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proximation, there is an additional assumption of the
weak coupling (gsN«1), and the importance of the
neglected terms (of order g'E and higher) is not known.

Experimentally, there has been some evidence'4

regarding the presence of spin paramagnetism in super-
conductors. This eGect has to do with the spin density
induced by a magnetic Geld and can be derived by means
of an appropriate vertex solution. However, this does
not seem to give a finite spin paramagnetism at O'K.25

"Knight, Androes, and Hammond, Phys. Rev. 104, 852 (1956);
F. Reif, Phys. Rev. 106, 208 (1957); G. M. Androes and W. D.
Knight, Phys. Rev. Letters 2, 386 (1959)."K.Yosida, Phys. Rev. 110, 769 (1958).

The collective excitations do not play an important role
here as they are not excited by spin density. LI"',
Eq. (4.4), does not have the characteristic pole. )

It is desirable that both experiment and theory
about spin paramagnetism be developed further since
this may be a crucial test of the fundamental ideas
underlying the SCS theory.
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A calculation of the interband contribution to the frequency dependent dielectric constant of metals is
attempted based on a specific model. The frequency region near the threshold for the interband transitions
is considered. Emphasis in the model is laid on the bending of the energy bands near the Srillouin zone
boundary. Attention is focused on cases when the Fermi surface approaches the zone boundary or has a
finite area of contact with it. The momentum matrix element is taken as constant, which is fitted so as to
achieve agreement with the experimentally found dip in the dispersion curve of the extinction coeKcient.
The values of the square of the matrix element for the noble metals, copper, silver, and gold, which fit the
experimental data of Schulz, are found to be in the ratio 0.43:0.69:0.69.

1. INTRODUCTION

'HE theoretical calculation of the optical constants
of metals might be interesting as there is an

accumulating amount of experimental data which now
becomes suKciently consistent to allow comparison
with the computed curves. Moreover the theory might
indicate where further measurements of the optical
constants are needed to give more information on the
band structure of metals. The present knowledge of the
optical properties of metals is reviewed by Givens, '
Schulz, ' Ginsburg and Motulevich, ' and Roberts. "

Roughly speaking in the wavelength region below
1000 p down to 10 p, (microns) the notions of the skin
eGect theory are more appropriate to describe the
optical properties of metals. '' It is mainly between
10 p, and 0.0j. p where the classical concepts of the two
optical constants, the refractive index e and the
extinction coe%cient k, apply best. In the region
between 10 p, and 1 p the simple theory of Drude is

* Present address: Institute of Theoretical Physics, University
of Warsaw, Warsaw, Poland.

M. P. Givens, Solid State Physics, edited by F. Seitz and D.
Turnbull (Academic Press, Inc. , New York, 1958), Vol. 6, p. 313.

2 L. G. Schulz, Suppl. Phil. Mag. 6, 102 {1957).
'V. L. Ginsburg and G. P. Motulevich, Uspekhi Fiz. Nauk

55, 469 (1955).
3a S. Roberts, Phys. Rev. 100, 1667 {1955);114, 104 (1959).
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The classical electromagnetic theory relates the
experimentally measured refractive index e and the
extinction coeKcient k to the frequency dependent
dielectric constant e(v) and the electrical conductivity
o(v). Instead of o alternatively the imaginary part of
the dielectric constant may be used: e'= 2o/v

&=(sL("+e")'+eJ}'
&= {-'L("s+")'* e3&'— (2 I)

The dielectric constant and the conductivity both
consist of two parts: Drude and interband, as we shall

able to predict these constants, at least the extinction
coeScient, quantitatively. The refractive index pre-
dicted is always too small.

In many metals pronounced deviations from the
Drude theory are observed mainly in the region of
wavelengths shorter than 1 p. These are due to the
eGect of the interband electronic transitions between
the occupied bands and the higher empty bands. This
volume effect is neglected in the classical theory of
Drude. It is the purpose here to propose a simple model
which would allow the calculation of the contribution
of the interband transitions to the optical constants of
metals.

2. CLASSICAL EXPRESSIONS
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shortly call them. We simply add the eGect of both
mechanisms

en —
1 —P&e / s roars( v+y )

an =V'as/("+V').

