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Longitudinal Hall Effect
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International Business MachirIes Research Laboratory, Poughkeepsie, Sew York

(Received August 20& 1959)

The "Hall Field" is defined as the electric field which is an odd function of the magnetic field. Because of
the Onsager relations it is perpendicular to the current. It is split into the conventional transverse Hall
Geld (TH-field) in the direction of BX I and a longitudinal Hall Geld (LH-field) in the direction IX (BXI).
Some properties of the LH-Geld contrast with those of the TH-Geld. In particular, it vanishes (a) at
saturation, (b) for spherical energy surfaces, and (c) when the magnetic Geld is parallel to an axis of rotation
of the crystal. Its dependence on carrier concentration is the same as that of the TH-field; its sign, however,
is determined by band structure as well as carrier sign. For a system consisting of n-type germanium the
properties of the LH-field are investigated theoretically and experimentally.

I. INTRODUCTION

1
~~HM'S law for an isothermal single crystal placed

in a homogeneous magnetic Geld is':

E'=p' (8)~

E is the electric field, I the current density and p;, (8)
the resistivity tensor which is a function of the magnetic
field S.

If p;, (8) is written as the sum of a symmetric tensor
p, ,(8) and an antisymmetric tensor p;;(8) = e;;&R&(8)
we have

E'= G 'r(8)+ e"s~s(8)3r
where e,;q is the permutation tensor and Rs(B) = sic;;q

Xp;;(8) is the vector of the tensor p, ,(B).R(B) is an
axial vector since p,, (8) is a polar tensor. Assuming the
Onsager relations, ' p,, (8)=p;, (—8), Casimir' showed
that p, ,(8) is an even function of 8 and that E(B),
which he termed the Hall vector, is an odd function of
S. Measurements are usually made with respect to a
laboratory reference frame, an orthogonal frame
determined by 8 and I as shown in Fig. 1. Because of
the Onsager relation the electric field EJ in the direction
of the current is always even with respect to B.
Examples are transverse and longitudinal magnetoresis-
tance. The electric Geld perpendicular to the current is
composed of even and odd terms. The odd term E
will be called the Hall field in analogy with Casimir's
terminology. Its components with respect to the
laboratory frame, B»&z and Er&«a&r&, will be distin-
guished as transverse and longitudinal Hall fields
(TH-Geld and LH-field) respectively. Ezxr is the field
of interest in the conventional "Hall effect" measure-
ment and the "Hall coeKcient"Ir is calculated from it
in the usual way. The component of the electric Geld
in the direction IX(BXI) which is even in 8, i.e.,
Ezx(»&1~ is customarily called the "planar" Hall Geld. '
The term "pseudo" Hall field has been used for Eg&&(~~y~

' The summation convention of tensor analysis is used: if an
index occurs twice summation is effected.' L. Onsager, Phys. Rev. 37, 405 (1931);38, 2265 (1931).' H. B.G. Casimir, Revs. Modern Phys. 17, 343 (1945).' C. Goldberg and R. E. Davis, Phys. Rev. 94, 1121 (1954).

+Erx(Bxi).s Clearly the LH-field Erx(axr) and the
"planar" Hall field investigated by Goldberg and
Davis4 are diferent. One is due to the antisymmetric
tensor p;;(8) and reverses with 8, the other is due to
the symmetric tensor p;;(8) and does not reverse with
B. The former is intimately connected with the Hall
effect, the latter with magnetoresistance.

Inn~Appendix A it is shown that the TH-field and
the I.H-field can be expressed as

Errxr=~rx(r)xr) (B)I,

Erx(rrxr) = ~rrxr(B) I,
(3)

(4)

Ix(BxI)

BxI

FIG. 1. Orthogonal "laboratory" reference frame constructed
from B and I: I, BXI, IX (8XI).

' K. M. Koch, Z. Naturforsch. 10a, 496 (1955).

EI&((B&&I& and R&zz are pro jections of the Hall vector
on unit vectors in the directions indicated and I is
the magnitude of the current density. Thus once the
directions of 8 and SXI are fixed the magnitude of
the I H-Geld E~&&(~&&~) is independent of the angle
between B and I which is not the case for the TH-Geld

Er)xr as shown by Eq. (3) nor the planar Hall field
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El&«»&z& as shown by the analysis and experiment of
Goldberg and Davis.

