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Theory of Magnetism of NiF,
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The magnetic properties of NiF2 are studied theoretically with
the use of a spin Hamiltonian approach. It is shown that the
anisotropy of the susceptibility above the Neel temperature indi-
cates a spin arrangement below the Noel temperature in which all
the spins are perpendicular to the c axis and the angle between the
two sublattice magnetizations is a little smaller than x, giving rise
to a small net ferromagnetic moment along the (100) direction.
This model explains the torque data below the Neel temperature
quantitatively. The spin wave frequencies and the magnetic reso-
nance frequencies are calculated. There is a low-frequency branch

whose lowest frequency (4=0) corresponds to the anisotropy
energy in the ab plane. The magnetic resonance is expected at
around 170 kilomegacycles/second. A recent nuclear magnetic
resonance measurement by Shulman seems to support the present
model. The spin arrangement below the Neel temperature pro-
posed by Erickson from his neutron diffraction data seems to be
neither possible theoretically nor consistent with the other experi-
mental data. Possible structures of domains and domain walls are
discussed based on the same model.

1. INTRODUCTION

'HE magnetic properties of iron group Quorides,
MnF2, FeF2, CoF2, and NiF2 have been ex-

tensively studied both experimentally and theoreti-
cally. ' All of these compounds have a rutile type crystal
structure, and the three other than NiF2 show typical
antiferromagnetism below their Neel temperatures; the
spins point along the ~c axes. On the other hand, NiF~
has been reported to show the following strange proper-
ties: It has a weak ferromagnetic moment below its
transition point, and the measured torque curves show
quite diferent behavior from those of usual antiferro-
magnets or those of usual ferromagnets. ' The specific
heat of NiF2 shows a weaker temperature dependence
than those of the other Quorides at low temperatures. ' A
neutron diffraction experiment on a powder sample
studied by Erickson4 led him to conclude that the spins
are tilted from the c axis by 10 degrees. These unusual
properties have remained unexplained so far. Recently
Shulman' studied nuclear magnetic resonance of the
Auorines in NiF2. He has come to the conclusion that the
spins point in directions almost perpendicular to the c
axis, in contradiction with Erickson's analysis of his own

neutron diffraction data.
As for the theoretical studies, Dzialoshinski' has

shown from a symmetry consideration that there are
6ve possible arrangements of the spins in rutile-type
crystals assuming a two-sublattice model. Among them
are an MnFs type structure (the spins pointing in the
&c directions), structures in which the spins are in the

See N'agamiya, Vosida, and Kubo, Advances in Physics, edited
by ¹ F. Mott (Taylor and Francis, Ltd. , London, 1955), Vol. 4,
p. 1. Recently, paramagnetic resonances in samples extremely
diluted by ZnF2, nuclear magnetic resonances, antiferromagnetic
resonances, and optical absorption spectra in these iron group
difluorides except NiF2 have been studied by many people, though
we don't give references here.

s L. M. Matarrese and J. W. Stout, Phys. Rev. 94, 1792 (1954).' J. W. Stout and E. Catalano, J. Chem. Phys. 23, 2013 (1955).
4 R. A. Erickson, Phys. Rev. 90, 779 (1953).' R. G. Shulman (to be published).' I.E. Dzialoshinski, J.Exptl. Theoret. Phys. U.S.S.R. 33, 1454

(1959) Ltranslation: Soviet Phys. JETP 6, 1120 (1958)j.

ab plane with a net moment, and a structure proposed
by Erickson which, however, is highly improbable even
from his argument. His expression for the anisotropy
energy is the most general one allowed by the crystal

symmetry and some of the terms will vanish in the
particular case of NiF2. A spin Hamiltonian approach,
which seems to be adequate for NiF2, does not give
those terms of the anisotropy energy which are ex-
pressed by the fourth powers of the spin components or
direction cosines of the spins. Kanamori" showed from a
spin Hamiltonian approach that Erickson's structure is
not stable both from classical and quantum-mechanical
treatments. There are only two possible arrangements
as will be shown in Sec. 4.

The purpose of the present paper is to give a further
theoretical study of NiF2 based on a spin Hamiltonian
approach. The main results are as follows: From the
anisotropy of the paramagnetic susceptibility we can
show that below the Neel temperature the spins align
perpendicular to the c axis and there is a net magnetic
moment along the u or b axis. This is caused by a rutile-
type crystal structure in which there are two kinds of
cation sites in a unit cell. This model explains at the
same time the torque curves below the Neel tempera-
ture; both the magnitudes and the field dependences of
the torque curves in the (001) and the (110) planes
measured by Matarrese and Stout' are explained quanti-
tatively. The nuclear resonance frequencies expected
from this model are actually observed recently by
Shulman. ' The spin wave frequency spectra in this
model are obtained. There is a branch which starts from
the frequency corresponding to an anisotropy energy in
the ab plane, This frequency is much lower than the
corresponding frequency in usual antiferromagnets, i.e.,
a geometrical average of the exchange and the anisotropy
frequencies. This seems to agree qualitatively with the
specific heat data. At the same time the magnetic
resonance frequencies for the uniform oscillating field
are calculated. There is a mode whose frequency is ap-
proximately 170 kilomegacycles/second corresponding

r J. Kanamori (unpublished).
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The spin Hamiltonian for NiF
follows:
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the exchange interaction. The results are as follows:
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gz PB ~3
Xft Xz +2PB Agy

E+(8Jl+2J2+4Js)52

(D+E)(gl/ B)'51+(D E—)(g2/ B)'&2+2/ B'[(gl'+g2')(2J2+4J3) —2gg2(8J1)]51~2
XJ +/la (Al+A2)p