(2.3)

(2.4)

For frequencies v suKciently large to neglect y the
imaginary part of the Drude dielectric constant is

negligibly small and the real part gives the usual
contribution due to the acceleration of the electrons
with the effective mass m*.

e= en+ ep, e = eD +ep ol' o'=0'D+0'r. (2.2)

The Drude expressions, s denoted by the subscript D,
are determined by the eGective number of electrons per
unit volume E, the static electrical conductivity O.o, and
the effective optical electron mass m*. In terms of
these parameters the Drude relaxation time and its
reciprocal y=e'1V/2s. rrs*os is defined and the formulas
derived:

constant is the principal value of

2 2 P, , sdsk
—ZZ, (3.1)

smsh (2s)s 3 ~ ~ ~ v, , (v, s—v')

Here m is the ordinary electron mass, hv, ,=E, —E,
is the energy difference between band s' and s. The
momentum of the incident electromagnetic radiation
of frequency v is neglected, thus the electronic transi-
tions are vertical only, in the reduced zone scheme. The
summation of the wave vector k goes therefore over
such states that are occupied by electrons in the band
s and unoccupied in band s'. The matrix element of
the interband transitions

and the imaginary part is

2 2
iP, , i'3(v, ,—v)dsk. (3.2)

2rrs'&v' (2')' 3 "

3. THE INTERBAND TRANSITIONS P, ,(k)=— I, g ~g, gd x (3 3)
The calculation of the interband electronic transitions

in solids has been done by Kronig. ' Later an improved
treatment based on the nearly free electron approxi-
mation has been given by Sergeiev and Tchernikovsky
and their formulas persist until today in the litera-
ture. "" For this formulation of the theory it is
necessary to assume that the Fermi surface does not
touch the Brillouin zone boundary. If it does the matrix
elements become ininite.

The theory of the interband transitions for insulators
has been developed by Wilson. ' He noticed the peculiar
form of the dispersion curve resulting from the inter-
band transitions between the ulled bands.

The terms which the interband transitions contribute
to the dielectric constant and the conductivity will be
calculated according to the standard formulas. "The
local Geld corrections" are neglected. Fermi distribution
function is taken at the absolute zero.

The formula for the real part of the dielectric constant
will be used in the form which utilizes the f-sum rule.
This makes possible the separation of the contribution
from the conduction electrons which is already taken
into account by the Drude term, Eq. (2.3).

Therefore the real part of the interband dielectric

'A. H. Wilson, The Theory of Mefals (Cambridge University
Press, New York, 1936).' R. L. Kronig, Proc. Roy. Soc. (London) A124, 406 (1929);
Proc. Roy. Soc. (London) A133, 255 (1931).

' H. Y. Fan, Phys. Rev. 68, 43 (1945).
8 M. I. Sergeiev and M. G. Tchernikovsky, Physik Z. Sowjet-

union 5, 106 (1934).' A. H. Wilson, Proc. Roy. Soc. (London) A151, 274 (1935).
~ '0 P. N. Butcher Proc. Phys. Soc. (London) A64, 765 (1951)."K. M. Baroody, Phys. Rev. 101, 1679 (1956).
~ F. Seitz, The Modern Theory of Solids (McGraw-Hill Book

Company, Inc. , New York, 1940), pp. 649 ff.
"See the series of papers: P. Nozieres and D. Pines, Phys.

Rev. 109, 741, 762, 778 (1958); 113, 1254 (1959);J. Hubbard,
Proc. Phys. Soc. (London) A68, 441, 976 (1955).

is a quantity which is dificult to evaluate. There are
arguments that the absolute value of it should decrease
away from the zone boundary towards the zone center,
especially when the symmetry types of the lower and
upper bands differ at the zone boundary, being there
purely s like and p like, respectively. ""For the present
we limit our calculation taking the matrix element
constant. The values of the constant will be determined,
whenever possible, from comparison with the experi-
mentally known dispersion curves (Sec. 5).

4. BAND MODEL

To enable explicit analytical calculations we are
looking for a simple model which would contain in a
natural way the relevant quantities characteristic for
the bands involved, such as the band separation, the
Fermi level, etc.

There has recently been much discussion as to
whether the Fermi surface does or does not touch the
boundary of the Brillouin zone, particularly in the
noble metals. The question is of a fundamental nature
as the difference between a singly connected and
multiply connected Fermi surface should have its
bearing on many electronic properties which depend on
the density of states and band anisotropy. A few
properties like the thermoelectric power, "the electronic
speci6c heat, '7 magnetoresistance, "and the anomalous

'4 N. F. Mott and H. Jones, Theory of the Properties of Metals
aid A/loys (Oxford University Press, New York, 1936).

