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The magnetic properties of NiF; are studied theoretically with
the use of a spin Hamiltonian approach. It is shown that the
anisotropy of the susceptibility above the Néel temperature indi-
cates a spin arrangement below the Néel temperature in which all
the spins are perpendicular to the ¢ axis and the angle between the
two sublattice magnetizations is a little smaller than =, giving rise
to a small net ferromagnetic moment along the (100) direction.
This model explains the torque data below the Néel temperature
quantitatively. The spin wave frequencies and the magnetic reso-
nance frequencies are calculated. There is a low-frequency branch

whose lowest frequency (k=0) corresponds to the anisotropy
energy in the @b plane. The magnetic resonance is expected at
around 170 kilomegacycles/second. A recent nuclear magnetic
resonance measurement by Shulman seems to support the present
model. The spin arrangement below the Néel temperature pro-
posed by Erickson from his neutron diffraction data seems to be
neither possible theoretically nor consistent with the other experi-
mental data. Possible structures of domains and domain walls are
discussed based on the same model.

1. INTRODUCTION

HE magnetic properties of iron group fluorides,
MnF,, FeF,; CoF. and NiF,; have been ex-
tensively studied both experimentally and theoreti-
cally.! All of these compounds have a rutile type crystal
structure, and the three other than NiF, show typical
antiferromagnetism below their Néel temperatures; the
spins point along the =-¢ axes. On the other hand, NiF,
has been reported to show the following strange proper-
ties: It has a weak ferromagnetic moment below its
transition point, and the measured torque curves show
quite different behavior from those of usual antiferro-
magnets or those of usual ferromagnets.? The specific
heat of NiF,; shows a weaker temperature dependence
than those of the other fluorides at low temperatures.? A
neutron diffraction experiment on a powder sample
studied by Erickson* led him to conclude that the spins
are tilted from the ¢ axis by 10 degrees. These unusual
properties have remained unexplained so far. Recently
Shulman® studied nuclear magnetic resonance of the
fluorines in NiFs. He has come to the conclusion that the
spins point in directions almost perpendicular to the ¢
axis, in contradiction with Erickson’s analysis of his own
neutron diffraction data.

As for the theoretical studies, Dzialoshinski® has
shown from a symmetry consideration that there are
five possible arrangements of the spins in rutile-type
crystals assuming a two-sublattice model. Among them
are an MnF, type structure (the spins pointing in the
=c¢ directions), structures in which the spins are in the

1 See Nagamiya, Yosida, and Kubo, Advances in Physics, edited
by N. F. Mott (Taylor and Francis, Ltd., London, 1955), Vol. 4,
p. 1. Recently, paramagnetic resonances in samples extremely
diluted by ZnF,, nuclear magnetic resonances, antiferromagnetic
resonances, and optical absorption spectra in these iron group
difluorides except NiF; have been studied by many people, though
we don’t give references here.

2 L. M. Matarrese and J. W. Stout, Phys. Rev. 94, 1792 (1954).

3J. W. Stout and E. Catalano, J. Chem. Phys. 23, 2013 (1955).

4R. A. Erickson, Phys. Rev. 90, 779 (1953).

5 R. G. Shulman (to be published).

¢ 1. E. Dzialoshinski, J. Exptl. Theoret. Phys. U.S.S.R. 33, 1454
(1959) [translation: Soviet Phys. JETP 6, 1120 (1958)].

ab plane with a net moment, and a structure proposed
by Erickson? which, however, is highly improbable even
from his argument. His expression for the anisotropy
energy is the most general one allowed by the crystal
symmetry and some of the terms will vanish in the
particular case of NiF,. A spin Hamiltonian approach,
which seems to be adequate for NiF,, does not give
those terms of the anisotropy energy which are ex-
pressed by the fourth powers of the spin components or
direction cosines of the spins. Kanamori” showed from a
spin Hamiltonian approach that Erickson’s structure is
not stable both from classical and quantum-mechanical
treatments. There are only two possible arrangements
as will be shown in Sec. 4.

