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The giant sharp anisotropy anomalies in YIG discovered by Dillon and attributed to rare earth ions are
explained in terms of the crossovers or, most probably, near crossovers of the energy levels of the rare earth
ions in the combined crystal and exchange fields. The central consequence deduced by the theory, inde-

pendent of the detailed behavior of the energy levels, is that

—H,(A0y)?~kTN'/M, where Hq is the

anisotropy field; Af; the angular width of the peak; N’ the concentration of rare earth ions at the crossover;
M is the total magnetization; the result assumes 2T >level splitting at apparent crossover. This and other
results appear to be in satisfactory agreement with the available experimental data. Crystals with giant
anomalies have useful properties for adiabatic demagnetization experiments—the ferric-rare earth exchange
field of 100 koe can be effectively turned on or off by rotation of the magnetic moment of the crystal. In an
appendix we examine the validity of the molecular field approximation to the ferric-rare earth ion interaction,
and we find that the approximation is excellent. A further appendix discusses the question of crossing or

noncrossing of energy levels in static fields.

HE earlier papers in this series on ferromag-
netic resonance in rare earth garnets dealt with
g-values! and line widths? in rare earth garnets under
conditions dominated by the rapid relaxation of the
magnetic moments of the rare earth ions. The present
paper?® is concerned with an effect which appears at the
lowest temperatures, where the magnetic relaxation of
the rare earth ion is of secondary interest: at helium
temperatures giant peaks appear (over narrow angular
ranges) in the value of the static magnetic field required
to produce ferromagnetic resonance. In one published
experiment the substitution of only 0.1 at. 9 paramag-
netic terbium for diamagnetic yttrium in yttrium iron
garnet led at 1.5°K to a number of peaks in the reso-
nance field at 23 Kmc, some as high as 5000 oersteds,
over an angular range of a few degrees in the rotation
plane. The effect was discovered by Dillon* and investi-
gated further by Dillon and Nielsen,® whose results for
YIG-0.19, Tb are reproduced in Fig. 1. The height of
the peaks decreases and their width increases as the
temperature is raised. Results for pure rare earth
garnets are not presently available but a simple linear
extrapolation should not be too wide of the mark, as we
indicate below. Thus one would perhaps expect in pure
terbium iron garnet to find peaks up to 5X10° oersteds
in height.

The magnitude of this somewhat hypothetical num-
ber is quite surprising, because the exchange inter-
action between the rare earth and ferric lattices is
equivalent to a magnetic field of only about 108 oersteds
acting on the rare earth ions, and it may seem difficult
to get an anisotropy 50 times stronger than the total
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coupling. Further, the narrowness and the sporadic
location of the peaks defy plausible analysis in cubic
harmonics of orders associated with the angular mo-
menta J=8, 15/2, 6, I, and § of the relevant rare
earth ions.

It is essential to realize that the actual observation is
of an anomaly in the resonance field, Hyes, defined by

M

and not necessarily in the anisotropy energy itself. Let E
denote the magnetocrystalline anisotropy energy per
unit volume; consider the work done AE in a small
deflection Af,, of the magnetization from the direction
of static equilibrium. Then

w=vHres; v=ge/2mc;

ok E
AE=—Ab,
d

a

)
=Tl

o),

where T, is the torque component normal to the plane
defined by the initial and final directions of the mag-
netization M. We always suppose here that the axis
is a principal axis of the local anisotropy surface, so
that 92E/00,005=0. Because the magnetization in the
initial direction was in static equilibrium, 6E/d0, and
T, are identically zero. The initial direction is not
necessarily precisely the direction of the external mag-
netic field. From (2) we have

0T o/ 30u=92E/0.,2. (3)

It is usual and convenient, for small deflections, to
discuss the anisotropy torque in terms of an effective
field component H, defined by

To=MH A8, 4)
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Fic. 1. Field for resonance at 1.5°K, 22990 Mc/sec for YIG
doped with 0.1%, terbium, after Dillon and Nielsen.