"M. H. Cohen and V. Heine, Advances in Physics, edited by
N. F. Mott (Taylor and Francis, Ltd. , London, 1958), Vol. 7,
p. 395.

'6 H. Jones, Proc. Phys. Soc. (London) A68, 1191 (1955).
~7 H. Jones, Proc. Roy. Soc. (London) A240, 321 {1957).
'8 R. Qlsen and S. Rodriguez, Phys. Rev. 1DS, 1212 (1957).
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skin effect" may be mentioned at once and many
others can be found in literature. '™

We would like to set up a model which would allow
the calculation of the optical constants, taking inte
account the details which are important near the zono
boundary. That is, the energy gap, the bending of the
energy bands, and the Fermi surface which approaches
the zone boundary closely or eventually touches it,
even with a Gnite area of contact. There is a variety
of possibilities amenable to analytical calculation. We
limit our discussion to a particular one.

We assume the two bands E+ and E of the following
dependence on the wave vector k„k„,k,

Fzo. 2. Fermi surfaces in copper according to Eq. (4.9) and
(4.19). The cross section is along the Pl, line. The parameters
are in succession k1 =0.1, 0.05, 0.0001, and c=0.0036, 0.04.

(k '+k ')+ Lkz'+ (k,—kz)'

a2kz((k, —kz) +Vzs)&j (4 1)

In the noble metals nearest to the Fermi surface are
the hexagonal faces of the Brillouin zone. We put
therefore the k, axis along the FI. line in k space and
take kl. equal to the length FL. The form of the energy
bands is closely similar to the one obtained from the
nearly free electron approximation, '4 but we take the
transverse effective masses m~+ and mp in the two
bands to be diGerent, in general. The energy bands

have the axial symmetry along the FL axis, the cross
section is shown in Fig. 1. The constant 2k'kzVz/mz
is the energy gap at the point L.

The occupied states in the lower band are bounded
by the surface E (k,k„,k,)=Er, where the constant
Eg has the meaning of the Fermi energy. "The examples
of the Fermi surfaces are shown in cross section in Fig. 2.

The energy difference between the two bands (4.1) is

2
+ kzE(k, —k )'+ Vzs]1 t (4 2)

mg

We introduce the dimensionless parameters

75 m)1 1p
2 Em~+ mr &'

p= (k,'+k„')1/kz, k= (kz k,)/kz„—
V= Vz/kz, .

(4.3)

(4 4)

Thus for the point F or (000) we have p=0, k=1, for
the point 1.or (00kz) we have p=O, k=O. We put for
simplicity ml. =m&+=m, and we take 0. positive.
Further we abbreviate

Fro. 1. Energy bands in copper according to Eq. (4.j.). The
cross section is along the FI line. The energy gap at the point I.
is 2.25 ev.

y=2mEp(Akz) '

7I tÃV 2' mC

Ak2 k~hz

e'm ~P+ )' 1 [P /(hkz)('
3f=

3A4 4n-kl, ' 3 4~agkl„

(4.6)

(4.7)

"A. B. Pippard, Phil. Trans. Roy. Soc. London A250, 325
(1957).

~ V. Heine, Proc. Roy. Soc. (London) A240, 340 (1957).
"M. H. Cohen, Phil. Mag. 49, 762 (1958).
~ F. Garcia-Moliner, Proc. Phys. Soc. (London) 72, 996 (1958);

J. M. Ziman, Phil. Mag. 4, 371 (1959).
"W. Kohn, Phys. Rev. Letters 2, 393 (1959).
'~ R. Peierls, Ann. Physik 4, 121 (1930);H. Jones, Proc. Phys.

Soc. (London) A49, 250 (1937).

The abbreviations k in (4.4) and o in (4.6) should not
be confused with the standard symbols in Eqs. (2.1).
) is the wavelength, c is the velocity of light and a&
is the Bohr radius.

~~ E am indebted to Professor H. Jones for the suggestion on
the Fermi surface.
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a= &—1+2V. (4 g)

The integration in (3.1, 2) must extend over P from 0
to the upper limit P F(k) given by

Qs (k)7'= y —1—k'+2(k'+ V') l (4 9)

and over k from 0 to k2. There are two possibilities of
choice for k2. If we require the energy bands to be
symmetric with respect to the reQection in the k, =0
plane, we have to integrate between k, =kl, and k, =0.