The purpose of the present paper is to give a further
theoretical study of NiF; based on a spin Hamiltonian
approach. The main results are as follows: From the
anisotropy of the paramagnetic susceptibility we can
show that below the Néel temperature the spins align
perpendicular to the ¢ axis and there is a net magnetic
moment along the ¢ or b axis. This is caused by a rutile-
type crystal structure in which there are two kinds of
cation sites in a unit cell. This model explains at the
same time the torque curves below the Néel tempera-
ture; both the magnitudes and the field dependences of
the torque curves in the (001) and the (110) planes
measured by Matarrese and Stout? are explained quanti-
tatively. The nuclear resonance frequencies expected
from this model are actually observed recently by
Shulman.? The spin wave frequency spectra in this
model are obtained. There is a branch which starts from
the frequency corresponding to an anisotropy energy in
the ab plane. This frequency is much lower than the
corresponding frequency in usual antiferromagnets, i.e.,
a geometrical average of the exchange and theanisotropy
frequencies. This seems to agree qualitatively with the
specific heat data. At the same time the magnetic
resonance frequencies for the uniform oscillating field
are calculated. There is a mode whose frequency is ap-
proximately 170 kilomegacycles/second corresponding

7J. Kanamori (unpublished).
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Fi16. 1. Rutile type crystal structure of NiF,. The solid and open
circles represent Ni?* and F~ ions, respectively.

to the £=0 wave of the lower frequency branch of the
spin wave modes. The diminution of the length of the
spins due to the crystalline field splitting is studied
quantum-mechanically and some remarkable effects,
which are expected when the crystalline field splitting is
of comparable order of magnitude with or larger than
the exchange energy, are discussed. In NiF, this effect
seems to be small. Finally, possible structures of do-
mains and domain-walls are studied based on the same
model.

2. SPIN HAMILTONIAN

The rutile-type crystal structure of NiF, is shown in
Fig. 1, together with the coordinate axes which we shall
use below. There are two kinds of cation sites, the corner
and the body center sites, in this crystal. The crystalline
electric fields around these two sites have an ortho-
rhombic symmetry and are the same except that their
principal axes in the ab plane, i.e., the x and the y axes,
are interchanged.

Ni*t ion has a (3d)® configuration from which two
triplet states °F and 3P result. The energy of P state is
14 000 cm™ higher than °F for a free ion. When a Ni?*+
ion is placed in a cubic crystalline field produced by an
octahedron of anions around it, 3F states split into one
orbital singlet state I's and two orbital triplet states T's
and I'y. The orbital singlet, T'y, state is the lowest and the
separation between I's and I's, the lowest excited state,
is as big as 10 cm™ (8500 cm™! for Ni?* surrounded by a
water octahedron). In NiF; the orthorhombic compo-
nent of the crystalline electric field lifts the degeneracy
in the I's, I'y, and 3P (T'y) states. However, the splittings
due to the orthorhombic component are considered to be
smaller than that due to the cubic field, so that we may
assume that the ground orbital state lies well below the
first excited state, justifying a perturbation method
which gives a spin Hamiltonian.
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The spin Hamiltonian for NiFs, may be written as
follows:

Je=J1 2 (8;:S)

Gkt

+IL X 8;8;)+ X (Se-Sk)]

{7, 32 (B, k)2

+TL X (Si-S;)+ X (Sk-Si)]
(k, k)3

(O]

+Z [DSizz—E(szz_Sjyz)‘l“lJ'st' g“) : H]
+2 [DSe2+E(Sks’— Sk +reSe-¢®-H], (2.1)
k

where 7 represents a corner site and £ a body center site;
{ )1 under the summation sign means pairs of neigh-
boring corner and body center cations, { )2 pairs of
cations neighboring along the ¢ axis, and { )3 those along
the @ or b axis, J1, Js, and J; denoting the corresponding
exchange coupling constants; g® and g® are the g
tensors of the cations at the corner and the body center
sites, respectively, and H is the external magnetic field.
The constants, D, E, ¢V, and g®, are given by a per-
turbation calculation as follows:

D= )\2 (A]_""Ag— ZAZ),

(2.2)
E=X\(A—Ay),
gx(l) = gy(z) = g1= 2 (1 "')\Al),
g, ®O=gP=g=2(1—\\,), (2.3)
g V=g®P=g,=2(1—)\,),
where
o GlLm Gl L])
S E.~~E,
(8| L |n) (n| LM )
A=Y , (2.4)
n E.,—E,
(gl L,® I”) ('”ILV(D ] g
A2=Z )
n E,—E,

L® denotes the orbital angular momentum of a cation
at a corner site, A the spin-orbit coupling constant whose
numerical value for Ni?* is —300 cm™, and g and #»
represent the ground and the excited states, respectively.