where M is the saturation magnetization, so that

0T o/ 300=MH = 9*E/ 36,2 5)
Thus
H,=(1/M)(3°E/30.7). (6)

This is a standard result in ferromagnetic resonance
theory. Further, if Af,, Afg are perpendicular deflections
along principal axes of the anisotropy surface, the
resonance field is given by®

w/'y= [(Hres+Ha) (Hres_l_Hﬂ)]%: (7)

for a sphere, assuming the magnetization lies parallel to
the applied field. For other geometries the usual demag-
netization corrections apply. Static torque anisotropy
determinations should show discontinuities in torque
at each crossover orientation.

We see from (6) and (7) that a local large negative
value of 92E/d6,2 or 32E/d6g%, or both, will appear as
a large peak in the resonance field. Thus a strict cross-
over, as in Fig. 2, of the ground-state energy level of a
rare earth ion as a function of the angle ¢ will give at
absolute zero a delta-function type singularity in Hie
at 6. This is essentially the explanation of the ani-
sotropy anomalies. The angle 8 characteristically may
measure the angle between an axis of the local crystal
field and the direction of the molecular field, which is
parallel to M. The crossover angle 6 need not in general
coincide with a simple crystal direction; the singular
derivative 92E/36% will be negative at the crossover,
so that the giant anomaly in H.s will be positive. Both
these conclusions agree with the experimental evidence.

We propose then that the anisotropy anomalies occur
at crossovers or near-crossovers in the ground-state
energy of the rare earth ions, as a function of the direc-

6 C. Kittel, Phys. Rev. 73, 155 (1948).
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tion of the magnetization of the ferric ion lattice. It is
most probable that the levels with which we are con-
cerned do not actually crossover, but are split at the
apparent crossover. The high curvature at such points
then gives the anisotropy peaks. There are a number of
questions which must now be treated.

One central question concerns the validity of the
picture of the energy levels of a single rare earth ion
split by an exchange interaction acting just like a large
magnetic field. This picture is used implicitly in the
early discussions” of the temperature dependence of the
saturation magnetization of rare earth garnets, but
perhaps not in quite as sensitive a way as we use it
here and as it has been used by Ayant and Thomas?;
White and Andelin®; and Wolf% in treating the magnetic
state of the rare earth ions in garnets at low tempera-
tures. In Appendix A we examine the validity of the
model by calculating (for low concentrations of rare
earth ions) the second order correction to the energy,
for an isotropic exchange interaction. We find the very
useful result that the energy in the molecular field
approximation is expected to be accurate to about 1%
for low concentrations of rare earth ions in YIG. In fact,
whenever the ferric ion-rare earth ion interaction is
very much weaker than the ferric-ferric interaction,
then the molecular field approach is valid. The argu-
ment should go through similarly for anisotropic ex-
change interactions in the sense that the eigenvalues in
the above limit should be given quite accurately by
expectation values of the actual interaction over the
state in which the ferric-rare earth exchange is switched
off. The crystal field part of the splitting of Tbh+*++ in
YIG has not been determined; Baker and Bleaney!!
give the over-all crystal field splitting of Tbh*++ in
yttrium ethyl sulfate as 56 cm™'. We should mention
that unpublished calculations by L. Walker show that
one can find a crystal potential for Th*+ which will
show near crossovers at the observed orientations.

We next calculate the anisotropy field H, for ground-
state energy levels which actually cross at the angle 6,
in the plane under consideration. We take as before the
axis « to be a principal axis of the local energy surface.

7 R. Pauthenet, Ann. phys. 3, 424 (1958).
( sé\d) Y. Ayant and J. Thomas, Compt. rend. 248, 387, 1955
1959).
(19 R.) L. White and J. P. Andelin, Jr., Phys. Rev. 115, 1435
959).
10 W, P. Wolf, Proc. Phys. Soc. (London) (to be published).
11 J, M. Baker and B. Bleaney, Proc. Roy. Soc. (London) A245,
156 (1958).
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For intersecting levels we have to make at this stage the
assumption that the system always remains in thermal
equilibrium, even at microwave frequencies. When the
crossing is only apparent this assumption can be
dropped, which will be a great improvement. We write

€1= —mlﬂean; €= '—mzﬂeon, (8)

for the energy of the two levels for small angles A8
from 6o; the zero of energy is taken at 6,. We neglect
for the present the shift of 6, itself with applied mag-
netic field.