(a) Multiply-Connected Fermi Surface

If the Fermi surface touches the Brillouin zone
boundary we can characterize it in our model by the
area of contact with the boundary plane. We write
a= tys (k=0)]', and have from (4.1)

The calculated expressions for the dielectric constant
then have discontinuity in slope for the frequency
corresponding to the band separations at k, =0. For
frequencies not greatly exceeding the energy gap at I.
the expressions are as good as in the second model in
which we integrate from k, =kz, not only to k, =0 but
further to k, =—kl,. The bands in this second model
are not exactly symmetric with respect to reQection in
k, =0 plane (see Fig. 1), but the dielectric constant
expressions do not suGer discontinuity in slope for the
aforementioned frequency. We are interested in the
optical region which extends a few electron volts on
both sides of the energy gap; the diGerences between
the results of calculations based on either model are
completely negligible. We usually integrate down to
k, =0, i.e., our k2= 1.

Using our abbreviations we have

t
&2

1

pJ'(&)

P~P (LnP +2(k'+ V )~]$(np'12(k'+ V')&)' —(2g)']}—'
~0 "O

(4.10)

M

02 ~0 ~0
PdP 5L~P +2 (k'+ V') '—2n]. (4.11)

The result of the integration (4.10) can be written

k2 ln
G'fT

(k '+V')L(2(1+1/ )(k '+V')' —k '+0 —1)'—(2 / )']
(k +Vs—a ) (2 (1+1/n) (kss+ Vs) &—kss+P —1)s

where

2

+ Q t Ag(g, k,)+A)(—g, k,)—2A;(O, k,)], (4.12)
i=o

As(g, k) = —(V' —g')'* arctant k(Vs —g') —
&] for

~
g j & V

For i=1, 2

' k+ (~'2 V2) I
= ——', (g' —V') & ln

(gs Vs) I
for ig.

i )V. (4.13)

(4.14)

A;(g&k) = LV —s'(o)]'*(arctanLk(V' —sp(g)) '*]+arctanLks;(g)p(k'+ Vs)(V' —sp(g))]—
&]} for [s;(g) ( & V

ks (g)+((k'+ V')LsP(g) —V']}&
= tsP(g-) —V']l ln for )s;(g)

~

& V.
«k-L (-)-V']&}

Here

s;(~)= (1+1/n) W L(1+1/n)'
+V'+y —1—2g/n]'*. (4.15)

For j= 1 the —sign and for s= 2 the + sign is taken.
The imaginary part of the dielectric constant can be

calculated as done by Wilson' and Dexter. " It is

proportional to the difference between the k values of

the intersection of the curve np'+2(k'+V')& —2g =0
with the boundaries of the p, k region of integration.

For frequencies below the threshold for the photo-

ID. L. Dexter, ProceeChngs of the Conference on Photocondgc-

timty, Atlantic City, 1954, edited by R. G. Breckenridge et al.
{John Wiley and Sons, Inc. , New York, 1956), p. 155.

electric absorption, 0.= V, the imaginary part vanishes.
For frequencies between

V &g &V+~/2 e/' —(~~/ngs) (gs —Vs) & (4.16)

For frequencies

V+an/2&g& (ks'+ V')1
(4.17).&'——(wM/ng')((g' —V') 1—LsP(~) —V']:}

Frequencies still higher are not interesting as for most
metals they lie in the ultraviolet.

The real part of the dielectric constant has a maxi-
mum at the frequency a-= V. If the diGerence between
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the transverse effective masses in the two bands is small
the height of this maximum is proportional to (a/n)».