We will report on the measurement and interpretation
of the LH-field in n-type germanium for the case that
B is perpendicular to I, the usual arrangement in a
Hall coefBcient measurement. In that case the LH-field
is parallel to the magnetic field and E~&(~&&y) becomes
E~. Section II deals with the theory. First the phenom-
enological theory is given, then the transport theory,
using the accepted many valley model of m-type
germanium and a relaxation time that is a function of
the energy but. otherwise arbitrary. Section III discusses
experimental techniques for measuring the LH-fi.eld
and presents results:
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Since Eq. (1) is invariant with respect to an inversion
a distinction between symmetry operations of the first
sort and second sort need not be made. Therefore
rotoinversion axes can be substituted for the pure
rotation axes in Eqs. (5), (6), and (7). For example,
Eq. (7) describes the resistivity if B is parallel to a plane
of symmetry which is equivalent to a rotoinversion
axis of order two. Equations (5), (6), and (7) are
written in an orthogonal frame. In (5) and (6) a8 is
parallel to the axis of rotation, x& and x2 arbitrary. In
(7)» is parallel to the axis of rotation, » and as
arbitrary. If we assume that I is perpendicular to B
and adopt a laboratory frame in which xlIII and

»II B then EB(BJ 2n-fold axis) = P,3I and EB(BIln-—
fold axis) =0. Since EB vanishes if B is parallel to an
axis of rotation it cannot have an isotropic component.
Equations (5) and (6) show that in that case the Hall
vector is parallel to S.

If we expand (1) to first power in B in a standard

II. THEORY

A. Phenomenological Theory

The existence of a point group symmetry for a single
crystal simplifies the form of the resistivity tensor
p;;(B) only for certain directions of B. The directions
and simplifications are:

reference frame and then transform to a laboratory
frame in which III1-axis, BII3-axis we get:

E,= e;;is).lsm~l~I;B~,

(s;3) is the transformation matrix and Rl„——BR&(B)/BB„.
The form of R&„ for the point group symmetries in a
standard frame is well known. ~ It is easily shown that
B& vanishes to first order only for point group sym-
metries belonging to the cubic system by writing out
Eq. (8) and then taking into account the form which
the point group symmetry imposes on R&„. In the
same way it can be shown that terms in E& higher than
the first in B need not vanish in any crystal system.

Mason, Hewitt, and Wick' expanded p;, (B) to
terms including 8' for a crystal of point group sym-

metry L(4/m)3(3/m)g (germanium) and determined
Er and EB&&z assuming IJ B. From their analysis' we
calculated Bg.
EB——(yll —3y12) (ls l8'+ msms'+ nsn8') B'I

+ ()4111 5)4112) (l2ls +m2m8 +n2ns )BI
+ (30}t123 10)1112)(l2l3m3 n3 +m2m3ls n3

+nsnsl8'm3') B'I. (9)

From their results we give E~&&y for comparison:

EBQI (Rl+3712B—+5)t112B)BI
—(yll —3y12) (l8'+ms'+n8') B'I

(}till 5}1112)(13 +ms +n3 )BI
—(90}1123—30)1112)(ls'm3 n8 )B'I (10).

(ll,ml, nl), (ls,ms, ns), (ls,ms, n3) are the direction cosines
of I, BXI and B, respectively, with respect to the
crystallographic frame of reference. R;, p;;, X;;I, are
Mason, Hewitt, and Kick's abbreviations for RI, ,
yj, „,and Xl, „,„,which are second, fourth, and sixth
rank tensors defined by:

aR8(B) 1 O3R3(B)

88 3I 88 BB„BB,

88R3(B)1

51 88 88„88,88„88,
3 We distinguish between three reference frames. (1) Crystal-

lographic frame: in general not orthogonal and determined by
the unit cell. (2) Standard frame: an orthogonal frame which has
a fixed orientation with respect to the crystallographic frame.
See "Standards on Piezoelectric Crystals, 1949."Proc. Inst. Radio
Engrs. 37, 1378 (1949). (3) Laboratory frame.

2 See, for example, J. F. Nye, Physic43l ProPerties of Crystals
(Oxford University Press, 1957), p. 227.' Mason, Hewitt, and Wick, J. Appl. Phys. 24. 166 (1953).