D2 —E'+2 (2J2+4Js)[(D+E)51+(D—E)82]—4[(8Jl)' —(2J2+4Js)']5)52

(3.1)

where With the use of (2.2) and (2.3), (3.5) is reduced to
~
—(D-E) //f; T

5g=
1+B (D E) / 2—T+—

B (D+E )/ 2—T'
e—(D+Z)//(: T

82=
1+B (D E) / 2 T—+E

—(D+E) / 2 T— (3.2)

X3. Xl 1

8/la 3(gl +gs +2gs )/la PB
+ +

3kIX
I
(T+0) 4[3k(T+0)]' X2

4[1+2g*'l(g 1'+g2') ]»' (8Jl+-
I (37)

[3k(T+O)]
~
—(D—E)/kT ~

—(D-//-E)/kT

5g=
1 yj (D E)/kT—+ e

—(D+E)/2 T—

At high temperatures, these expressions for the sus-

ceptibility components are well approximated by a
Curie-Weiss law with additional terms of the tempera-
ture independent susceptibility. After some calculation
we get at high temperatures

2gz2IJ, B2

+2/la As)
3k(T+ O~) i)

(gl +g2 )/la
+/la'(Al+A2),

3k(T+ 0,)
where

0„=[2(8J,+2J +4J' )+D]/3k,

(3.3)

l( 2g)g2
8J1+2J2+4Js

I

(g 2+g 2 ) (3 4)

g~ -g2——D—-E2 2
gl +gs .

3k.

(g,'+g,' 2g, ')/2 a'—(gl'+g2'+2g, ')/1 B'
x,—x„— + AO

3k(T+ 0~) 3k(T+ 0~)2

where

+/2 B2 (At+As 2A, ), (3.5)—
0= -'(Oii+ 01)

6 0~ = (0~ ) )
—0~1).

(3.6)

According to the measurement by Matarrese and Stout, '
X& is larger than X&I above the Neel temperature. We
shall show that this means that D is positive. At high
temperatures, we get from (3.3)

D and 8 may be of the same order of magnitude and are
much smaller than

I

X I, and 8J1 is smaller than
I
X I, so

that the second term in the above expression (3.7) is
regarded to be much smaller than the first term; we may
safely neglect the second term. Then we can conclude
that D is positive because its coeKcient is definitely
positive and the experimental values of Xj—Ill above
the Neel temperature are positive. This conclusion is
very important in determining the spin orientation
below the Neel temperature as is shown in the following
section.

We shall remark here that precise measurements of
the susceptibility components X& 1 and X& above the Neel
temperature as a function of temperature will make it
possible to obtain the values of the parameters in the
spin Hamiltonian (2.1).

4. SPIN ORDERING BELOW THE
NOEL TEMPERATURE

We shall take a two-sublattice model in which a
magnetic unit cell is the same as a chemical unit cell.
This assumption seems to be reasonable from the
neutron diffraction data4 as well as from the fact that
the ratio of the paramagnetic Curie temperature
(0~~~100~116'K)2 to the Neel temperature (T/v
=73.2'K) is nearly equal to those of MnF2 and FeF2,
in which the spin orderings below the Neel temperatures
are well established. "

' H. Bizette, J. phys. radium 12, 161 (1951);DeHaas, Schultz,
and Koolhaas, Physica 7, 57 (1940).I Recently Yoshimori (J. Phys. Soc. Japan 14, 807 (1959)j
showed that when J2/J»1, a screw type spin-arrangement is
stable. In this screw type structure, he obtained the following re-
lation:

O~~ 4+ (J2/Ji)+2 (J2/J&)

2(J2/J1) '+ (J2/A) —2(J2/A)
From a consideration of the superexchange interaction LP. W.
Anderson, Phys. Rev. 115, 2 (1959)g in ¹F2,J&, J2, and J2 are
considered to be all positive and the ratio (J2/A) may not be so
large. We may say, therefore, if the screw type structure of the
spins is actually the case in NiF2, 0„/T& should be much larger
than 1 in contrast to the observation. An example of the screw
type structure is seen in Mn02 where 0„/2'N 4. —
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Now we shall adopt a molecular Geld approximation
with classical spins. There are, of course, some quantum
effects in nickel salts whose spin is 1.However, when the
exchange interaction is suKciently larger than the
anisotropy energy, the classical spin model is considered
to show all the essential characters. Even if the ani-
sotropy is of considerable magnitude, we expect that at
least qualitatively the classical spin model gives a cor-
rect answer to the problem. The possible quantum
eGects will be discussed in Sec. 8.

The length of a spin is written as 5. The direction
cosines of the corner and the body center spins are
written as (rrt, Pt,yi) and (rrs, Ps,ps), respectively. The
exchange and the anisotropy energies are expressed as
follows:

We see from this expression that the following two types
of spin orderings are possible. "

(1) When the condition,

(1.—A,)& (1+A,s)»

is satisfied, the stable state is expressed by

70 71 72 11 rro Pp

(4.8)

(1—Ai) ((1+Ass)& (4.9)

The spins are aligned along the &t," axes as in the case of
MnF, . The condition (4.8) is not satisfied in NiFs, be-
cause D (and accordingly Ai) is positive as was seen in
Sec. 3. There is no ferromagnetic moment in this case.

(2) When the condition,

+em (+/2) 8JiS (rrlrr2+P1P2+ y1|'2) p

&-= ~&/2)S'L& h' '+~ ')
—~(~p —pp —~s'+ Ass) j.

(4.1)

7 72' rr1 Ps) Pl rrs ~

The total energy is then written as

(4 2)

From the symmetry of the crystal and the anti-
ferromagnetic exchange coupling we may require the
following conditions:

is satisfied, the stable state is expressed by

no= 1, Ps=go=0,
or

11 As
ai ———Ps=cos8= —

i
1+

v2 ( (1+Ass)'*)

1] A,
Pi ———rip ——sin8= —

(
1—

K2 & (1+Ass)l~

(4.10)

E= (X/2)8JiS'e= —(X/2)8JtS'$2rriPi+yP
—A tyP+A s(nP —PP) $,

where

A i= 2D/8Ji, As= 2E/8Ji.