The imaginary part has the maximum at the higher
frequency 0 = V+au/2. It is also proportional to (a/u) ',
its width being proportional to ae. The frequency
derivative of the real and imaginary part is discon-
tinuous at these maxima. It is necessary to have the
transverse effective masses m&+ and m& slightly
diferent, that is n/0, in order to keep the real and
imaginary part Rnite at the maxima. Discussion of the
e6ect of the transverse effective masses for the calcu-
lation of the optical absorption can be found in reference
9 and particularly in reference 26.

p=k '+1—2(kP+ V')» (4.18)

(b) Singly-Connected Fermi Surface

The case where the Fermi surface does not touch
the Brillouin zone boundary can be dealt with using
essentially the same formulas. The Fermi surfa, ce
can now be characterized by its distance from the
point I., call it k~,

The Fermi surface equation can be written

[~op(k) $'= kP —2 (kP+ V') '—k'+2(k'+ V')». (4.19)

The real part of the dielectric constant is now
expressible as the diGerence

ep(k~, k2) = Ep(k2) —Ep(k~), (4.20)

where ep(k) for k=k2 is written down in (4.12). The
imaginary part now has the threshold at the frequency
0.= (kP+ V')». For the frequency range

(k '+V')-:&~&(k '+V')'
(4.21)

g p~ —(~~/~02) {(02—V2)»—PP (0)—Vq»}

When the Fermi surface has no finite area of contact
with the zone boundary one can take the limiting ease
of small o. and the real and imaginary part of the
dielectric constant remain, even for 0.=0, continuous at
the threshold frequency. Taking 0, small, developing
the square roots and keeping only terms of the erst
power in n which cancel with the e in the denominator
before the curly bracket in (4.12) one obtains from
(4.20)

(ki+ (kP+ V')')
~p=~ Ik~'+V' —2(k~'+V')» —~'3[B(~,k2) —B(~k~)$+2[BD(~k2)—Bo(~,ki)/+in~

~
. (4.22)

&kg+ (k22+ V')» I
Here

B(a,k)=(1/0.)(V'—0') '*arctan[ko. [(k'+V')(V' —a')] '] for 0(V
ko —[(k'+ V') (o' —V') $»= (1 /2~) (~' V')-—» ln
ko+ [(k'+ V') (O' —V')]»

Bo(o,k) = (V' —o')» arctan[k(V' —0') 'j for 0.(V
k —(O' —V') '*

=-,'(~' —V')»» for o) V.
k+ (O' —V')»

for 0) V, (4.23)

(4.24)

The imaginary part is now, for 0.) (kP+ U')»,

The formulas (4.22, 25) are obtained more simply by
erst setting u=0 in (4.10, 11) and then integrating. For
Fermi surfaces without contact only these simpler
formulas (4.22) and (4.25) were used in numerical
computations, with however one modi6cation. The
model we are aiming at should simulate as much as
possible the actual shape of bands in the metal. The
energy bands assumed do not comply with the sym-
metry requirements of the fee lattice, they are only
axially symmetric along FI line. There are eight hex-
agonal faces in the actual Brillouin zone. To simulate
this situation the following refinement has been used
for the case of Fermi surfaces with no contact. The
dielectric constant has been calculated first with the
limits of integration k=kq and k=k2, call it ep(k~, k2),
then with the limits k=0.1 and k=k2, call it ep(0.1,k2).

ep ——4{4[Ep(ky,kg) —E (p01,k )$2+& (p01, k)}2, (4.26)

to simulate the eGect of the four pairs of hexagonal
faces. It must be said that this refinement which
numerically was rather small was not being done for
surfaces with a finite area of contact because then the
formulas were used with +NO and these are very
lengthy. The comparison of the numerical results
obtained in the two diGerent cases, contact and no
contact, must be taken with due reserve.

We mention another circumstance about the Fermi
surfaces without contact, i.e., simply connected. When
such a surface recedes further away from the Brillouin
zone boundary the maximum in the real part of the
dielectric constant gets shifted to higher frequency than

In the fcc metal the distance between the hexagonal
face of the Brillouin zone and the Fermi sphere for one

[k~+ electron per atom is 0.0975kr, . The actual real and
2(k&'+ V')* 0'+20 j. (4 25) imaginary parts of the dielectric constant used were

calculated as
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does or does not touch the Brillouin zone boundary is
diKcult to draw. The peak in the real part of the
dielectric constant is due to the increased density of
states near the zone boundary. In the present treat-
ment, with the matrix element constant, the density of
states is the only determining factor. The increased
density of states is ultimately connected with the
energy gap at the boundary plane.

The situation is similar with every energy gap, and
it should be similar in a superconductor where the
energy gap exists in the microwave region of fre-
quencies" "

FIG. 3. The calculated values of k/X es Ink for gold. The solid
curve was computed with kj =0.01, 3f=0.72. The broken curve
was computed from the Drude formulas. The circles denote the
experimental points of Schulz.

the one corresponding to the energy gap at the point I,.
To adjust the position of the maximum to the experi-
mentally given frequency one has to choose the value
of V smaller than the energy gap at the point I..