Here we neglected the dipole and pseudodipole inter-
actions which, we think, are not of primary importance
in this case.

3. PARAMAGNETIC SUSCEPTIBILITY

A calculation of the paramagnetic susceptibility of
NiF; from the Hamiltonian (2.1) is rather straight-
forward® if we take a molecular field approximation for

8 For example, Moriya, Motizaki, Kanamori, and Nagamiya, J.
Phys. Soc. Japan 11, 211 (1956).
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the exchange interaction. The results are as follows:

g 1 B3
Ft (871427344725,

Xn=X,= + 2#821\3,

. (D+E)(ginp)?1+ (D— E) (gop5)?02+ 21 5[ (g2+g2) (2T 44T 5) — 2182(871) 16182
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(3.1)

Fp5?(A1+Ay),

D*— E24-2(27 y+4T3)[(D+E)d1+ (D— E)b5]—4[ (871)*— (27,447 5)*16:8,

where
1— o~ (D-B) kT
612
1 +e—<D—E)/kT+e—(D+E>/kT’
1 — g~ (D+B)ET
b) (3.2)

2':
T 14 D-BIRT |~ (D+E) kT

e~ (D—BE)| kT _ p—(D+E)| kT

53= .
146 D—BIET | ~(D+B)/ kT

At high temperatures, these expressions for the sus-
ceptibility componeénts are well approximated by a
Curie-Weiss law with additional terms of the tempera-
ture independent susceptibility. After some calculation
we get at high temperatures

2g22/~LB2
Xyy=— ZMBZAz,
3k(T+06,)
( ) 3.3)
g 2+g 2 n 2
X, =“—1_2—-B—+MB2 (A1+As),
3k(T+0y)
where
On=[2(871+27,+475)+D]/3%,
2
®L=[2( b 8]1+212+4J3)
gi’tgdt (3.4)

g’ — g
—1D—3E—> ] / 3.
g12+g22

According to the measurement by Matarrese and Stout,?
X, is larger than X;; above the Néel temperature. We
shall show that this means that D is positive. At high
temperatures, we get from (3.3)

(gt —2Mms" (g12+g22+2g£)u32A

X_L—-Xl -
3K(T+0) 3L(T+0)?
Fur(Ai+A:—24,), (3.5)
where
=1
0=3(0,+06y, (3.6)
A@):%(@“" ®.L)-

With the use of (2.2) and (2.3), (3.5) is reduced to

[ 8u s’ 3(gl2+gl+2g s’ MBZ]
X —Xy= f } D
SN (T+0) AT+ | W
4[14-2¢.2/(g.2+g?) Jus® 8-71+3 __L?_ (3.7)
[3k(T+©)F N[ 270

D and E may be of the same order of magnitude and are
much smaller than ||, and 87, is smaller than |\]|, so
that the second term in the above expression (3.7) is
regarded to be much smaller than the first term ; we may
safely neglect the second term. Then we can conclude
that D is positive because its coefficient is definitely
positive and the experimental values of X,—X;; above
the Néel temperature are positive. This conclusion is
very important in determining the spin orientation
below the Néel temperature as is shown in the following
section,

We shall remark here that precise measurements of
the susceptibility components X,; and X, above the Néel
temperature as a function of temperature will make it
possible to obtain the values of the parameters in the
spin Hamiltonian (2.1).

4. SPIN ORDERING BELOW THE
NEEL TEMPERATURE

We shall take a two-sublattice model in which a
magnetic unit cell is the same as a chemical unit cell.
This assumption seems to be reasonable from the
neutron diffraction data* as well as from the fact that
the ratio of the paramagnetic Curie temperature
(0,~100~116°K)® to the Néel temperature (T'y
=173.2°K) is nearly equal to those of MnF; and FeF,,
in which the spin orderings below the Néel temperatures
are well established.!