By a transformation,

nt=no cos8—Po sin8,

Pi=no sin8+Pp cos8,

7& Vop

(4.5) M=ESIJB (1/v2) (gi cos8—gs sin8).

When As«1, or ~E~&&8Ji, we get

(4.11)

The spins are all perpendicular to the c axis, and the
(43) spins on the difFerent sublattices are not exactly anti-

parallel; there is a net magnetic moment along the
(4.4) direction bisecting the a and y axes, i.e., along the u or

b axis. This spin arrangement is shown in Fig. 2. The
magnitude of the ferromagnetic moment is a function of
As ——2E/8Ji, and is given by

where
tan28= 1/A s, (4.6) M=+S+B/g(gl gs)+s(gl+gs)Asj

we get
(1 Al)yp (1+As )&(rrp —Pp ) (4 7)

pgt+gs 8Jt q

4 2[)tf j (4.12)

This second case is considered to be realized actually
in NiFs since the condition (4.9) is satisfied because of
the positive sign of D.

According to a torque measurement by Matarrese and
Stout, the easy direction of the ferromagnetic moment
is the (100) direction in agreement with our present
model. The magnitude of the ferromagnetic moment is

simply proportional to A &S as is seen in (4.12). From the

FIG. 2. Four equivalent arrangements of the spins in NiF2 below
the ¹eltemperature. The spins are lying in the ub plane.

"Dzialoshinski has shown the possible arrangements of spins
in rutile-type crystals from a symmetry consideration. According
to him there are 6ve possible arrangements. However in our par-
ticular case of NiF&, there are only two possibilities (1) and (2)
corresponding to his I and II1, because the spin value one of ¹i'+
may not allow any anisotropy energy which is expressed in more
than fourth power of the direction cosines; the coefFicients f and g
in his energy expression vanish.
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numerical values: X = —300 cm ' and 8Ji——~P k (Tz+ 0„)
95 cm ', we may assume

(gi+gp &Jr )

An analysis of the torque curves, which will be described
in the following section, gives

so that
(A p(S=M/Eps~0. 03,

31=170 erg gauss 'mole '.

5. SPIN ORIENTATION UNDER THE
MAGNETIC FIELD—TORQUE

(4.13)

E, =-',1VSJiS' cos(yp —ppi),

E,„=—,'1VES'(sin2 ppi
—sin2 ppp) .

With the deGnitions:

(5.1)

we write
(5.2)

Ep,p=

ping

JiS'(cos2$ —A p cos2 pp sin2$). (5.3)

Here q means the direction of the net magnetic mo-
ment, and 2f the angle between Si and Sp. The value of
f which makes E&,& given by (5.3) minimum with the
fixed value of y is given by

tan2$= —Ap cos2pp.

Therefore, the effective anisotropy energy and the
ferromagnetic moment as a function of q are written as
follows:

In this section we shall study the equilibrium orienta-
tion of the spins under the magnetic field and make a
comparison between the theoretical and experimental
torque curves. We shall here describe only the physics
and leave the detailed calculations to Appendix I.

Let us first consider the effective anisotropy energy of
the ferromagnetic moment and the magnitude of the
moment as a function of its direction. The change of the
magnitude of the ferromagnetic moment is caused by
the change of the angle between Si and Sp. These are
easily obtained by the following simple consideration:
The spins Si and Sp are in the ab plane and their direc-
tions are denoted by the angles p& and p2 measured
from the $100) direction. General definition of the polar
angles of the spins and the magnetic field are shown in
Fig. 3. When B=O, Hi=8p= pr/2. The exchange and the
anisotropy energies are written as

directions and its magnitude is smaller than the
anisotropy energy E of a single spin in the ab plane by a
multiplicative factor A2. The net magnetic moment
depends strongly on its direction. It should be noted
that as we go from y=O to [p= pr/2, the moment be-
comes smaller; the moment vanishes at p=pr/4 and
becomes negative at y) pr/4.

The external magnetic field gives two effects. One is to
change the direction of the net magnetic moment and
the other is to induce a magnetic moment just as in
antiferromagnets. It is easily seen that when the

magnetic field is much smaller than E/gps $E is the
anisotropy energy defined by (2.1)) the change of the
direction of the net moment is very small. This is due to
the small magnitude of the net magnetic moment and
to its angular dependence given by (5.6). Because of the
latter effect the direction of the net magnetic moment
which gives a minimum magnetic energy is not parallel
to the magnetic field but is inclined toward the closest
(100) direction.

The torque in the limit of the weak magnetic Geld is
given as follows: (1) Magnetic field in the (001) plane;
torque along the c axis.

T[ppq/H~3IIp»n&p&

where 80 is the angle between the magnetic field and the
L100j axis, and Mp denotes the net magnetic moment
under no magnetic field. (2) Magnetic field in the (110)
plane; torque along the L110]direction.

2 [lip]/&—(1/A&~p»»p,

where 00 is the angle between the magnetic field and the
L110) direction. The ratio T[ppg/T[iip~=%2 and the
angular dependences of the torques agree very well with
the experiment.

The field dependent part of the torque is mainly due
to the field induced part of the magnetic moment. The

E(q) = 4NJiS'(1+A pP co—s'2q)'
~—4XJiS'(1+-',ApP cos'2pp),

M(y) =cVgp~S cosP
~-,Egp~SA2 cos2q.