The contact of the Fermi surface with the zone
boundary has a pronounced e6ect on the resulting
dispersion curve. As already remarked a finite area of
contact gives rise to the sharp, narrow peak in the
imaginary part of the dielectric constant, at a fre-
quency higher by an/2 than the threshold frequency.
This peak does not exist for Fermi surfaces without
finite area of contact.

When the extinction coe%cient dispersion curves
are calculated with reasonable values of the constant
3E, see Sec. 5, it is apparent that, for surfaces with
contact, the aforementioned peak of the imaginary
part does not exhibit itself very strongly, especially
when u is small and e is not. It may be that the experi-
mental curves are not at all sufficiently precise or the
peaks in them are spread out by diGerent factors, like
the phonon scattering, nonvertical transitions, and
temperature, polycrystalline, and surface eGects, etc.
Eventually the sharp narrow peak in the immediate
vicinity of the threshold for the internal photoelectric
absorption can be undetectable.

Qn the other hand, the peak in the real part of the
dielectric constant exists, in every case, whenever the
Fermi surface approaches closely the zone boundary,
irrespective of whether contact is achieved or not.
Therefore the conclusion whether the Fermi surface

TABLE I. The Drude parameters adopted for the calculation of
the dispersion curves. The wavelength X in microns is given at
which the dip in the experimental k/X curve is centered. N is the
effective number of electrons in 10~ cm ', o.o is the static electrical
conductivity in 10'~ sec ', m* is the effective optical electron mass.

TABLE II. The relative magnitudes of the squared matrix
element for the interband transitions, as used in the calculations
for the noble metals. The Fermi surface was assumed to approach
the zone boundary by the distance k&,

Copper
Silver
Gold

O.OS

0.64
1.0
0.94

0.45
0.7
0.72

10 &

0.44
0.69
0.7

10 4

0.43
0.69
0.69

10 &

0.43
0.69
0.69

d band. The d band was assumed in the form

E=Es+ (k '+k ')+ (k '+(kg kI)'—
2mTd 2mLg

—2kl, f(kg —kl,)'+ Vl.'ft). (4.27)

The 3d band in copper is completely filled. For sim-
plicity the filled zone has been approximated by a
cylinder of length kL, and of radius pl, k~ corresponding
to the circle inscribed into the hexagonal face of the
Brillouin zone. The transitions were considered to the
band E+ of Eq. (4.1), with a constant matrix element.
Its square was taken proportional to the parameter M&.
The calculation proceeds similarly to the previous case
of the Fermi surface with contact. The area of contact
is now very big. It is essential to have the transverse
eQ'ective masses my~ and my+ diG'erent. 26 The disposable
constants which we now have in addition are (1) the
width of the d band, Ws=E(00k') —Es, (2) its mini-
mum separation from the unoccupied band E+, i.e.,

(c) The d Band

Until now only one filled and one unoccupied band
have been considered, all other bands being disregarded.
There are indications'4" that in copper the transitions
from the filled 3d band also contribute to the anomalies
in the dispersion curve. It was therefore attempted to
calculate the contributions from a tentatively described

Copper
Silver
Gold

8.5
5.9
5.9

5.76
5.55
4.2

1.45
0.97
0.98

0.55
0.325
0.5

s' R. H. Glover and M. Tinkham, Phys. Rev. 108, 243 (195/)."D. C. Mat tis and J. Bardeen, Phys. Rev. 111,412 (1958).
29 Biondi, Forrester, Garfunkel, and Satterthwaite, Revs.

Modern Phys. 80, 1109 (1958);P. L. Richards and M. Tinkham,
Phys. Rev. Letters 1, 318 (1958); Ginsberg, Richards, and Tink-
ham, Phys. Rev. Letters 3, 337 (1959).

~ J. Friedel, Proc. Phys. Soc. (London) $65, 769 (1952).
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the energy gap at the point I, U&= 8+(00k&)—E(00kl),
(3) the area, us= prs, and (4) the difference

mf1 1~
2 &mr~ mr, )

(4.28)

5. COMPARISON WITH EXPERIMENTAL DATA

(a) Noble Metals

For the wavelengths between 3 p and 0.25 p, the
experimental curves of the extinction coeKcient taken
recently by Schulz' "can serve as a basis for comparison.
Schulz plotted k/)t versus 1n)t (Fig. 3). We have used
Schulz's values for the parameters E, 0.O, and m* in the
calculation of the Drude contributions, see Table I.
For wavelengths longer than 1 p, the agreement between
the experiment and the calculated Drude values is
generally good for the extinction coefficient. However

I
I

I

/

05
I+

2 3JJ.