In thermal equilibrium (8=1/kT) we have for the
free energy

=—(1/8) In(e1#+-¢"#), ©
so that
92F/ 3 (A0)*=2 — H o2 (m1—mo)2/4kT, (10)
for
IM1—MQlHex/kT<<1. (11)
From (6) and (10) we have at the peak
H o= — (m1—ms)?N'He2/AMET, (12)

where N’ is the concentration of rare earth ions having
crossovers at 6o and M is the total magnetization.

Now |mi—ms| for Tbt++ may plausibly be of the
order 2 to 10 Bohr magnetons, so we may estimate the
value of |mi—ms|N'/M as f, the fraction of yttrium
sites occupied by rare earth ions. For a magnetic field
in a general direction there are six magnetically-
inequivalent rare earth sites. Roughly

Ha’\’ _"flv‘OHexz/kT-

Using, as for the example quoted at the beginning of
this paper, f=1073; uo=10"% to 1072; H=1.4X10%;
T=1.5°K; we find H,=—10% to —10* oe, according to
the value adopted for |m;—m.|. This estimate has the
correct order of magnitude and the correct sign, as the
peak in H.s will be positive, according to (7). It is to
be hoped that eventually the crystal field splitting of
Tb+++ and other ions in the garnet structure will be
well enough known to permit the calculation of the
near crossovers 6o and of the factors |#m;—m2| near the
crossovers. We see from (13) that the height of the
anisotropy peak is expected to be directly proportional
to the concentration of rare earth ions and inversely
proportional to the temperature. Both these relations
will be modified at temperatures below those defined by
the rare earth-rare earth exchange and dipolar inter-
actions. In TbhIG the molecular field between rare earth
ions is expected to be less than 10¢ oe, corresponding to
approximately 1°K.

We see that the total angular width at one-half the
maximum anisotropy field is approximately

2kT

(13)

Afr=

2

| T ~ (0.03 to 0.3)T radian.
m1— M| ex

(14)
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The angular width observed by Dillon and Nielsen is
at the lower end of this range, at. 1.5°K. We may com-
bine (12) and (14) to get an interesting expression
which has a remarkable property: it is independent of
|my—ms| and of Hes. We have

— H . (A6y)*=2kTN'/M. (15)
We note from (2) that (15) may be expressed as
—AE=N'kT. (16)

This result assumes that 27" is large in comparison with
the minimum separation of the levels. In the work of
Dillon and Nielsen® shown in our Fig. 1, the total
concentration of Tb ions was 1.2X10% cm=3. In the
(110) plane there are four magnetically-inequivalent
rare earth sites, two having statistical weight % and
two having statistical weight §. The former will give
stronger anomalies. For these at 1.5°K,

ETN'/M=2(2X10718) (4 108) /185224 oe.  (17)

This relates to Eq. (15b) for an adiabatic process. It is
difficult to obtain an accurate value for Af; from the
published curves, but we estimate crudely for the peak
at §p=38° in Fig. 1 that Af;=0.05 radian and —H,=8
koe for a peak in His of 5 koe, on the assumption
Hg=0. Then

— H ,(A8;)2=20 oe, (18)

of the same order as (17), bearing in mind that (18)
may be an overestimate because we do not really know
that the (110) plane contains a principal axis of the
local anisotropy surface.!'»