(5.5)

(5 6)

The eGective ferromagnetic anisotropy energy has a
cubic symmetry with the easy directions in the (100) FIG. 3. Definition of the polar angles of S1, S2, and H.
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susceptibility components along the directions perpen-
dicular to Si—Ss, i.e., along the (100) and [001]direc-
tions are essentially X& in antiferromagnets which is
given, by Xi=1Vg'lsns/SJt in the first approximation.
Thus we see that the field dependent part of the torque
shows a similar behavior as that in usual antiferro-
magnets. The reverse Geld dependences of the torques
in the two cases measured by Matarrese and Stout [H in
(001) plane and H in (110)plane) are clearly understood

130

from this point of view. A remarkable fact is that the
field dependent part of the torque curves depends es-
sentially on the direction of the spin ordering, i.e., the
direction of Si—Ss, and very little on the anisotropy
energy provided the anisotropy energy is larger than the
magnetic energy. We may say, therefore, that the Geld
dependent part of the torque curves tells in what direc-
tion the spins are aligned. The Geld dependent part of
the measured torque curves in the (001) and (110)
planes are explained by taking the direction of Si—Ss
along the [010jaxis, consistent with our present model.

A comparison between the detailed calculation (given
120
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in Appendix I) and the experiment is shown in Fig. 4(a)
and Fig. 4(b). The numerical values used in addition to
those given in the preceding section are

(g,+g,)/4=1.2, SJt/~X
~

=0.3, and A 95'=0.03, (5.7)
90

0
& 80

~ 70
Q

~ 60

Z 50

40

30

20

10

0
0

220

'I 00
I

80
I

60

Cf.

x

9 18 27 36
ROTATION IN (OOI) PLANE IN DEGREES

(a)

I l
2752 GAUSS~
$399 GAUSS~ ~ ~ o
9770 GAUSS~

0 10 20 30 40 50 60
ROTATION IN (110) PLANE IN DEGREES

(b)

FIG 4, (a) Molal perpendicular magnetization, or torque divided
by magnetic field, verses angle between field and $100$ direction.
Rotation in (001) plane. Theoretical values are shown by the solid
lines and experimental points are shown by the cross marks. (b)
Molal perpendicular magnetization, or torque divided by magnetic
field, verses angle between field and L110j direction. Rotation in
(1&0) plane. Theoretical values are shown by the solid lines and
experimental points are shown by the cross marks.

where 225 was determined so as to get the best Gt of the
formula (A.12) with the measurement in the (001)
plane. The agreement is excellent both qualitatively and
quantitatively. The departure of the experimental
points from the theoretical curve near 45' in the (001)
plane may come from some secondary effects. At 45'
there is no preference for the direction of the net mag-
netic moment between the [100j and [010$ directions.
Moments in some domains may point in one and those in
the others point in the other direction; their effect will
thus be cancelled, i.e., the torque at 45' may be zero.
Near 45' there may be some distribution of domains
between those pointing nearly in the [100]direction and
those pointing nearly in the [010]direction.

We shall finally predict that in the (100) plane the
field dependence of the torque is almost one order of
magnitude smaller than in the (001) plane. This is ex-
pected because of the nearly isotropic susceptibility in
the {100}plane.

0. NUCLEAR MAGNETIC RESONANCE
- OF FLUORINES

We shall briefly sketch the nuclear resonance fre-
quencies of the Auorines expected from our present
model. As the nuclear spins see the local Geld coming
from the individual spins of Ni'+, the spin arrangement
below the Neel temperature can be studied by this
method. From the consideration of the crystal structure
including the Ni2+ spins below the Neel temperature, it
is clear that there are two kinds of Quorine site in the
absence of the external magnetic field. The local fields at
these sites are perpendicular to the c axis and one of
them is obtained by a 180' rotation of the other around
the [100$ direction in which the net ferromagnetic
moment is directed.

As was discussed in Sec. 5, the spin directions are
changed very little by the external magnetic field, unless
the latter is too strong. The local field at the Ruorines
are, therefore, approximately the vector sum of the
external field and th|; local Geld in the absence of the
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external fteld. For example, if the magnetic field is densities Si(r) andS&(r) are changedbyarbitrarysmall
applied along the c axis, the resonance frequency is amounts, the correspond'ing energy change is expressed
given by by

re=a(Hs+H)„s) &, (6.1) T

bX= (X/2)SJi de LbSr. (Ss+AA5s+Ar5r, n
where p is the gyromagnetic ratio of F" nuclei, and H,
and IIi„are the external magnetic field and the local
magnetic 6eld in the absence of the external field,
respectively.

According to Shulman's recent experiment, ' this rela-
tion is actually satisfied. This also strongly supports our
present theory. The detailed analysis of the nuclear
resonance data will be reported by Shulman.

'7. SPIN WAVES AND MAGNETIC
RESONANCE FREQUENCIES

We shall study in this section the frequency spectra
of the spin waves and the magnetic resonance fre-
quencies by using a continuum model which is good for
spin waves of long wavelengths. The procedure is an
antiferromagnetic counterpart of the Herring-Kittel
theory of ferromagnetic spin waves. " We need two
variables corresponding to the two sublattice magnetiza-
tions. The spin densities corresponding to the two
sublattices are defined by

Si(r) = —(2/N) P; 8(r—r;)S;,
(7.1)

S2(r) = —(2/Ã) P~ 8(r—r~) Ss.

The negative signs are taken in order to make the spin
densities parallel (not antiparallel) to the sublattice
magnetizations. We shall assume, for simplicity, that g
is isotropic and neglect the exchange interaction be-
tween the spins in the same sublattice. The Hamiltonian
(2.1) is then rewritten as

—A25i, l+As5r„m —B5h)+8Ss (Sr+AASi

+A i5s,n+A25s. l—A25s„m —BSh)], (7.3)

A(d/dt) Si———glair SiXH.ir ',
h(d/dh) Ss———gpgSs&&H. rr&'l.