9The expression for the longitudinal field Eg including even
terms is:
EB= (44» —43»—24444) (l&lP+m&mP+rs&NP)B'I+ (644—5»2 —4)443)

X (14l~' jmlmp+43444p)B'I+ (6$»4 6t4»+24)—444 4442)—
X (1 lp43ps+mmlm. 4tplp+ss&N314'mp)B'I+ (vis 3713)—
X (134 +msms +rsss3 )B I+ (F111 5i4112)(lsl3 +msms
+r43N83)B'I+ (3 Oi4»140 )i(4l4»l mpsap+ssm1psmp443

+N3N4l42mp)B4I

For the definitions of n;q, g;;l, see Mason, Hewitt, and Wick.
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B. Transport Theory

For an ellipsoidal energy dependence on the crystal
momentum the solution of the Boltzmann equation for
an arbitrary magnetic Geld is":

I= ——sse' (p oi'&M-')E+(e/~3Eic)

goo)

(a)

pro)

toi 1)

(b)

1 l e)'
X (Q o "MB)XE+

)
'V EiMi) Lo)

(13)

FIG. 2. Directions of B and I used in experiment relative to
crystallographic axes. Magnetic field is moved in (110) and (100)
planes in (a) and (b), respectively, through 90'. 8 and p are the
angles measured in the experiment and their positive sense is
shown.

in the crystallographic frame. E;, p;;, and X;,I, reduce
to i, 2, and 3 independent components, respectively,
because of crystal symmetry.

Equation (9) agrees with our previous conclusions
about the LH-field En. no isotropic term, zero if B is
parallel to an axis of rotation, and absence of a first
order term. The latter was shown to be a peculiarity of
point symmetry groups belonging to the cubic system.
It can be seen from Eq. (10) that the TH-field Eo&&r has
none of these properties.

In the experiment the following directions of B and I
were selected:

Case u: I
~~ [110Jdirection, B in (110) plane.

Case b: I
~~ [100]direction, B in (100) plane.

as shown in Fig. 2 were the direction of B with respect
to the crystallographic frame is specified by an angle
8 (case a) and it (case b) as measured in the experiment

by a method to be described later. The positive sense
of 8 and P is defined in Fig. 2.

It is convenient to label the LH-field E~' or E~&
when the geometry is as in Fig. 2(a) or 2(b), respec-
tively. In both cases the range 0'—90 is covered in
the experiment. In addition to the symmetry relation
discussed so far we have, for case b, Erie(P)= EIr&—
(90'—it ) for arbitrary magnetic fields as shown
in Appendix B. Thus EJi&(p) must change sign at
y=45 .

We summarize the restrictions which symmetry
imposes on E~ in the range 0'—90'. These restrictions
are valid for orbitrary magnetic fields

E&'(8)=0 when 8=0', 55', 90',

En&(rt) =0 when &=0', 45', 90',

E.e(~) =-E '(90'-~).
In addition, to the order 8', Eq. (9) gives:

Err = s sin28(2 —3 sin'8) [()iii—3)mls)B + () iil 5Xll )Bs'

()till 15)F112+30)i123)s sin 8~ gI (11)

Xiii= —s sin+[()%,ii—3)tie)B'+ P iii—5)tris)B'|I. (12)

t'tirr& ) ' 2E+1
Eas =Ra) ( sin28(2 —3 sin'8)(cj 6E

2E+1 (er)(er )
BIi 14

E+2 ( ')

JE—1y '(er)—
x~

i E+2) (er')' 67

(tiring ) ' 2E+1
Erie = Rs ] [ sin+Ec) 6E

(E 1) '(er)—
kE+2) (e7')' 67

E(E+2) (e)(er') 1
Eo 3

(2E+1)' (er)' nec

2E+1 (er)(er4)-
BI, 15

E+2 ( ')

is the "zero field" Hall coeKcient, E=m„/mi,

e (E+2) (er')
PII=—

m, (2Ey1) («)
the Hall mobility Rso, and (er")=J'foer" (dp)/ J'fe (dp) .

"R. M. Broudy and J. M. Venables, Phys. Rev. 105, 17S7
(1957).