It is difficult to make a specific prediction about the
number of peaks to be expected from a given rare earth
element without knowing the details of the energy
level diagram. If each nonequivalent site has a single
closed curve as locus of crossover angles 6, in a hemi-
sphere, then it is possible as one solution to get four
anisotropy peaks in the (110) plane between [1007] and
[0117]; two of these peaks may have about twice the
strength of the two others, measured in terms of
H,(A6;)2. This possibility is perhaps not inconsistent
with the results in Fig. 1.

We should note that the position 6, of a crossover
will depend somewhat on the static magnetic field
intensity H, because the energy levels are displaced at
different rates by the application of a magnetic field.
Suppose that for 6 near the crossover we can write

€1=61—M1Ht0; (19)
€2=62‘-M2Hﬂ9,

Ua Dr. J. F. Dillon, Jr., has kindly replotted on an expanded
scale his data from which Fig. 1 was drawn. The experimental
values of the product AH:es(A6;)? are approximately 3.8, 10.2, and
21.5 oersteds, respectively, for the peaks at 20°, 38°, and 76° from
the [100] direction; here AHyes is the height of the anomaly above
the estimated baseline at the appropriate angle. Results on HolG
and DyIG, in agreement with our model, will appear in a pager by

J. F. Dillon, Jr., and J. W. Nielsen, J. Appl. Phys. 31 (1960),
to be published.
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where H, is the total field, exchange plus magnetic,
acting on an ion. The crossover 8, is then given by

Coa—C1 1
0o=—

(20)

mo—my H, ’
this is what we have written as 6, for H;= H.,. Thus
86/0¢=2— H yog/ Hex. (21)

For Hwma.g=210 koe; Hex~100 koe; 6y=1 radian; we
have 60=0.1 radian. This is not a negligible shift in
position and should be easily detectable. It is further
possible, when the line shift is comparable with or
greater than the width A6;, that the anisotropy peak
will change shape according to whether it is.explored
from lower or higher values of 6.

If we were to take the crossover model literally in
the sense of supposing that the levels actually crossover
and the ground-state changes discontinuously at 6,
then we would need a relaxation process to keep the
system always with an excess population in the ground
state. Otherwise the anisotropy anomaly will not
appear. We would require that even for deflections at
microwave frequencies the system remain essentially in
thermal equilibrium at all stages of the motion. The
fractional width of the resonance line at 6, from such a
relaxation process alone will be AH/H~wr, where 7 is
the relaxation time. If AH/H is 1072 for w~ 101, 7 must
be ~10~ sec. This time seems unreasonably short,
even for a spin-spin process. This apparent difficulty
is removed if the levels do not actually crossover, but
are split. Such a situation is discussed next, and it is
shown that the need for rapid relaxation can be removed
without losing any of the essential results derived above
for the crossover model. It seems rather unlikely that
strict crossovers can actually occur, but we will con-
tinue to use the word, for convenience.

Suppose that two levels which seem destined to
crossover do not, being repelled by a weak perturbation,
as in Fig. 3. The perturbation may arise from terms in
the crystal field, from imperfections, or from the time-
dependent parts of the exchange and magnetic fields.!?
For small angles Af from the apparent crossover position
6o the secular equation for one ion may be written in
schematic form as

pAb—e b

e 0’
) p2A0— €

(22)

where ¢ is the matrix element of the perturbation be-
tween the unperturbed states 1 and 2, and p;, p. are
the slopes of the unperturbed levels in the neighborhood
of 6o. Then, at AG=0, we have

(926/6 (A0)2= - @1—?2)2/45
2 M. H. L. Pryce, Phys. Rev. 77, 136 (1950).

(23)
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Fic. 3. Repulsion
of energy levels at 6o
because of perturba- 23
tion.
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At 6, the anisotropy field at absolute zero is
—Ho=N'(p1— p2)*/40M, (24)

where N’ is the concentration of rare earth ions having
an approximate crossover at 6o. Now pi—p, will be of
the order of —puoHex, so that

—H o~ N'u?He2/45M, (25)

where uo is the moment of a rare earth ion. If N'=3
X108 cm™2; §~0.1 cm™; puoHex~50 cm™!; we have for
the anomalous anisotropy

— Ho~30 koe. (26)

Baker and Bleaney!! suggest that the imperfections in
Tbt++ in yttrium ethyl sulfate give a contribution of
~0.4 cm™! to the zero field splitting. A spread in 6 will
give a contribution to the line width.