(7.5a)

(7.5b)

As we are looking for .the modes of small vibrations of
the spins near the equilibrium position, it is advan-
tageous to choose the equilibrium direction of the spin
as one of the three coordinate axes. We shall introduce
two coordinate systems (p,rig') and (p', rl', f') as shown in
Fig. 5. The f' and f' axes will be chosen to be along the
equilibrium directions of Si and S2, respectively. The
unit vectors along the $, rl, i, p', ri', and f' axes are
written as li, mi, ni, ls, m2, and n&, respectively. The
polar angles of these axes referring to the original

where I, m, and n are unit vectors pointing in the x, y,
and s directions, respectively. The eGective magnetic
fields for the two kinds of spins are

H«r"'= (8Jr/glair) LSs+AASs+A t5ign

A&i,l+—A &i„m BShj, —
7.4

H.f f "=(8J&/gpz) LSi+AsS&+A &5s,n

+A,5,.1—A~, „m—Bshj.
The equations of motion are given by

3C= (S/2)8Jr Si(r) S,(r)ds

r

+A I St ASsde+-', Ar (Sr,'+5s,2)dv
~J

sA2 (5 s 51„2 5p~s+5 2)ds

where

Bh (S,+S,)d—s, (7.2) L M

+a

a being a lattice constant along the e axis,

B=gIJ~II/8 Ji5,

h=H/e.

Ai and A& are defined by (4.4) and the scale of the s
direction is changed by a factor (c/a). When the spin

'2 C. Herring snd C. Kittel, Phys. Rev. 81, 869 (1951).

Pro. 5. Orientation of g, g, and g coordinate axes. (', g', and g'
axes are dined by replacing 8& and p& in the (g,p, p) system with
02 and g2.
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I= I; cosg; cospp, —m; sin@i;+n; sin8; cospp;,
&oi= pl.(2Ai+ (2—Ai)Ak'g&,

pip ——pp, t (2A &)'+(2+A i)A k'J&.
m= I; cose, sin pp;+m; cosy, +n; sin8; sin qp;, (7.6)

n = —1, sin8;+n; cosa;.

(7.12)

coordinate system are given in the following equations: Thus we get the following two branches of the frequency
spectra:

The polar angles of the magnetic field are written as
~0, Po

Now we shall express the equations of motion (7.5)
in the new coordinate systems; the components of Si are
written in the ($,g,t) system and those of S& in the
($',q', t') system. I.inearization of the equations of
motion is carried out simply by neglecting the terms
more than quadratic with respect to S~g, S~„S2~, and
Sp„. Two out of the six equations, the f component of
(7.5a) and the f' component of (7.5b), give the equi-
librium conditions of the spins; they are shown in
Appendix II.These equilibrium conditions are the same
as those treated in the preceding sections. The other
four components represent the spin wave motion. They
are

(1/~.)8ip= aSit+ (c+d)Si.+pSpv+qS'pp ~

(1/co,)8i„———(c—d)Sit —aSi,+rSpt +sSp, ,

(1/pl, )8pp. —— sSip+—qSi„bSpt +—(e+f)Sp;," (7.g)
(1/pi, )82p rSit pSi„—(—e—f)S—2$ +bSpp,

(7 7)

where pl. =SJiS/h. General expressions for the coeffi-
cients in (7.7) are given in Appendix III. They can be
evaluated in general and when the external field is not
strong, i.e., B/A p and B/A i are sufficiently smaller than
1, the expressions in (A.10) are applicable together with

(A.2) and (A.5).
We shall give here some simple examples: the spin

wave frequency spectra without the inQuence of the
magnetic field and the magnetic resonance frequencies
due to a uniform oscillating field under a constant mag-
netic 6eld in the ab plane. The other cases are easily
calculated in the same way.

These dispersion relations are similar in form to that of
antiferromagnetic spin waves under the presence of an
anisotropy. Actually, the erst branch, or&, has just the
same form as in usual antiferromagnets. However the
second one, co2, has a diferent character, that is, the
lowest frequency (k=0) corresponds to the anisotropy
energy instead of an average of the exchange and
anisotropy energy as in the case of usual antiferro-
magnets. This means that there are spin wave modes of
much lower frequencies in NiF2 than in the other iron
group diAuorides, MnF2, FeF2, and CoF2. According to
the specidc heat measurement and its analysis by Stout
and Catalano, ' the spin contribution to the speci6c heat
at low temperatures of NiF2 is larger than that of FeF2
and its temperature dependence is weaker than that of
any other iron group diHuorides. This seems to agree
qualitatively, though not quantitatively, with the nature
of the spin wave frequency spectra obtained here.

a=b=p=s=0,
c= 1+pA 1+Ap pB slnlpp+A Bcposlpp,

d= —-', Ai+-', ApP+~B sinlPp+ —,ApB cosfp,

e=1+-,'Ai+App+-'B singp+ApB coslpp,

f= —,A i+ ,'A pP pB simp—+—,'Ap-B co—slPp,

q= —(1—~A '),

(7.13)

(2) magnetic Resonance Frequencies (H in the ab P/ane)

Magnetic resonance frequencies due to the uniform
oscillating 6eld will be obtained by putting k =0 in (7.7).
For simplicity, we shall treat the case where a magnetic
field is applied in the ab plane, i.e., 8p =m./2. The coefh-
cients in (7.7) are given by

(1) SPin Waile Frequency SPectra (II=0)
When the external 6eld is absent, the coeKcients in The same type of secular equation as in (1) leads to the