X(Q oisl)BB E,
(8fs/8e) [r(e)j"(dp)

0 ).. )(rt)—
1+(«/o)'(~B B/~M~)

is a scalar which for a rotational ellipsoid in the [ij h J
direction of crystal momentum space depends on the
orientation through MB B. 3I is the effective mass
tensor. The relaxation time r(e) is assumed to be a
function of the energy only but otherwise arbitrary.
P„means summation over valleys which are rotational
ellipsoids in equivalent [111] directions for n-type
germanium. Equation (13) is evaluated for n-type
germanium for cases (a) and (b) in Appendix C.

We define weak, intermediate and strong fields by
(«/c)'[(MB B)/t3f~f&&, ,))1. The condition tirrB

,))1 is approximately equivalent, p~ being the
Hall mobility. Neglecting («/c)'[(MB B)/~M~] for
weak. fields we find K~=0 For intermediate fields for
which (er/c)'[(MB B)/~M~ J&1 the results to the
order 8' are:
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Equations (14) and (15) are the result of expanding
Eqs. (16) and (17) of Appendix C to the order 8' and
then inverting the conductivity tensor 2;s(B) to
obtain the resistivity tensor p;;(8). It is possible for
the transport theory to yieM results of higher symmetry
than the phenomenological theory because of the model.
An example of this are the phenomenological Seitz
coeScients" which describe magnetoresistance to the
order 8' in a cubic material. The model imposes
relations between the Seitz coeKcients. "A comparison
of Eqs. (11), (12), with (14) and (15) show that this
is not the case for the LH-Geld Eg at least to the order
83.

The TH-field Errxz increases monotonically with B
and at saturation becomes a linear function of B
independent of the band structure and scattering
mechanism. "

E~&&~ is the electric fieM that stops
current Qow in the direction B&(I due to the Lorentz
force on the charge carriers. This is the mechanism
that permits Errxr to increase monotonically with B.
The LH-field E~, on the other hand, must be bounded
since there is no force on the charge carriers in the
direction of 8 due to the magnetic field. If we assume
that the distribution function can be expanded in
powers of 1/8 for large magnetic fields" then 5'rr —+ 0
as 8—+ ~.

In obtaining numerical results from Eqs. (14) and
(15) the approximation under which they were derived
must be kept in mind: (er/c)'L(MB B)/~M~](1.
Thus we cannot neglect ionized impurity scattering
even if lattice scattering predominates since rl, becomes
large for small energies. Figure 3 shows the factor

2E+1 (E 1 i ' (er) 2—E+1 (er)(er')
C7

6E I E+2) (er&)& E+2 («')

versus

the ratio of total mobility to ionized impurity mobility
for E= 17 and 20. The transport integrals were
evaluated numerically using the approximation 7 J.=ae '
and rz= pe+& for the relaxation times for lattice scatter-
ing and ionized impurity scattering, respectively,
u/p= 6(isr/pz). The assumption of an isotropic relaxa-

tion time for rI for constant energy surfaces as aniso-

tropic as those of e-type germanium was made to
facilitate the calculations and becomes poorer as the

amount of impurity scattering increases. Figure 4
shows the same factor as a function of E for /1s(r+1srlsr)

equal to 0.5% and 3% and demonstrates that the sign

of the LH-field is a function of band structure which

is not the case for the TH-field: prolate and oblate

spheroids give opposite signs.

"F.Seitz, Phys. Rev. 79, 372 (195&).
's 3.Abeles and S. Meiboom, Phys. Rev'. .95, 31 (1954).
» J. A. Swanson, Phys. Rev. 99, 1799 (1955).

III. MEASUREMENTS

A. Exyerim. ental Detai1s

The measurements were made on single crystal
samples of n-type antimony-doped germanium oriented
and cut as shown in Fig. 5. The sample was first
oriented by x-ray analysis as a cube. A "3-dimensional
cross" was then cut on a Do-All MTA-6 precision
slicing machine. The carrier concentration is 1.5&(10"/
cm' determined from weak field Hall measurements by
the approximation Re=1/rsec on a bridge shaped"
sample cut from the same ingot as the "3-dimensional
cross." Three pairs of probes were soldered to the
sample, the solder wetting the whole j..5&(1.5 mm'
surface. One pair of probes served as current leads, the
other two as potential probes. The magnetic field is in
the plane of the two potential probes. The sample is
fixed in a tube to which helium is admitted as a thermal
exchange gas after evacuation. The tube can be rotated
through 360' and is immersed in a Dewar Qask contain-
ing liquid nitrogen for the 77'K runs or a dry ice-
alcohol mixture for the 200'K runs. A 12-in. Varian
magnet provided uniform fields up to 20000 gauss
which were measured with a nuclear resonance mag-
netometer. Sample current and potentials were meas-
ured with a potentiometer galvanometer setup. The
four voltages obtained by reversing separately the
current and magnetic field are averaged so as to
eliminate even functions of I and B.