If the lowest energy levels are repelled in this way,
not crossing, then it is not necessary to have relaxation
processes between the levels in order to have an
anomalous anisotropy. Rather, the ions will naturally
tend to remain in their original states. Any thermaliza-
tion or redistribution of population between the two
states, in the course of a resonance experiment, will
lead to energy losses. The losses vanish in the limit of
very rapid or very slow relaxation.

If the system is equilibrated at 8, and makes small
deflections A# about 8y without further population re-
distribution, then in the limit 27>>6 we have

8%/ 0022 — (p1— p)?/4kT, 27)

the same result as (10). Here relaxation processes will
again contribute to the line width, with AH/H~1/wr.
The line widths at the anomaly peaks require 7~10-°
sec. This contains contributions from spin-spin processes,
indirect exchange, and perturbation by impurities.

We have limited our calculation specifically to the
vicinity of crossover orientations and we have not
entered into the more conventional anisotropy present
at other orientations. One may ask why it is that the
crossovers do not make themselves evident in the
calculations®® on ferrites by Wolf and by Yosida and

13 W, P. Wolf, Phys. Rev. 108, 1152 (1957); K. Yosida and
M. Tachiki, Progr. Theoret. Phys. (Kyoto) 17, 331 (1957).
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Tachiki. It appears that by assuming the crystal field
energy is small in comparison with the exchange energy
these workers have eliminated the possibility of cross-
overs. To obtain the present effects it is essential
to include the crystal potential in the unperturbed
problem. One gets simple and rapidly convergent ex-
pressions for the anisotropy energy in terms of cubic
or spherical harmonics only when the crystal potential
can be treated as a small perturbation on the relevant
exchange interactions. We may note in passing that
J H,d6=0 around a closed path or the equivalent.

MAGNETIC COOLING

It seems possible that the “crossover effect” in rare
earth garnets or in similar ferromagnetic systems may
find application in magnetic cooling apparatus in which
the demagnetization stage of the cooling process is
simulated by rotating the magnetization of a single
crystal from an orientation well away from a crossover
to an orientation at a crossover of ground-state energy
levels. The magnetization rotation could be caused by
rotating the crystal relative to an external magnet
which produces a field adequate to cause saturation in
the directions selected—that is, stronger than the
anisotropy and demagnetization fields. In a suitably
shaped YIG crystal doped with 0.19, rare earth im-
purity, a field of the order of 5 koe should suffice. We
would then have in principle a situation where an
effective magnetic field of 50 to 100 koe—of the order
of the ferric-rare earth molecular field—could be turned
on and off by rotation of a 5 koe real magnetic field.
The advantage of this system over anisotropic para-
magnetic systems lies just in the exchange field—the
poor man’s magnet.

The rare earth-rare earth coupling provided by the
indirect exchange, dipolar, and superexchange inter-
actions would limit the lowest temperature reached,
but these interactions are reduced in the usual way by
dilution and are quite weak even in the concentrated
rare earth garnets.

The phonon and magnon contributions to the entropy
at low temperatures are not important. According to
the measurements of Edmonds and Petersen the
entropy of YIG in the liquid helium range is

S§'=45.9T%49.8T3 erg/cm3-deg K. (28)

At 1.5°K, S=1034+34=137 erg/cm®-deg K, which is
comparable with the free spin entropy of 0.01%, im-
purities in YIG, or 108 spins/cm?. Thus a concentration
of 0.19, rare earth ions should suffice for cooling the
lattice and spin wave systems from an initial tem-
perature of 1.5°K.