(7.7) are simply as follows: following resonance frequencies:

a= b= p=s=0,
c=e= 1+-',A i+A pP,

,t 2A +A/+A B coslPoj'*

pip= pl.L(2Ap)'+5ApB cosg pj&,
(7.14)

d= f= —pAi+-'A pP

q= —(1—Ak') (1——,'ApP)

r = —(1—Ak'),

(7.9)

where k is a wave number of a spin wave. The secular
equation is then written

(pi/pl, )' 2B((a/pl. )'+—C=0,
with

B=c'—d' —(1—ipApP) (1—Ak')',
(7.11)

C=BP—Lc+d—(c—d) (1—-,'A, ') j'(1—Ak')'.

where Pp is the angle between the (100) direction, in
which the net moment is directed, and the direction of
the magnetic 6eld; (leap( should be smaller than'/4. The
lowest resonance frequency is

&a= 2Appl, =4ES/h,

whose numerical value is estimated to be

(pl/2m) = 8Ji2ApS/h —1.7&(10",

corresponding to a wavelength of about 2 mm.
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Jz(Ss,)=hl, Jz(Sl )=hs, (8.2)

we have the following matrix for the Hamiltonian:

8. DIMINUTION OF THE LENGTH OF SPIN

The treatment given so far is classical except the
calculation of the paramagnetic susceptibility. We be-
lieve that the classical treatment gives, at least quali-
tatively, a correct answer to this problem of NiF2.
However, it is needed to study what kind of eGect is
expected from a quantum mechanical treatment and
how large the effect is.

When the crystalline electric Geld has an orthorhombic
symmetry, the spin states split into three singlets even
without the magnetic field or the exchange interaction";
there is no Kramers degeneracy. Each state has no
magnetic moment associated with it. The external
magnetic Geld as well as the exchange interaction gives
rise to a polarization of each state. When the exchange
interaction is suKciently larger than the crystalline Geld

splitting of the spin levels, the expectation value of a
spin at O'K will be nearly equal to one. On the other
hand, when the spin level splitting is of comparable
order of magnitude with the exchange interaction, the
expectation value of a spin at O'K will be appreciably
diminished. As we shall see later in this section, when
the splitting between the lowest two spin levels is more
than two times larger than the exchange energy, there
is no antiferromagnetic state at all, at least within the
framework of a molecular Geld theory.

To simplify the problem, we shall consider the case
of an orthorhombic crystal in which all the cation sites
have the same crystalline Geld. Taking a two sublattice
model with the nearest neighbor interactions, we may
write the spin Hamiltonian for the spins on the two
sublattices as follows:

K"'=DSt.' E(Sl '—Sl '—)+JzSl~(Ss~),
X's) =DSs,'—E(Ss '—S2 ')+JzS2,(Sl,),

(8.1)

where again a molecular field approximation was adopted
in expressing the exchange interaction, J is the exchange
coupling constant between the neighboring spins, s is the
number of nearest neighbors, and D and 8 are taken
positive without loss of generality. The easy direction
of the spins is then assumed to be along the x axis. With
the abbreviation:

with
tan2/I);= (D—E)/2h;. (8.5)

We get the following energy eigenvalues:

Et&') = —-'(D+3E)+ [-', (D—E)'+h, s)'*,

g2(~) —0

E &') = —-'(D+3E) —[-',-(D—E)'+h ')'*

The statistical average of a spin is given by

(8.6)

gp (')

(S'*&=2
~hi

exp[—E„&')/kT)/P exp[ —E "'/kT)

h;
2 sinh{ [sr(D—E)'+h ')'/kT)

[-'(D—E)'+hP)i

X(s &D+ E)/ s

+2 cosh{[sr (D—E)'+h ')'*/kT} ) '. (8.l)

This equation should be solved for

(S,)=(S .)=-(S .).
With the abbreviation

*=[(S.&'+((D-E)/2Jz)')',
f/= kT/ Jz,
d = (D+3E)/2 Jz,

we get
2 sinh(x/0)

E-A/'+2 cosh(x/i))

(8.8)

(8.9)

(S,)={1—[(D—E)/2Jz)') **. (8.10)

This shows the diminution of the expectation value of a
spin due to the crystalline electric field.

In order to have a nonimaginary value of (S,) in
(8.10), (D-E)/2 must be smaller than Jz. This require-
ment is just the same as the condition for the existence
of an antiferromagnetic state, or a Neel temperature, as
we shall show below.

The Neel temperature is obtained by putting (S;,)~0
in (8.7). With the abbreviation

At the absolute zero temperature, this becomes simply

x= {(S.)'+[(D—E)/2Jz)')~=1,
or

x(') =
', (D+3E)+h; 0———',(D—E)

0 0 0
-,'(D—E) 0 —-', (D+3E)—h;.

(8.3)
2D/Jz=Al, 2E/Jz=A2,

kTr//Jz=gr/,
(8.11)

where i = 1, 2. This is diagonalized by a transformation:
' cos8;

0
.—sin0;

0 sin8,
0

0 cos8;.
(8.4)

"When the crystal symmetry is tetragonal and the axis is the
hard direction for the spins (L))0, Z= 0), the lowest energy state
is singlet. The succeeding argument is valid for this case, too.

we get

s—(Ay+BAs)/48'+ 2 cosh[(Al —As)/48s/)
= [8/(A —A )) sillh[(Al —A )/40'/). (8.12)

From this equation we can see that the condition for the
existence of a Neel temperature is
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those measured in other nickel salts. (S) is very close
to 1.

9. DOMAINS AND DOMAIN WALLS
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Fxo. 6. Weel temperature of tetragonal nickel salts, whose
tetragonal axis is the hard direction of the spins, versus ratio of
anisotropy energy to exchange energy.

or

(8.13)

From the measured anisotropy of the susceptibility the
value of D may roughly be estimated from (3.7). We get
D 6 cm ' from the value of X&—X&1=1.102&(10 ' at
301.15 K.' This value is rather big as compared with

in consistence with the condition for (S ) in (8.10) to
have a real value.