Fro. 4. The calculated values of k/X es Ink for silver. The solid
curve was computed with k1——0.0001, M=0.69. The broken
curve was computed from the Drude formulas. The circles
denote the experimental points of Schulz.

"L.G. Schulz, J. Opt. Soc. Am. 44, 557 (1954).

the refractive index calculated from Drude formulas is
several times too small and the addition of the interband
contributions does not improve it satisfactorily. (See
Figs. 3—7.)

The noble metals exhibit departures from the simple
Drude theory in the form of well shaped dips in the
k/'A curves. ' These can be reproduced by the present
theory reasonably well. The wavelength (see Table I)
at which the dip is centered was, as explained earlier,
determining the value of the energy gap V. The
value of the kl, is determined by the lattice constant ao,
in the fcc metal kz, =vrv3/as. The interband contribution
was calculated for the different Fermi surfaces approach-
ing the zone boundary by distance k&. For each k& the
constant M was chosen so that in the dispersion curve
of k/)%. the resulting dip reproduces as closely as possible
the one found experimentally.

The portion of the dispersion curve for wavelengths

o.l—

Fn. 5. The calculated values of the refractive index n ps Ink
for silver, with the same parameters as used in Fig. 4. The circles
denote the experimental points of Schulz.

longer than 1 p was not sensitive to the choice of M,
but the computed curve was dependent critically on
M for short wavelengths.

The case when the Fermi surface just touches the
Brillouin zone boundary, that is k&=0, has been
discussed elsewhere. "

Proceeding from lighter to heavier noble metals it
was found necessary to take the constant 3E, for the
given k~ value, larger for silver and gold than for
copper, see Table II. This shows a reasonable trend in
the values of the optical matrix element, as can be
expected when we imagine it calculated between the
orthogonalized plane waves. "" The fact that the
optical constants of metals vary in a regular way with
the atomic number has been noticed by Nathanson. '4

It is seen from Figs. 4 and 6 that the dip in the calcu-
lated k/)t curve is narrower if the spread in the energy
bands involved, see Fig. 1, is smaller. For silver the
energy of the free electron at the point I.is 6.76 ev higher
than at the point I' and the energy gap at I.was taken as
3.81 ev, the ratio is thus 1.77. The dip in the k/)%. curve
is too narrow. For copper the free electron energy at L,
is 8.67 ev, the energy gap at I. was taken as 2.25 ev,
the ratio is 3.85, and the dip in the k/X curve, computed
with no contact, is too broad.

Fro. 6. The calculated values of k/X es in' for copper. The
solid curve was computed with k1=0.0001, M =0.~~~. The
broken curve was computed from the Drude formulas. The
circles denote the experimental points of Schulz,

32 M. Suffczynski, Proc. Phys. Soc. (London) 75, 671 (1959).
33 M. SuGczynski, Bull. acad. polon. sci. 6, 481 (1958).~ J. S. Nathanson, J. Opt. Soc. Am. 28, 300 (1938).
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Fro. 7. The calculated values of the refractive index n vs ink,
for copper, with the same parameters as used in Fig. 6. The
circles denote the experimental points of Schulz.

different experimenters, as is seen from the graphs
quoted by Schulz. ' The Drude parameters envisaged
for zinc by different workers are widely diferent. "'
On the other hand Givens' has plotted the dielectric
constant and the conductivity of several metals versus
wavelength in the two-way-logarithmic scale. For zinc,
according to measurements of Bor et ul. 36 e exhibits a
sharp peak for A=1 p, and 0- has a broad peak for A. & i.
This is in line with the theoretical arguments for zinc
that the Fermi surface touches the planes bounding a
zone containing two electrons per atom~ or an overlap
takes place. It is possible in zinc that peaks in the
density of states arise at two diferent energies, which
renders a more complicated situation in the optical
properties. It would be very valuable to repeat with an
improved accuracy the optical measurements on zinc
and copper-zinc alloys. The tentatively computed k/X
curve for zinc reproduces the results of reference 36
only qualitatively, see Fig. 11. It was dHBcult to And

reasonable values of parameters to fit the experimental
points, see Table III. Similar to zinc are the experi-

I I l~
0.5 1 2 3p

FIG. 8. The calculated values of k/X ss IuX for copper. The
curve was computed with the Fermi surface having the contact
with the zone boundary. The value of a =0.001, 0, =0.25, M =0.29.