9 H. Bizette, J. phys. radium 12, 161 (1951); DeHaas, Schultz,
and Koolhaas, Physica 7, 57 (1940).

10 Recently Yoshimori [J. Phys. Soc. Japan 14, 807 (1959)]
showed that when J2/J1>1, a screw type spin-arrangement is
stable. In this screw type structure, he obtained the following re-

lation:
@,,__ 44 (Jo/T1)+2(Ts/J1)
Ty 20/ e/ T0)=2(Ts/ 1)

From a consideration of the superexchange interaction [P. W.
Anderson, Phys. Rev. 115, 2 (1959)] in NiFs,, Ji, Jo, and J; are
considered to be all positive and the ratio (J2/J:1) may not be so
large. We may say, therefore, if the screw type structure of the
spins is actually the case in NiF,, ©,/Tx should be much larger
than 1 in contrast to the observation. An example of the screw
type structure is seen in MnO; where ©,/Ty=24.
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Now we shall adopt a molecular field approximation
with classical spins. There are, of course, some quantum
effects in nickel salts whose spin is 1. However, when the
exchange interaction is sufficiently larger than the
anisotropy energy, the classical spin model is considered
to show all the essential characters. Even if the ani-
sotropy is of considerable magnitude, we expect that at
least qualitatively the classical spin model gives a cor-
rect answer to the problem. The possible quantum
effects will be discussed in Sec. 8.

The length of a spin is written as S. The direction
cosines of the corner and the body center spins are
written as (e1,81,y1) and (as,Bs,72), respectively. The
exchange and the anisotropy energies are expressed as
follows:

E= (N/2)8]152(0‘10‘2"{“6132“}"‘7172)7
Epn= (N/Z)S2[:D (vi+7vs)
— E(a?—B—a*+B) .
From the symmetry of the crystal and the anti-

ferromagnetic exchange coupling we may require the
following conditions:

(4.1)

Y=—72 a=—F, Bi=—a. 4.2)
The total energy is then written as
E= (N/2)8]1SZG= - (N/2)8]152[2a161+712
— A1y A4, (a12—,(312)], (4-3)
where
A1=2D/8J1, Ay=2E/8J:. (4.4)
By a transformation,
a1=ay cosf— B sind,
B1=ay sind+B cosh, (4.5)
Yi=%o,
where
tan20=1/4,, (4.6)
we get
e=—(1—A)ye— (1+4H al?—BS. (4.7)
b
ﬁ’ /l\
—~ X ! y
e — a
|

F16. 2. Four equivalent arrangements of the spins in NiF; below
the Néel temperature. The spins are lying in the ab plane.
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We see from this expression that the following two types
of spin orderings are possible.!
(1) When the condition,

(1—4)>(1+42}
is satisfied, the stable state is expressed by
ao=PR0=0.

(4.8)

Yo=v1=—7:=1,

The spins are aligned along the ¢ axes as in the case of

MnF,. The condition (4.8) is not satisfied in NiFs, be-

cause D (and accordingly 4,) is positive as was seen in

Sec. 3. There is no ferromagnetic moment in this case.
(2) When the condition,

(1—4)<(1+42)1 (4.9)
is satisfied, the stable state is expressed by
ar=1, Bo=7v0=0,
or
1 A, 3
a=—Bs= cosB=—(1+———-—) ,
V2 (14+-42)*
(4.10)

1 - P ¥
VIV (1442

Y1="72=0.

The spins are all perpendicular to the ¢ axis, and the
spins on the different sublattices are not exactly anti-
parallel; there is a net magnetic moment along the
direction bisecting the x and y axes, i.e., along the a or
b axis. This spin arrangement is shown in Fig. 2. The
magnitude of the ferromagnetic moment is a function of
A,=2E/87J1, and is given by

M=NSugp(1/v2) (g1 cosd— g sinb). (4.11)
When 4:K1, or | E|<<871, we get
M=NSps[3(g1—g2)+1(g1t+g2)4:]
+g 87
=Nsmg(g1 ik )/ (4.12)
4 2|A]

This second case is considered to be realized actually
in NiF, since the condition (4.9) is satisfied because of
the positive sign of D.

According to a torque measurement by Matarrese and
Stout,? the easy direction of the ferromagnetic moment
is the (100) direction in agreement with our present
model. The magnitude of the ferromagnetic moment is
simply proportional to 4,5 as is seen in (4.12). From the

11 Dzialoshinski® has shown the possible arrangements of spins
in rutile-type crystals from a symmetry consideration. According
to him there are five possible arrangements. However in our par-
ticular case of NiF,, there are only two possibilities (1) and (2)
corresponding to his I and II;, because the spin value one of Ni**
may not allow any anisotropy energy which is expressed in more
than fourth power of the direction cosines; the coefficients fand g
in his energy expression vanish.
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numerical values: A= —300 cm™ and 87,=%k(Ty+0,)
~95 cm™, we may assume

(g1+gz 874
4 2|\

~1.