It is shown in Appendix D how the angles 8 and p
(see Pig. 2) and V& and UQ)(r are determined from the
potential probe measurements Uz~ and V+2. A precise
determination of 8 and p is essential to the calculation
of ViI from Vr I and Vr s because Vrr/Vri&&r 1/100 and
hence it is difficult to separate V~ from V~zz. The
method used allowed a determination of 8 and p to a
precision 0.1'.

2 K+I ( K-I ) &67& t ~3 2 K+i &&T') (f 7'
6 K (K+2/ C6W2O, 2 L.

C6 K+2 c6tz)
I I I I

I

P. l

FIG. 3. The factor

(2E+1) E—1 & (e7) 2K+1 (er)(er4)
6X X+2 (ev )' %+2 (er')

of Eqs. (14) and (15) versus Isz/(pz+pr) for %=20 and E=17'
assuming lattice scattering aqd ionized impurity scattering.

'4 P. P. Debye and E. M. Conwell, Phys. Rev. 93, 693 (1954).
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2K+I ( K-I ) (eY' & ~A/3~ 2K+) CST& &gT+~™
6K 4 K+2 j &ST2), K+2 CfT2&

+0.3

+0.2
~005

FIG. 4. The same factor
plotted in Fig. 4 versus mass
ratio E when pr, /(ps+pl)
is 0.5% or 3%.

-O.I

-0.3

O.OI 0.05 p. ~ 0.5 IO 20

Galvanornagnetic measurements are usually made
on long thin samples in which the potential probe
contacts are point contacts in order to avoid trouble-
some correction factors which are a function of the
geometry and the magnetic field. For plane samples
diR'ering from the long thin ideal correction factors are
discussed in the literature. "

.
"However, our geometry

is not plane, nor are the potential probe contacts point
contacts. We know no way of reducing the voltage
V& to an electric field B& because of the complexity of
our sample geometry. For our purposes this is unirnport-
tant since we are concerned with contrasting the
properties of the I.H-field with the TH-field, for which
a relative measurement sufFices. The "3-dimensional
cross" sample geometry was chosen because it is
obviously convenient for the measurements we intended.
Its validity is justified experimentally, i.e., if V&

fulfills the symmetry restrictions on the LH-field I'~
we identify it with the latter except for a geometrical
factor which is unknown because of the complexity of
the sample geometry.

showing Vz/8' versus 8' which, in the range of validity
of Eqs. (11) and (12), should be linear. This is seen to
extend to 6 kilogauss. The intercepts and slopes of the
linear portion give values consistent with the angular
dependence demanded by Eqs. (11) and (12).

An analysis of the data shows that up to 4 kilogauss
the error made by neglecting the 8' term is small
((10%). Therefore, if 8=4 kilogauss, V~' versus 8
should vary as the sin20(2 —3 sin'0) according to Eq. (11).

too/

EiToj

polo)

B. Results and Discussion

2. Da]a at ZOO'K

Figure 6 shows typical data of V& versus 8 with 0
and p as parameters. Figure 7 is a replot of Fig. 6

"Isenberg, Rnssel, and Greene, Rev. Sci. Instr. 19, 685 (1948)."J.Volger, Phys. Rev. ?9, 1023 (1950).
'r R. F. Wick, J. Appi. Phys. 25, ?42 (1954).
' F. Kuhrt, Siemens-Z. 28, 370 (1954).
"H. I. Lipmann and F. Kuhrt, Z. Naturforsch. lpga, 462, 474

(1958).
Fro. 5. "3-dimensional cross."Sample geometry used in

experiment and its relation to crystallographic axes.
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Z= Sx10 3 amp

25.5

I

8-Kllogauss

69.4

versus II and i', respectively. Experimental values are
plotted as points, the curves are sin28(2 —3 sinsII) and
—sin4& normalized to give the best 6t. The experimental
data is seen to be in good agreement with the phenomen-
ological theory represented by Eqs. (11) and (12).
Deviations from the theoretical solid curves are
probably due to small misalignments in the cutting of
the sample.