The absence of the antiferromagnetism discussed
above may be expected in some magnetically dilute
salts. We may see a very rapid decrease of the Neel
temperature when we dilute samples gradually. Nu-
merical values of e~=kT~/(D/2) as a function of
a=D/2Js are shown in Fig. 6, where E is taken to be
zero. The eGect of D on the Neel temperature is small
except where a= D/2Js is larger than about 0.8.

En the case of NiF2, the argument given above is not
strictly applicable because of the two kinds of sites in
a unit cell. Though it is possible to extend the same type
of calculation to NiF~, we shall here simply contend
ourselves with the following approximate consideration.
As we have seen in the classical treatment, the spins in
NiF2 are almost aligned along one line and the deviation
from it is very small owing to the small value of E/J's.
So we may approximately evaluate the value of (S) by
taking E~O. Then we have

As we have seen in Sec. 4, there are four equivalent
arrangements of the spins in which the net magnetic
moments are pointing in the (100) directions. When the
magnetic field is absent, the crystal is naturally divided
into domains of these foui kinds of magnetization direc-
tion. We shall brieRy discuss a possible structure of
domains and domain-walls.

The high anisotropy energy in the L001$ direction
makes a domain wall perpendicular to the ab plane
highly unfavorable. On the other hand, the effective
ferromagnetic anisotropy energy in the ab plane is more
than two orders of magnitude smaller than that out of
the ab plane. We may expect, therefore, that a domain
wall perpendicular to the t," axis is energetically the most
favorable one. A favorable domain shape then is a Rat
plate perpendicular to the c axis. We shall further dis-
cuss on this type of domains and domain walls.

The spin arrangement in a domain wall is deduced
from Fig. 2 and from the discussion in Sec. 5, particu-
larly from (5.6). The expected arrangements of the
ferromagnetic moments in a 90' wall and a 180' wall are
shown in Fig. 7(a) and Fig. 7(b), respectively. The
sublattice spins are rotating gradually as we proceed
along the c axis, and at the same time the angle between
the two sublattices are changing. The ferromagnetic
moment at the middle of a 90' wall is zero. The direc-
tions of the two sublattices in both sides of the domain-
walls are shown in the same figures.

Now we shall estimate the wall energy and thickness.
When a 90' wall consists of e atomic layers perpen-
dicular to the c axis, the anisotropy energy per unit area
may be given by

o; ~EA zS'I/a2, (9.1)

where u is a lattice constant. While the exchange energy
is estimated as

o;„~(0JsS'/2a') (z /20) '. (9.2)

Js/4E 40 (93)

This value is one order of magnitude smaller than in the
case of iron. A more precise calculation leads essentially
to the same result. The wall energy is given by

a„,~~ ES'/a' 0.1 erg, (94)

which is one order of magnitude smaller than that in
iron. The wall thickness and energy of a 180' wall may
be twice as large as those of a 90' wall.

Let us now estimate the size of a domain in a crystal
with rectangular cross sections as shown in Fig. 8. We
shall consider a domain structure shown in Pig. 8. The
magnetostatic energy per unit area in the bc plane is

e is determined so as to make o.„,~~=a; +o;„minimum.
We get
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1Vote added im proof. Th—e behavior of the paramag-
netic susceptibility near the Neel temperature is par-
ticularly noteworthy. According to the formula (3.1) in
the text, X& increases very sharply near Tz and diverges
at T~, while Xl& shows no such increase near T~. After
some manipulation (for brevity we neglect Jp and Jp),
X, in (3.1) is reduced near TN to

we get

p= (E&.t,,y/-', 1VSJiS')
= cos(8—5) cos(8+8)+sin(8 —5) sin(8+5) cos2$

+pA iLCOS'(8 —8)+cos'(8+5) 7—~~ApLsin'(8 —8) cos2(q —P) —sin'(8+8) cos2(q+f) 7
Pjg cos8pLCOS(8 —8)+cos(8+&)7

+sin8p cospp/gi sin(8 —8) cos(p —P)
+g, sin(8+8) cos(q+f) 7
+sin8p sing pLgp sin(8 —8) sin(p —iP)

+gi sin(8+8) sin(y+P) 7), (A.3)

where Ai and Ap are given by (4.4) and

X.=Pug'—»'/3&(T+8)7 (T Tp)/(T—»)— P=ljeH/8 JiS. (A.4)

where

T~—Tp—(E'/k Js)[(3/16)+ (Js/
~
X

~ )7—0.06.

This behavior of X& has actually been observed by
Shulman (to be published) in his NMR measurement
and by Cooke (private communication for which the
writer wishes to thank). Burgiel, Jaccarino, and
Schawlow (spoken at 1959 Cleveland Meeting) ob-
served the same behavior in powdered. NiF2 and
Ni(IOp)&2H&O. We can fairly generally show that this
sharp increase of the magnetic susceptibility near T& is
a common feature to weak ferromagnets and the smaller
the ferromagnetic moment below T~, the sharper the
increase of X.

APPENDIX l
Ke shall here study the equilibrium orientation of the

spins under the magnetic Geld using the classical spin
model as in Sec. 4. We shall then calculate the torque
when the magnetic field is applied in the (001), (110),
and (100) planes.

The polar angles of the magnetic field H, the corner
spin S& and the body center spin S& are written as
(8p, pp), (8i, ppi) and (8&,p&), respectively. "These angles
are shown in I'ig. 3.

The exchange, the anisotropy, and the Zeeman
energies are written as follows:

E,x= (1V/2) SJiS Lcos8i cos8p

+sin8i sin8p cos(ppi —pp)7

E~~= (S/2)S t D(cos 8i+cos 8p)
—E(sin'8i cos2pi —sin'8p cos2ppp) 7, (A.1)

Eg —(X/2)»SH Lgg cos8p(——cos8i+cos82)
+sin8p cosppp(gi sin8i cospi+gp sin8p cosppp)

+sin8p sinyp(g2 sin8i sinyi+g~ sin8p sinyp)7.