An analysis of the torque curves, which will be described
in the following section, gives

[ A3].S=M/Nup~~0.03,
so that
M =170 erg gauss™ mole™%. (4.13)

5. SPIN ORIENTATION UNDER THE
MAGNETIC FIELD—TORQUE

In this section we shall study the equilibrium orienta-
tion of the spins under the magnetic field and make a
comparison between the theoretical and experimental
torque curves. We shall here describe only the physics
and leave the detailed calculations to Appendix I.

Let us first consider the effective anisotropy energy of
the ferromagnetic moment and the magnitude of the
moment as a function of its direction. The change of the
magnitude of the ferromagnetic moment is caused by
the change of the angle between S; and S,. These are
easily obtained by the following simple consideration:
The spins S; and S; are in the @b plane and their direc-
tions are denoted by the angles ¢; and ¢. measured
from the [100] direction. General definition of the polar
angles of the spins and the magnetic field are shown in
Fig. 3. When H=0, 6;=0;=m/2. The exchange and the
anisotropy energies are written as

Eox=31N8J 152 cos(¢a— o1),

. . S0
En=3NES2(sin2¢;—sin2¢s).
With the definitions:
¥v=(p2—¢1)/2, o¢=(o1t¢2/2, (5.2)
we write
Eyy=3N8715%(cos2y— A, cos2¢ sin2y).  (5.3)

Here ¢ means the direction of the net magnetic mo-
ment, and 2y the angle between S; and S,. The value of
¥ which makes Ei given by (5.3) minimum with the
fixed value of ¢ is given by

(5.4

Therefore, the effective anisotropy energy and the
ferromagnetic moment as a function of ¢ are written as
follows:

tan2y = — A4, cos2e.

E(¢)=—4NJ1S2(1+ 42 cos?2¢)t

~—4ANTSP (14142 cos2¢),  (5.5)
M (¢)=NgugS cosy
~1NgupSA, cos2e. (5.6)

The effective ferromagnetic anisotropy energy has a
cubic symmetry with the easy directions in the (100)
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directions and its magnitude is smaller than the
anisotropy energy E of a single spin in the ¢b plane by a
multiplicative factor A.. The net magnetic moment
depends strongly on its direction. It should be noted
that as we go from ¢=0 to p=n/2, the moment be-
comes smaller; the moment vanishes at ¢=m/4 and
becomes negative at ¢>w/4.

The external magnetic field gives two effects. One is to
change the direction of the net magnetic moment and
the other is to induce a magnetic moment just as in
antiferromagnets. It is easily seen that when the
magnetic field is much smaller than E/gug [E is the
anisotropy energy defined by (2.1)] the change of the
direction of the net moment is very small. This is due to
the small magnitude of the net magnetic moment and
to its angular dependence given by (5.6). Because of the
latter effect the direction of the net magnetic moment
which gives a minimum magnetic energy is not parallel
to the magnetic field but is inclined toward the closest
(100) direction.

The torque in the limit of the weak magnetic field is
given as follows: (1) Magnetic field in the (001) plane;
torque along the ¢ axis.

T[oou/H&Mo Sineo,

where 6, is the angle between the magnetic field and the
[1007] axis, and M, denotes the net magnetic moment
under no magnetic field. (2) Magnetic field in the (110)
plane; torque along the [110] direction.

T/ H>~=(1/V2) M ¢ sinfy,

where 6, is the angle between the magnetic field and the
[110] direction. The ratio Tioon/T11p=V2 and the
angular dependences of the torques agree very well with
the experiment.

The field dependent part of the torque is mainly due
to the field induced part of the magnetic moment. The

z 4

Fi16. 3. Definition of the polar angles of Sy, Sz, and H.
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susceptibility components along the directions perpen-
dicular to S;— 8, i.e., along the (100) and [001] direc-
tions are essentially X, in antiferromagnets which is
given by X,=Ng’ugp?/8J; in the first approximation.
Thus we see that the field dependent part of the torque
shows a similar behavior as that in usual antiferro-
magnets. The reverse field dependences of the torques
in the two cases measured by Matarrese and Stout [ H in
(001) plane and H in (110) plane] are clearly understood
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from this point of view. A remarkable fact is that the
field dependent part of the torque curves depends es-
sentially on the direction of the spin ordering, i.e., the
direction of S;—S,, and very little on the anisotropy
energy provided the anisotropy energy is larger than the
magnetic energy. We may say, therefore, that the field
dependent part of the torque curves tells in what direc-
tion the spins are aligned. The field dependent part of
the measured torque curves in the (001) and (110)
planes are explained by taking the direction of S;—S,
along the [010] axis, consistent with our present model.