In order to give an idea of the relative value of the
LH-field with respect to the TH-field Fig. 9 shows
VQ&/Uz&&r& verses 8 for &=30.6' at which angle the
largest LH-voltages were observed. The consistency of
the data of this experiment supports the assumption
that the correction factors for the geometry of the

BxIO v
+100—

0 +50

-200—

-400—

-600
0

I I I I I I I

3 4 5 6 7 8 9

FIG. 6. LH-voltage versus magnetic field with
8 and p as parameters.
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I
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Vz& versus p should vary as —sin+ up to B=6 kilogauss
according to Eq. (12). Figure 8 shows Vn (4 kilogauss)

+50-

e
0

e
~va IO-l6
83

4
+l2
+ IO

8- Kllogauss
IO -50

+6
+4
+2

:25,5

:694

I I I

30 40 50
-IOO

0
I I I I I

. IO 20 60 70 80 90
Q In Degrees

Pro. 8. Angular dependence of the LH-voltage at a magnetic
field of 4 irilogauss. Curves are sin28(2 —3 sin'8) and —sin+
normalized to give the best fit.

I

2x IO6

"exIO-16
e3

+ IO

+8
+6-
+4—
+2—

T= 200 K

I= 5xlO 3 amp

:69.4

:30.6

-IO I I I I I I I I I

IO 20 30 40 50 60 70 80 90 IOO

8 xlO

Fro. 7. Replot of Fig. 6 showing Vs/8' vs fI' with 8 and p,
respectively, as parameters.

sample are identical for both arms, hence V&e/Vivre
=&ae/&8&&re= —Rs&&z/Rs according to Eqs. (3) and
(4). Since the Hall vector is perpendicular to I when 8
is in a plane of symmetry /see Eq. (7)j we conclude
from Fig. 9 that it is almost parallel to the magnetic
field for fields up to 10 kilogauss. To give an idea of
the ratio of the LH-fieM to the TH-field predicted by
theory we calculate E&4'/Eii&&re=+0 016 when &=.30.6'
and 8=4 kilogauss. This calculation uses Eq. (15), the
satisfactory approximation Eg&&g =Rp&I, the measured
value of @II=6.5X10s cm'/v-sec and a value of —0.27
for the factor shown in Fig. 3 corresponding to E=20
and pr/(Iir+pr)=0. 03. The latter is estimated from
the Conwell-Weisskopf" formula for ionized impurity

'0 E. Conwell and V. P. Keisskopf, Phys. Rev. 77, 388 (1950).
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FIG. 9. Ratio of LH-
voltage to TH-voltage
versus magnetic 6eld.
@=30.6', T=200'K.

ve

"ex'
.06—
.05—
.04—

.03—

.02—

.0 I0:
0 8 IO

e- Kllogauss

mobility in conjunction with the estimate of impurity
concentration given previously, and the empirical
formula for lattice scattering mobility for e-type Ge
due to Morin and Maita. " Experimentally we find
Vzr&/VQ)(z&= 10.014 (see Fig. 9).

field in contrast to the TH-field which increases
monotonically with B. It can be seen that we are far
from saturation where the LH-field is expected to
vanish.

Figure 11 shows Vzi (11 kilogauss) versus 8 and p,
respectively, and demonstrates the symmetry relations
demanded by the phenomenological theory: vanishing
of Vzi when B is parallel to a rotational axis and
Vzi&(g) —Vzr&(90' —P). The curve drawn in Vzr& (11
kilogauss) versus p is —sin+ normalized to give the
best 6t. The data shown for Uzi~ (11 kilogauss) versus

P is representative of that obtained when a magnetic
field up to 20 kilogauss (the largest used in the experi-
ment) is used as a parameter, i.e., Vzz&(B) vs p could

At +
Vsxlo 6v

+600

Z. Data at 7z'K

At 77'K the Hall mobility trzz is three times larger
than at 200'K. At 10 kilogauss, for example, Irzz(200'K)
XB=0.7 and trzz(77'K)B=2. Hence Fig. 10 which
shows Uzi versus B with e and p as parameters can be
expected to reveal strong field characteristics of V~,
vis. , a nonmonotonic behavior with respect to magnetic
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FIG. 10. LH-voltage versus magnetic 6eld with 8 and qb

as parameters.
mr F. J. Moritz atrd J. P. Maita, Phys. Rev. 94, 1525 (1954).