We must also consider the contribution to the entropy
from those rare earth ions in sites not participating in
the crossover at a particular 6. Most of the rare earth

(114 D. T. Edmonds and R. G. Petersen, Phys. Rev. Letters 2, 499
959).
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Fic. 4. Rare earth ion of J
angular momentum J having g
an exchange interaction JC, x x X x X
=¢J- Sy with one of N identi- N
cal ions of spin § arranged in a X x x x x X
simple cubic lattice with near-
est neighbor exchange interac- . . . . .
tions 5(30=-C2;,3 ;-SM. . N
X . .

ions will not participate. As long as these have (at both
the initial and final orientations of the crystal) large
splittings between the ground state and next higher
state, large in comparison with T';, these ions will not
contribute in a major way to the entropy. For two
states separated by ¢, the entropy is

SNk (e/2kT) T, (29)

for €>kT. For e=10kT, and N=10* cm™3, we have
S~0.2 erg/cm3-deg K, which is insignificant.

The final temperature T, reached in cooling from
an initial temperature 7;=1.5°K is given by T
~T,(H;/H;), where the initial effective field H; is
perhaps ~50 koe and the final field H, represents the
total effect of the perturbations at the crossover,
perhaps 1 koe; thus 7'y~0.04°K.

ACKNOWLEDGMENTS

I am indebted to Dr. P.-G. de Gennes, Dr. Robert
L. White, Professor W. A. Nierenberg, Dr. J. Smit, and
Mr. M. Sparks for helpful discussions, and to Mr. Philip
Pincus for checking the calculations.

APPENDIX A. LIMITS OF VALIDITY OF THE
MOLECULAR FIELD APPROXIMATION
TO THE FERRIC-RARE EARTH
ION INTERACTION

We consider a simple model which contains the
essential features of the problem for isotropic inter-
actions. We consider as in Fig. 4 a simple cubic lattice
of lattice constant ¢ with IV ions each of spin .S con-
nected together by an isotropic exchange interaction
between nearest neighbors:

Fo=—C2 Si-Sits, (A1)
P

where 740 is a nearest neighbor site to 7. We connect a
single rare earth ion of angular momentum J to the
lattice by an isotropic exchange interaction

JCi= EJ' SN, (A'Z)

if the connection is made only at the Nth ion of the
host lattice. We assume that only the manifold J of
the states of the rare earth ion need be considered, the
other states taken to be at much higher energies. The
nonadditive effects of several rare earth ions are con-
sidered separately.

The first-order energy when the host lattice is in the
ground state and magnetized in the z-direction is just
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the energy in the molecular field approximation:
E\Y=Eote(Sm|J.S.| Smy=Eo+eSm, (A.3)

where m is the expectation value of J,. We might have
added the crystal field energy to the wumperturbed
problem, but it is not illuminating to our present pur-
pose, although in an actual calculation the crystal
potential must be included in 3Co.

We now estimate the second-order correction to the

energy:
€ _ [(le; m+1[THSy™|O; m) |2
AE:"'—"Z b
4 x Ek

(A4)

where 1x denotes the spin wave k of the host lattice in
the first excited state and

E2CSak? (A.5)

is the spin wave energy. It is convenient to use (A.5)
instead of the exact dispersion relation, and the approxi-
mation is satisfactory for purpose of an estimate. The
spin functions for the states 1x are the sum of NV terms
each with one different spin reversed, so that

[{lx; m+1[ TSy~ | Ox; m) |2

=28(J—m) (J+m+1)/N, (A.6)
independent of k. We need the sum
> g Vkmzé%V(N/V)%, (A7)
k 27? 27t
so that, with a*= (V/N)3,
AE=— (6%/47%) (&2/C) (J—m) (J+m—+1). (A.8)

The maximum correction occurs for the transition from
m=J to m=J—1, where the fractional correction is