A comparison between the detailed calculation (given
in Appendix I) and the experiment is shown in Fig. 4(a)
and Fig. 4(b). The numerical values used in addition to
those given in the preceding section are

(g1+g2)/4=1.2, 871/|\|=0.3, and 4,5=0.03, (5.7)

where 4,5 was determined so as to get the best fit of the
formula (A.12) with the measurement in the (001)
plane. The agreement is excellent both qualitatively and
quantitatively. The departure of the experimental
points from the theoretical curve near 45° in the (001)
plane may come from some secondary effects. At 45°
there is no preference for the direction of the net mag-
netic moment between the [1007] and [010] directions.
Moments in some domains may point in one and those in
the others point in the other direction; their effect will
thus be cancelled, i.e., the torque at 45° may be zero.
Near 45° there may be some distribution of domains
between those pointing nearly in the [1007] direction and
those pointing nearly in the [0107] direction.

We shall finally predict that in the {100} plane the
field dependence of the torque is almost one order of
magnitude smaller than in the (001) plane. This is ex-
pected because of the nearly isotropic susceptibility in
the {100} plane.

6. NUCLEAR MAGNETIC RESONANCE
- OF FLUORINES

We shall briefly sketch the nuclear resonance fre-
quencies of the fluorines expected from our present
model. As the nuclear spins see the local field coming
from the individual spins of Ni?*, the spin arrangement
below the Néel temperature can be studied by this
method. From the consideration of the crystal structure
including the Ni** spins below the Néel temperature, it
is clear that there are two kinds of fluorine site in the
absence of the external magnetic field. The local fields at
these sites are perpendicular to the ¢ axis and one of
them is obtained by a 180° rotation of the other around
the [100] direction in which the net ferromagnetic
moment is directed.

As was discussed in Sec. 5, the spin directions are
changed very little by the external magnetic field, unless
the latter is too strong. The local field at the fluorines
are, therefore, approximately the vector sum of the
external field and the local field in the absence of the
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external field. For example, if the magnetic field is
applied along the ¢ axis, the resonance frequency is
given by

: w=7(H*+Hid)?, (6.1)

where v is the gyromagnetic ratio of F*® nuclei, and H,
and Hjo, are the external magnetic field and the local
magnetic field in the absence of the external field,
respectively.

According to Shulman’s recent experiment,® this rela-
tion is actually satisfied. This also strongly supports our
present theory. The detailed analysis of the nuclear
resonance data will be reported by Shulman.

7. SPIN WAVES AND MAGNETIC
RESONANCE FREQUENCIES

We shall study in this section the frequency spectra
of the spin waves and the magnetic resonance fre-
quencies by using a continuum model which is good for
spin waves of long wavelengths. The procedure is an
antiferromagnetic counterpart of the Herring-Kittel
theory of ferromagnetic spin waves.? We need two
variables corresponding to the two sublattice magnetiza-
tions. The spin densities corresponding to the two
sublattices are defined by

Si()=—(2/N)X;8(r—1)8;,
Sz(l‘) =— (Z/N)Zk 5(1’— rk)Sk

The negative signs are taken in order to make the spin
densities parallel (not antiparallel) to the sublattice
magnetizations. We shall assume, for simplicity, that g
is isotropic and neglect the exchange interaction be-
tween the spins in the same sublattice. The Hamiltonian
(2.1) is then rewritten as

(7.1)

= (N/2)8]1[fsl(r) . Sg(l’)dv
ny f S1- ASadv+14, f (S12+S2)do

- ‘%A 2f (5112— Slyz_ S2x2+S2u2)d7}

_B f h- (Sl—}—Sg)dv], (7.2)

where
A=a*/8,

a being a lattice constant along the a axis,

B=gp3H/8]15,
and

h=H/H.