FIG. 11.Angular dependence of the LH-voltage for a magnetic
field of j.j. kilogauss. In Vg& vs @ the curve is —sin4qb normalized
to give the best Gt.

always be fitted by —sin4& regardless of magnitude of
field or temperature. This strongly suggests that the
augular dependence of Uzi& is —sin4$ independent of
the magnetic field. This does not contradict the weaker
requirement Vzt&(p) = —Uzi&(90' —P) and is certainly
true of Uzi& up to terms in B' as shown by Eq. (10).

Figure 12 shows Uzi&/Vzixz& versus B when &=29.9'
at which angle we observed the largest LH-voltages.
Comparison with Fig. 9 clearly shows the effect of
saturation although neither the LH-field nor the
TH-field are completely saturated. EJ3 is seen to be
small compared to Ezj&&z. Since Ezz/Ezz&&s= &zz&&z/&zz-
the Hall vector is almost parallel to B. However, the
magnitude of E& may be quite large for certain direc-
tions of the magnetic field especially if the sample is
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YB

~ear
.07

.06

—L001j. Suppose B is in the (001) plane and makes
an angle e, reckoned positive if counterclockwise, with
the 1-axis as shown in Fig. 13. The permissible form
of p;;(u) with respect to the crystallographic frame is:

.05
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.02

0 0 —pi3(n)
i'~(~)= o o ~»(~) .

-ka(~) -P»(~)
(14)
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FIG. 12. Ratio of LH-voltage to TH-voltage versus
magnetic 6eld. @=29.9', T=77'K.
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APPENDIX A

By definition the TH-Geld Z~xr and the LH-field

&rx(~xr) are:

pure enough since the LH-field has the same carrier
concentration dependence as the TH-field. The LH-field
was found very sensitive to inhomogeneities which
revealed themselves by deviations from the symmetry
relations. The choice of material with a carrier concen-
tration of 1.5X10"jcm' was made in order to avoid
inhomogeneities. The presence of a LH-Geld excludes
spherical energy surfaces; however, detailed deductions
about the band structure and scattering are complicated
by the fact that the LH-field is diferent from zero only
for "intermediate" magnetic fields, a region in which
expressions for the LH-Geld in terms of solutions of the
Boltzmann equation are not simple.

The angle which the magnetic Geld makes with the
1 axis is given in parenthesis. Because the 1 axis is a
rotational axis of even order p;;(—n) can be expressed
in terms of p,;(n) (only the sub-group of the 2-fold
rotation is used) and

where
Pij ( +) =~itn~j nPmn(&)q

Thus:

1
s;,= 0

.0
0

—1
0

0
0

co&7
—SlIlo.'

sing
coso;

0
0,

0 0

+B(&) +B(—a) . The particular geometry
used in the proof is selected for convenience and is not
essential. The result is valid in the plane formed by B
and even-fold axis for an arbitrary direction of B.

s- tool]
Ii

Pia(~)
~', (—)= 0 P„() . (15).—..(.) —.-,(-)

If I= (O,O,II) and if we transform (14) and (15) to
laboratory frames:

E=(Ap(a)A 'jI,
where

(RXI) (BXI)
+rx(&xr)—

M sing

(RXI) gX(BXI))
PJ3 sing

RX I is the Hall field, R the Hall vector, y the angle
between B and I. Using the vector identities

ac ad
( Xb) ( Xd)=

bc bd
and aX(bXc)

=b(a.c)—c(a b), 2- foioj

we get: E&xr=24x(acr)I and Erx(axr) =—~axrI, where

Erx(gxr) and E~xr are projections of the Hall vector
R on unit vectors in the directions indicated by the
subscripts and I is the magnitude of the current density.