The calculations with the matrix element not con-
stant, but diminishing in the absolute value away from
the zone boundary towards the zone center, made the
resulting dip narrower.

For copper, which has a complicated shape of the
dip in k/X curve, the calculations have been done for
the case of the Fermi surface with a finite area of
contact. It is realized that it is difFicult to reconcile, in
principle, the small energy gap (2.25 ev) with the
contact at the zone boundary; very strong anisotropy
of the Fermi surface would be required. Two examples
of the curves computed from the formulas (4.12—17),
for particular choice of the parameters, are shown in
Figs. 8 and 9.

For copper, also, the calculation has been tried with
the contribution from the d band. An example of the
curve obtained is given in Fig. 10.
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Fro. 9. The calculated values of k/X ss luX for copper. The
curve was computed with the Fermi surface having the contact
with the zone boundary. The value of a=0.0001, +=0.1225,
iV= 0.3163.

Q
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(b) Other Metals I

O.5
I

Z.

A few remarks now concerning other than noble
metals.

For zinc, the one divalent metal for which many
optical measurements have been reported, ' ' the com-
parison with the experimental points presents difIi-
culties because of lack of agreement between the

FIG, 10. The calculated values of k/X ss luau for copper. The
curve was computed with kj =0.001, 3f=0.41. The d-band
contribution was added with cq -—0.5, S"q——5.2 ev, Vd-—4.5 ev,
ng= 0.36, 3/Ig ——0.034.

J. X. Hodgson, Proc. Phys. Soc. (London) 868, 593 (2955).' Bor, Hobson, and Wood, Proc. Phys. Soc. (London) 51, 932
(1939).
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mental dispersion curves for beryllium' though the
peaks are much broader there.

In the dispersion curve for aluminium no well-shaped
dip can be found. The overlap into the second zone
does take place in aluminium, "but probably to such a
considerable extent that, due to the selection rule of
the vertical transitions, the states near the energy gap
cannot play a role. The upper band near the zone
boundary may be occupied by the overlapping electrons.

We do not discuss the alkali metals as they are
usually dealt with in the standard form of the theory
as proposed by Sergeiev and Tchernikovsky. ' "Since
the alkali metals have the bcc structure and the Fermi
surface probably remains nearly spherical, the energy
gap plays no essential role in the calculation of the
optical constants for these metals.

There are serious theoretical indications, ""however,
that in lithium the Fermi surface is strongly anisotropic
and actually does touch the zone boundary. We have
purely tentatively computed the k/X curves for lithium
assuming a small area of contact and a rather small
matrix element, see Fig. 12. The energy gap was taken"
as 3 ev.

It would be very interesting to have better experi-
mental results on the optical constants of lithium.
Until now no experimental evidence has been found for
the interband transitions in lithium. The optical matrix
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FIG. 11. The calculated values of k/X ss in' for zinc. The
curve was computed with the Fermi surface having contact with
the zone boundary. The value of a=0.0036, a=0.16 and &=0.66.
The circles denote the experimental points of Bor et ul. 3~

"M. L. Glasser and J. Callaway, Phys. Rev. 109, 1541 (1958).

TABLE III. The Drude parameters adopted for the calculation
of the dispersion curves for lithium and zinc. The energy gap
assumed in the calculation of the interband contribution is given
in electronvolts.

Lithium
Zinc

4.8
6.7

1.05
1.51

1.37
1

Energy gap

3
1.2

element for lithium should not be large in absolute
value. The wavelengths, however, where deviations
from the Drude theory are to be expected, lie in the
visible which is more easily accessible for measurements.

In the course of the present investigation numerous
tables of the dispersion curves have been computed for
a wide variety of parameters. Copies can be obtained
by interested persons.
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FIG. 12. The calculated values of k/X es Ink for lithium. The

curve was computed with the Fermi surface having the contact
with the zone boundary. The value of a=0.0001, +=0.25 and
&=0.22.