AEM=J)—AEM=J—1) J ¢
~— —=0.01,
&S C

(A.9)

as ¢/C in the garnets is of the order of 1/50. Thus the
molecular field approximation appears to be excellent
as applied to a rare earth ion in an iron garnet and in
fact whenever the isotropic exchange interaction of an
impurity ion with a host lattice is weak in comparison
with the exchange interactions within the host lattice.
It may be noted that (A.8) is, apart from a minor
numerical difference, identical with a result obtained by
Suhl®® for the contact hyperfine contribution to the
self-energy of a nuclear moment in a ferromagnet. The
calculation of the indirect interaction of two rare earth
ions via the spin wave field is identical with the calcu-
lation of the indirect interaction of two nuclear moments
in a ferromagnet, a problem already worked out by
Suhl. The indirect interaction between two ions is of

15 H. Suhl, Proceedings of the Grenoble Magnetism Conference,
1958, p. 269 [Suppl. J. phys. radium 20, Nos. 2-3 (1959)7; see
also the appendix to W. Marshall, Phys. Rev. 110, 1280 (1958).
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the order of (e2/C)J.,+J,~ times a range function. This
additional perturbation on the molecular field approxi-
mation is of the order of (A.8), but vanishes as the
concentration of rare earth ions goes to zero.

We must remember that the question of selection
rules for magnetic dipole transitions between the levels
we have calculated contains one trap. If the g-value of
the rare earth ion should be equal to the g-value of the
ferric ions, then the transition is forbidden. The transi-
tion is allowed, however, for unlike g-values, which is
certainly the usual situation. At low concentrations the
transitions among the levels of the rare earth ions are
essentially the exchange frequency transitions!®; in the
concentrated rare earth garnets the frequency will be
shifted because the ferric lattice will now be signifi-
cantly perturbed and thus participates in the resonance.
At elevated temperatures the rapid relaxation of the
rare earth ions will change the character of the reso-
nance, as discussed in reference 1.

APPENDIX B. REPULSION OF LEVELS AT
APPARENT CROSSOVERS

In general, energy levels in combined crystalline and
magnetic fields will not crossover, except in special
symmetry conditions or by accident. A sufficient condi-
tion for accidental crossover is that the eigenstates of
the total Hamiltonian

'/}c = Sccryst_"'gcmag (B . 1)

should be eigenstates separately of 3Ceryst and of JCimag.
The simplest example occurs for S=1 with the spin
Hamiltonian

IL=S8.+HS., (B.2)

which has the eigenvalues 14 H,1— H, and 0, belonging,
respectively, to the eigenstates |1), | —1), and |0) of .S;.
The crossover of | —1) and |0) is accidental and is at
H=1. The crossing levels do not belong to the same
irreducible representation of the group of rotations
about the 2 axis.

If we add a magnetic field component H, per-
pendicular to the z axis the levels no longer cross, but
are repelled by the perturbation 3¢’=H,S,, which has
off-diagonal matrix elements connecting |0) with the
other states. Near the former crossover we may carry
out a perturbation calculation in the subspace of the
two states concerned, | —1) and |0). Letting §=H—1,
the secular equation is

e=—3Ek (GE+3HA)L (B.3)
At £=0, the levels are separated by 2}| H,,|. The separa-
tion at general £ is (£24-2H %)}, always positive. If there
are no crossovers in € vs H at any angle 6, there can be
no crossover in € vs 6 at any H. In the present problem
there is of course the crossover at H,=0 for H=1. At

H>>1 the eigenvalues of (B.3) are approximately 0 and
1—H, as in the unperturbed problem.