When the magnetic field is not large, i.e., P, P/A i and
48/A & are small, the equilibrium spin orientation is very
near to that with no magnetic Geld. So we shall take the
deviation from the latter as new variables. Considering
the result of Sec. 4, we write

8= (~/2) —
P,

~= (-/4)+. ,

2f= pr Ap—
(A.5)

The quantities $, 8, g, and f are all expected to be small.
Now we expand the energy expression (A.3) in the
powers of these quantities. The expansion up to the
second order with respect to $, o, rt, and f is

p =const+ A P+1l8P+Qg'+ Df'P

+X($8+ ',gt)+a)-+cq+df, (A.6)
where

A =2+Ai+-,'ApP, 8=A i+ ,'A pP, -
C=2A2' D=-', (1+-'A ')

X=—(gi+gp)P sin8p sin(pp —pr/4),

a = —2g,P cos8p,

(gi+gp SA)c= —2PAp~ +
~

sin8p sin(yp —pr/4),
fzf)

d =——,'(gi+gp)P sin8p cos(pp ~/4)+ pAp .

(A.7)

We assumed here that A i, A p, P/A i, and P/A p are small
quantities and expanded the coefficients in (A.6) in the
powers of these quantities.

$, g, 8, and l are determined so as to make the energy
(A.6) minimum. This is easily done and the result is as
follows:

Putting
(p p+ v i)/2= p, (8p+8i)/2=8,

(v p
—ppi)/2=4', (8 —8 )/2=8,

(A.2)

j'For convenience we shall take S parallel to the magnetic
moment; S points the reverse direction to the true spin.

Xd—4Dc

SCD——'X'
Xc—4Cd

8'—-', X'

8=
4A8 —X 4AB—X'

(A.S)
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(3) Magnetic Field in the (100) Plane;
Torque A/ong the [010)Direction

Inserting (5.7) into (5.8), we get

$—ogzP COSHp,

8= (P'/8A ) ( I+go) sin200 sin(yo —pr/4),
We shall show on1y the result,

(g,+.g, 8J,~ (A 9) [010]=Io[TStIBA0S sinH{[(gl+gp)/4)
(p/2A&)! + ! Sin00 sin(yo —pr/4), —(2p/A )[g,'——'(g,+g,)0) COSH}, (A.14)

t = (p/2) (gi+go) SinHp COS(yp pr/4).

This result is used below to calculate torques in various
cases.

(1) Magnetic Field in the (001) Plane;
Torque A/oeg the c Axis

In this case Hp= pr/2, so that

=5=0
~„+„81,~&= (P/2A, )! + ! sin(y, —~/4), (A.10)

4

/
= (p/2) (gi+gp) COS(yp —pr/4).

The torque along the c axis is given by

T[ppl] = (X/2)tIBSH[slnyp(gi cosyi+gp cosyo)
—cosyp(gp sinyi+gi sing 0)). (A.11)

Inserting (A.2), (A.5), and (A.10) into the above ex-

pression, we get

T[001] NP BSA 2H sin( yp —pr/4)

(gi+go 8JI)
X !

— (+(3P/2A, )

1
(gI+gp) 1 (8A)

X I

—

! +-! I cos(yo —~/4) (A 12)E4) 3[~) !

(Z) Magnetic Field in the (110) P/ane;
Torque A/ong the [110)Direction

We can calculate the torque in this case in the same
way as in the case (1). The result is

T [lip] = (1/%2) J]rpBSAoH sinH

(gi+go

4!X!]
(gi+go)

X 2(g /»' —
I !

—(»I/16I~I)

(gi+go 8AI
X! +,! cos8, (A.13)

E 4 !x!J
8 being measured from the [110)direction.

8 being measured from the [100)direction.

APPENDIX II

The equilibrium conditions of the spins obtained from
the procedure in Sec. 6 are as follows:

cos81 sin80 cos (y2 yl) sin81 cos82

—A2 singly cos|Iy cos2+y —A y singly cosOy

+B[COS80Sin81—SinHo COSHI COS(yo —yi))=0, (A.15)

sinH, sin(yo —yl)+A 0 sin81 sin2yl

BsinHp sin(—yo —yl) =0, (A.16)

SIIIHp COS80 COS(yo yi) COSHI Sln80

+Ao sln80 cos80 cos2yp AI, sln80 cos00

+B[COS8p Sln80 —SIIIHp COS00 COS(yo —yp)) =0, (A.17)

sin01 sin(yp —yl)+Ao sin80 sin2yp

+8 sinHp sin(yp —yo) =0. (A.18)

APPENDIX III

The expressions of the coefficients in (6.7) are given
as follows:

8=A 2 cos9y sln2 p yq

b=A2 cos82 sln2+2~

c= sl1181 sln82 cos (y2 yl) cos81 cos02

—oAI(3 cos 01—1)+$Ap sl11 01 cos2yi

+B[COS80 COSHI+S1118p S11181COS(yp yl))~

d= ——',Al sin'81+ 0A0(1+cos 81) cos2yl,

p= (1—Ak') cos80 sin(yo —yl),

q= (1—Ak') cos(yo —yi),

r= —(1—Ak') [cos81 cos80 cos(yo —yi)+sin81 sin80),

s= (1—Ak') cos81 sin(yo —yl),

slnHI sln02 cos(y2 yl) cos01 cos82

——',Al(3 COS'80 —1)—00A 0 Sin'00 COS2yo

+B[cos80 cos00+sin00 sin80 cos(yp —yo)),

f= —&Al Sill Hp
—020(1+COS 00) COS2yo.