Ay and A, are defined by (4.4) and the scale of the z
direction is changed by a factor (¢/a). When the spin

12 C. Herring and C. Kittel, Phys. Rev. 81, 869 (1951).
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densities S;(r) and S,(r) are changed by arbitrary small
amounts, the corresponding energy change is expressed
by

83C= (N/2)8J1fdv [551 (Sz+AASz+A 1S1zn

—Alezl—l-A 251,,m— BS}I) +652 . (S1+AASl

+A1Szzn+A28231—'AzSzym—BSh)], (73)

where 1, m, and n are unit vectors pointing in the #, ¥,
and z directions, respectively. The effective magnetic
fields for the two kinds of spins are

He1:® = (871/gun)[Ss+AAS:+A41S1.n
—A25121+A2511/m_BSh]r

Hoit®= (87,/gus) S+ AASct 4,S,n 74
4 A45S2.1—A5S2,;m— BSh].
The equations of motion are given by
71(d/d)S1= — gupS1X Here®, (7.5a)
7(d/dt)Ss= — gupSsX Heg®. (7.5b)

As we are looking for the modes of small vibrations of
the spins near the equilibrium position, it is advan-
tageous to choose the equilibrium direction of the spin
as one of the three coordinate axes. We shall introduce
two coordinate systems (£,,¢) and (¢,7/,¢’) as shown in
Fig. 5. The ¢ and ¢’ axes will be chosen to be along the
equilibrium directions of S; and S,, respectively. The
unit vectors along the £ 7, ¢, &, 7/, and {’ axes are
written as 1y, my, n;, I, my, and n,, respectively. The
polar angles of these axes referring to the original

€

F16. 5. Orientation of £, 9, and ¢ coordinate axes. £, ', and ¢’
axes are defined by replacing 6, and ¢; in the (¢7,¢) system with
02 and P2
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coordinate system are given in the following equations:

I=1; cosf; cosp;,—m; sing;+n; sind; cosg;,

(7.6)

m=1; cosf; sing;+m; cosp;+n; sinf; sing;,
n= —li Sil’lﬁ.“f*ni C050¢.

The polar angles of the magnetic field are written as
b, o.

Now we shall express the equations of motion (7.5)
in the new coordinate systems; the components of S, are
written in the (£7,¢) system and those of S, in the
(£m',¢") system. Linearization of the equations of
motion is carried out simply by neglecting the terms
more than quadratic with respect to Sig, S14, S2e, and
Say. Two out of the six equations, the { component of
(7.5a) and the ¢’ component of (7.5b), give the equi-
librium conditions of the spins; they are shown in
Appendix II. These equilibrium conditions are the same
as those treated in the preceding sections. The other
four components represent the spin wave motion. They
are

(1/w)S1e=aSy+ (¢+@)S1y+ pSae+qSar,
(1/we)81,=— (c—d)S1t— aS1,+7S2p:+5S2y,
(1/0 )82y = —5S1:+¢S1,—bSap+ (e+ /) Say,
(l/we)Szy,'=fS1g~PSh,- (e— f)Sar+bSey,

where w,=8J1S/%. General expressions for the coeffi-
cients in (7.7) are given in Appendix III. They can be
evaluated in general and when the external field is not
strong, i.e., B/As and B/ A, are sufficiently smaller than
1, the expressions in (A.10) are applicable together with
(A.2) and (A.5).

We shall give here some simple examples: the spin
wave frequency spectra without the influence of the
magnetic field and the magnetic resonance frequencies
due to a uniform oscillating field under a constant mag-
netic field in the @b plane. The other cases are easily
calculated in the same way.

7.7

(7.8)

(1) Spin Wave Frequency Spectra (H=0)

When the external field is absent, the coefficients in
(7.7) are simply as follows:

a=b=p=s5=0,
c=e=14+3A4,+47,
d=f=—34:+347,
g=—(1— 4B (1-342),
r=—(1—A4%k?),
where % is a wave number of a spin wave. The secular
equation is then written
(w/we)*—2B(w/we)?+C=0,

(7.9)