16 T, Kaplan and C. Kittel, J. Chem. Phys. 21, 760 (1953).
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In the general case one may argue that there will be
no degeneracy (except accidental) if there is no sym-
metry in the problem. We are vitally concerned, how-
ever, with the order of magnitude of the splitting at
near misses, because a splitting greater than the order
of 1 cm™ might be incompatible with the angular
width of the anomalous anisotropy in the experiment of
Dillon and Nielsen. This limit is to be compared with
pure crystal field splittings presumed for Th+*++ to be
of the order of 10 cm™! between levels. The magnitude
of the repulsive splitting may be reduced for high J
values. Consider again the Hamiltonian (B.2), now for
J=S8=6. Crossovers occur for H parallel to the axis
and the degeneracies are lifted when a perpendicular
field component is applied. The matrix elements of
S:H . between the crossing levels may be considerably
reduced below the example for S=1. If two levels
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having Ams£=4-1 cross for H parallel to the axis, then
a perpendicular component H, will not split the crossing
in second order of perturbation theory. To take a fairly
extreme case, consider a crossing between the levels
my=J and m ;=0, for J=6. If we rotate axes to §=30°
the mixture of the amplitude of |0) into the state
originally |6) is about 0.01, using the Wigner rotation
coefficients. The amplitude of [1) will be of the same
order, so that for this angle the splitting at a crossover
is of the order 0.01H, or ~0.1 cm™! in a rare earth
iron garnet.

One would not expect examples as favorable as this—
that is, with as small splittings as 0.1 cm™!, to arise
very frequently. We should remember, however, that
an anisotropy peak which does not increase or sharpen
below 4°K only requires a splitting of the order of
3 cm™!, and such a splitting may not be a rare event.
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Recombination and Trapping in Tellurium
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Photoconductive decay in nearly perfect Te crystals shows a lifetime of up to 50 usec at 300°K. The
temperature dependence does not support previous suggestions of radiative recombination; at temperatures
below 150°K marked trapping of excess minority electrons occurs, and at higher temperatures also the
results suggest the activity of levels within the gap. Probably chemical impurities behave as recombination
centers, and dislocations certainly act in this capacity (lifetime is reduced to ~1 usec when 10¢ dislocations/

cm? are introduced).

HE semiconducting properties of tellurium have

been studied for some years, but many early re-

sults suffered from the unavailability of good single

crystals. Crystals of high perfection are now available,

and a more realistic appraisal of the properties is possi-

ble, including carrier lifetime 77 as a function of
temperature 7' (°K).

Moss? estimated 790~400 psec for evaporated Te
layers and concluded that 7300 was some 10* times
smaller. de Carvalho® also reported 7300~ 1078 sec from
P.E.M. measurements. Redfield* measured 7190~20-50
usec using photoconductive techniques; he concluded
that lifetime must be very short at 300°K since he could
not detect any photoconductance there. The same
author suggested® that direct optical recombination
should be more important than Shockley-Read decay

1T, J. Davies, J. Appl. Phys. 28, 1217 (1957).

2T, S. Moss, Photoconductivity in the Elemenis (Butterworths
Scientific Publications, London, 1952), pp. 208-216.

3 A. P. de Carvalho, Compt. rend. 242, 745 (1956).

4 D. Redfield, in Proceedings of the Conference on Photoconduc-
tivity, Atlantic City, 1954, edited by R. G. Breckenridge, et al.
(John Wiley and Sons, Inc., New York, 1956), p. 566.

5 D. Redfield, Phys. Rev. 100, 1094 (1955).

in tellurium. But since Moss® calculates an optical life-
time of order 30 usec at 300°K and 300 msec at 77°K, it
is evident that other processes must have controlled
Redfield’s tellurium. There is a better chance that opti-
cal recombination could make a significant contribution
in some tellurium we have been studying, since our
samples yield 7300 as large as 50 usec.

Redistillation and zone refinement are helpful up to
a point in increasing 7o for tellurium, but the benefits
of purification can only be realized if the dislocation
density is kept small. A standard etch readily exposes
dislocation etch pits on the 1010 face”; these pits have
an asymmetric form which suggests that the dislocations
themselves may run along 1020 directions. We have
examined crystals with dislocation densities Np<10*
cm~?, yet since tellurium deforms plastically very easily,
a density of 108 cm™ or more can be introduced under
a relatively small stress (such as that involved in lapping
one face, or in dropping a sample onto a table). When
Np is large enough to dominate the lifetime, 7300~ (1.3/

8 T. S. Moss, Optical Properties of Semiconductors (Academic
Press, Inc., New York, 1959), p. 178.
7 Preferably a slow acting etch such as hot sulfuric acid.



