered on each of the iron nuclei

plus the charge densities on each site arising from the
valence electrons. " Then around any one site the
potential may be looked upon as arising from the charge
density located on that site plus contributions from all
other sites (see reference 6). Now it is clear that if we

have charge density "sticking out" to the very edges of
the cells the contributions of the other sites will be very
important in determining the local value of the poten-
tial. In particular, it would seem that the expansion of
the local potential in terms of spherical harmonics will

include contributions from other than l=0 terms; that
is to say we will have a crystalline Geld. present which

might split the d band into two portions as Pauling
has suggested. However, preliminary estimates of the
changes in the d levels which may be expected upon
inclusion of /= 4 terms in the potential indicate that the
d levels will not be modified by more than an electron
volt. These estimates were made along the lines sug-

gested by Leigh. " Reference to Fig. 2 shows that
changes of this order of magnitude will not split the d
band into two portions.

"M. Chodorow, Ph.D. thesis, Massachusetts Institute of Tech-
nology, 1939 (unpublished)."R.H. Parmenter, Phys. Rev. 86, 552 (1952)."R.S. Leigh, Proc. Phys. Soc. (London) 71, 33 (1958).

CONCLUSIONS

Now it is of interest to ask what the previous con-
siderations indicate in the light of recent experimental
work on the transition metals. If the wave functions in
the self-consistent field description of the transition
metals retain the characteristics we have described,
then we would expect experimental analyses of the
number of atomic d electrons in these metals would
indicate a deficiency. The whole question is just how
sizeable is this deficiency.

Weiss and DeMarco, in their investigations of elec-
tron charge density in the transition series metals, see
only about two atomic d electrons per atom in iron. On
the other hand, Batterman reports he obtains approxi-
rnately a d' configuration. Very recently, Komura,
Tomiie, and Nathans" have reported an investigation
of Fe3Al; they conclude on the basis of other evidence
that the conhguration of Fe in this alloy will not diGer
greatly from the configuration in the pure metal. Their
results indicate a d' configuration, thus agreeing with
8atterman.

Recently, Stern" has reported calculations of the
energy bands and cohesive energy of bcc iron by a
modified tight binding method. He reports the indicated
con6guration is d's. Stern also Gnds the sort of behavior
we have found in the d wave functions Lsee his Fig. 1
where he plots u(r) =P(r)/rj and preliminary com-
parisons show a rather surprisingly good qualitative
(and perhaps quantitative) agreement between the
two calculations.

If we accept a configuration of d's, which seems rea-
sonable from the energy band standpoint, then we must
explain how it is that the x-ray experiments indicate a
loss of one of these d's (if we accept the results of
Batterman and Komura et al.) or of five d's (if we accept
the results of Weiss and DeMarco). "

Although, as mentioned previously, we are not in a
position to get an accurate density of states curve, we
have been able to construct a very rough curve from
the values of the energy at the nineteen values of k we
have considered. This analysis indicates that there are
about five d electron states per atom below an energy
of 0.7 Rydberg. Now a glance at Fig. 3 will show that
while we may expect smaller contributions from these
states to the form factor than if they were atomic-like,
it is also pretty clear that they cannot give a zero con-
tribution as would be required by the Weiss and
DeMarco picture. On the other hand, it is not unreason-
able to suppose that they could account for the "vanish-
ing" of one d electron as required by Komura and
Batterman.

'~Komura, Tomiie, and Nathans, Phys. Rev. Letters 3, 268
(1959).See also Arp, Edmonds, and Petersen, Phys. Rev. Letters
3, 212 (1959)."F. Stern, Phys. Rev. 116, 1399 (1959); and private com-
munications."A complete discussion of the analysis of the x-ray and neutron
di8raction results in iron and nickel is given b R. J. Weiss and
A. J. Freeman, J. Phys. Chem. Solids 10, 147 1959).
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Thus we feel at present that the energy band de-
scription can account for some reduction in the number
of d electrons but it seems rather unlikely that this
reduction can amount to more than one or two electrons.
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A re-evaluation has been made of Van Vleck's second-order perturbation theory of dipolar-type anisotropy
in cubic ferromagnets. In the low-temperature limit of strong correlation between the direction of neighbor
spins, the first anisotropy constant Ei varies as the 10th power of the magnetization. The theory is somewhat
analogous to a previous treatment of quadrupolar-type anisotropy in the strong-correlation limit. In both
cases, the results are in agreement with the Akulov-Zener classical theory. For the dipolar case, complete
agreement is also established between the Dyson-type spin-wave analysis of Charap and Weiss and the
Holstein-Primakoff approach. Higher order terms in the latter are shown to lead to the Charap-Weiss
correction from exchange interaction between spin waves, and this correction is extended to S)~. Essentially
the same correction is obtained very easily from a simple modification of the Van Vleck formalism to take
careful account of the average energy involved in simultaneous reversal of neighbor spins. It is shown
that spin-wave theory, in agreement with classical theory, predicts identical values of dipolar-type ani-
sotropy whether measured statically in a torque experiment or dynamically in a microwave resonance
experiment.

I. INTRODUCTION

'HE classical theory of ferromagnetic anisotropy
in cubic crystals was formulated by Akulov. '

He showed that if the anisotropy energy is expanded in
powers of the direction cosines n1, n2, 0.3 between the
bulk magnetization vector and the three cubic axes,
then the lowest nonvanishing term must be of the form

& =E (
' '+ ' '+ ' ')=ET (1)

A rough estimate of the temperature dependence of
E1 was also given by Akulov. He considered the crystal
to be composed of a number of small regions, and
within each region he assumed that the magnetization
vector makes a random small angle 8 with respect to
the average over-all direction of bulk magnetization.
The anisotropy energy of each region is assumed to
take the form (1). As the temperature increases the
angle 0 between regional and average magnetization
becomes larger and larger, and the total anisotropy
energy drops precipitously. The reason for the very
rapid drop is illustrated in Fig. 1. %hen the average

*This research was supported by the United States Air Force
through the Air Force OfFice of Scientific Research of the Air
Research and Development Command.

t Permanent address: Department oi Physics, Tokyo Uni-
versity of Education, Ohtsuka-kubo-machi, Bunkyo-ku, Tokyo,
Japan.'

¹ Akuiov, Z. Physik 100, 197 (1936).

value of the angle 0 is as shown in the figure, the total
anisotropy energy will disappear; however, the sample
magnetization M(T), which is given by the average
value of M„will be quite large. Akulov derived the
expression

E,(T)/E, (0)-1 10LM(0) —M(T)7/M(0) (2)

Zener' has shown by a random-walk calculation of
the average angle 8 that a more precise formulation of
(2) is a "10th power law. "

Er (T)/Er (0)= LM (T)/M(0) 7r'. (3)

Furthermore, Zener has given a general expression for
higher-order anisotropy. In particular, in the first term
beyond (1),

~2 +2&1 &2 &3 ) (4)

the temperature dependence of E2 is as the 21st power
of M(T). Jf the solid curve in Fig. 1 were redrawn to
represent F2 it would cross the dotted curve at smaller

0, which accounts for the higher power. Zener has also
shown that if Es(0) is of comparable magnitude to
Et(0), the temperature falloff of Er increases. This is
clear from Fig. 1 since, if the solid curve were to include
both I"1 and a large Ii 2, it would have many wiggles and
the total anisotropy would vanish as E2.

' C. Zener, Phys. Rev. 96, 1335 (1954).