APPENDIX 8
Consider a crystallographic reference frame in which

the axes are defined by: xi—$100$, x2—L010j, xa
FH". 13. Direction of 8 and I with respect to crystallographic

axis. I is in (001) plane. See Appendix B.
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APPENDIX C

For case a (see Fig. 2(a)) Eq. (11) yields:

I 11——(1/Bmll) p(2Z+ 1) (2a»1&'&+aT11&'&+a 1T,&' )
+2Zo& sin'8(2alii&s&+aT11&'&+&riT, &'&)),

L12 (1/Bmil)L(Z —1) (—2alli +aTll +aiT1 )
2E—o&2 sin'8(2o 111&2&+o.rll&2&+ o.,T1&2&)),

L13 (1/Bmll)L(Z 1) (aT11 &rlT1 )
+ (3/22Eo&2 sin28(2a 111&'&+oTll&'&+olT1&2&)),

L22 L11)

L23 L]3)

Lss= (1/Bmi )(i(2E+1) (2a»1& &+a»1&'&+a 1T1& &) (16)
+BEo& Cos 8(2a 111 +alii +aiT1 ))i

L12———p&o/3 (miiml) )
XL(Z+2) COS8(2o ill&'&+aiii&'&+o iTi&'&)

V2(E —1) cos8(—o Tll& & —o lrl&2&)),

L» ———Lm/3(m„m, )l)
X ( (sin8/2 [6a111&'&+(2Z+ 1)(a 111&'&+o 1T1&2&))

—(E—1) cos8(o Tll&'& —alT1&2&) ) i

Lr23 Lr13

Case b (see Fig. 2(b)) is calculated in reference 10
and is given below. g is de6ned in Fig. 2(b). Note that
the LH-field Es4' calculated from (17), Eq. (13), is
given in terms of the measured angle P rather than P'.

L»= (2/Bm») L(2E+1)(&r]11&'&+&rTT1&'&)),

I 22= —(2/Bm„) t (E+1) (o 111&'&—o TT1&'&)

—Eo&' Sin2$'(&rlli~@+&rTTl ))i
L22 ——(2/3mi, )L(2E+1)(o 111&"+oTll"&)

+2Eo&' sing'(alii&'&+ aTT,&'&)),
L»= (2/Bmii) L(2E+1)(alii'"+aTT1"')

+2Eo&2 cosp'(o. ill&'&+o TT1&"))i (17)
L12 L13

L»= —sLo&/(m, im, )'*)p(E+2) cosi&&'(alii&'&+aTT1&'&)

—(E 1) sing'(alii&'& ——o-,T,&'&)),

Lis= —sLo&/(miimi)'*)$(E+2) sing'(alii&" +aTT1 ")
(E 1) COSQ (a 111 aTT1 ))i

I23=0,

oC j 38 LI j is the conductivity tensor, ml I and mI,

are the longitudinal and transverse e6ective masses,

Z=mii/mi, o&=eB/(m»mi)iC. EquatiOnS (16) and (17)
are written in a crystallographic frame of reference.

APPENDIX D

The geometry of the sample is shown in Figure 5 and
its position with respect to the magnetic field in Fig. j.4.
We assume that the voltages Vz~ and V~2 are propor-
tional to the electric fields in the directions I'~—I'&

and I'2 —I'2 in a long thin sample without arms cut in
the same manner with respect to the crystallographic

8&&Z

sk

FIG. 14. Top view of "three dimensional cross" (see Pig. 5).
Current leg perpendicular to plane of paper. Potential probes
PI, P2, and 8 in plane of paper. PI makes an angle p with B.

axes as the current leg of Fig. 14. Further, we assume
that the proportionality factors are identical. Then

Upi= V» cosP+ V»&&1 slllP,

VP2= Vs sinp+ V»XT Cosp

V~ and V~&&~ are the line integrals of the electric Geld
along imaginary arms parallel to B and BXI and equal
in length to those on the sample. Clearly (UP1/UP2) B~O

=tanP because of Eqs. (9) and (10). This method for
determining P works only for materials crystallizing
in the cubic system because it is only for such materials
that the linear term in the expansion of E~ with
respect to B vanishes. In practice VP1/VP2 is plotted
versus 82 and extrapolated to zero giving tani9. Us
and Uzx& are then determined for arbitrary fields from
the expressions.

V&& = Vpi cosj9—Upi sinP,

VI&&&1= VP1 S1Ilp+ UP2 Cosp.