(7.10)
with
B=c—d— (1—342) (1— 4B,

(7.11)
C=B—[c+d— (c—d)(1—34H F(1— 4k
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Thus we get the following two branches of the frequency
spectra:

wi=w 241+ (2—A)AR],
we=w, (242)2+(2+A4,) AR

These dispersion relations are similar in form to that of
antiferromagnetic spin waves under the presence of an
anisotropy. Actually, the first branch, w;, has just the
same form as in usual antiferromagnets. However the
second one, ws, has a different character, that is, the
lowest frequency (£=0) corresponds to the anisotropy
energy instead of an average of the exchange and
anisotropy energy as in the case of usual antiferro-
magnets. This means that there are spin wave modes of
much lower frequencies in NiF, than in the other iron
group difluorides, MnF,, FeFs, and CoF.. According to
the specific heat measurement and its analysis by Stout
and Catalano,? the spin contribution to the specific heat
at low temperatures of NiF, is larger than that of FeF,
and its temperature dependence is weaker than that of
any other iron group difluorides. This seems to agree
qualitatively, though not quantitatively, with the nature
of the spin wave frequency spectra obtained here,

(7.12)

(2) Magnetic Resonance Frequencies (H in the ab Plane)
Magnetic resonance frequencies due to the uniform
oscillating field will be obtained by putting £=01n (7.7).
For simplicity, we shall treat the case where a magnetic
field is applied in the @b plane, i.e., @p=m/2. The coeffi-
cients in (7.7) are given by
a=b=p=s5=0,
c= 1+%A 1+A 22—‘ %B sin%-l—A QB COS\P(),
d=—34:113A+1B singo+34:2B cospy,
e= 1+%A 1+A 22+ %B Sinl,bo—l"A 2.B COS¢0,
=—14,4+3A42— 1B singy+1A42B cosyy,
= (1—%1422)7

r=—1.

(7.13)

The same type of secular equation as in (1) leads to the
following resonance frequencies:
w1=we|:2A 1+A 22+A 2B COS’,bo:I%,
ws=w,[ (242)*45A42B cosfo J},
where ¢, is the angle between the (100) direction, in
which the net moment is directed, and the direction of

the magnetic field; [o| should be smaller than 7/4. The
lowest resonance frequency is

w=24w,=4ES/#,

(7.14)

whose numerical value is estimated to be
(w/2m)=8T12A4S/h=21.7X 101,

corresponding to a wavelength of about 2 mm.
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8. DIMINUTION OF THE LENGTH OF SPIN

The treatment given so far is classical except the
calculation of the paramagnetic susceptibility. We be-
lieve that the classical treatment gives, at least quali-
tatively, a correct answer to this problem of NiF,.
However, it is needed to study what kind of effect is
expected from a quantum mechanical treatment and
how large the effect is.

When the crystalline electric field has an orthorhombic
symmetry, the spin states split into three singlets even
without the magnetic field or the exchange interaction'?;
there is no Kramers degeneracy. Each state has no
magnetic moment associated with it. The external
magnetic field as well as the exchange interaction gives
rise to a polarization of each state. When the exchange
interaction is sufficiently larger than the crystalline field
splitting of the spin levels, the expectation value of a
spin at 0°K will be nearly equal to one. On the other
hand, when the spin level splitting is of comparable
order of magnitude with the exchange interaction, the
expectation value of a spin at 0°K will be appreciably
diminished. As we shall see later in this section, when
the splitting between the lowest two spin levels is more
than two times larger than the exchange energy, there
is no antiferromagnetic state at all, at least within the
framework of a molecular field theory.

To simplify the problem, we shall consider the case
of an orthorhombic crystal in which all the cation sites
have the same crystalline field. Taking a two sublattice
model with the nearest neighbor interactions, we may
write the spin Hamiltonian for the spins on the two
sublattices as follows:

JW= DS, — E(S15—S1,)+J251:(S22),

8.1
H®=DSy.2— E(S24— 82,2 +J5524(S12), &

where again a molecular field approximation was adopted
in expressing the exchange interaction, J is the exchange
coupling constant between the neighboring spins, zis the
number of nearest neighbors, and D and E are taken
positive without loss of generality. The easy direction
of the spins is then assumed to be along the x axis. With
the abbreviation:

JZ<S2z>=hl, ]Z(Sm): 712,

we have the following matrix for the Hamiltonian:

(8.2)

[—%<D+3E>+h,~ 0 3D-B) ]
geh = 0 0 0 , (8.3)
{(D—E) 0 —3(D+3E)—hs

where =1, 2. This is diagonalized by a transformation:

_ cosf; O sind,
U,'= 0 1 0 y

—sinf; O cosh;

(8.4)

13 When the crystal symmetry is tetragonal and the axis is the
hard direction for the spins (D>0, E=0), the lowest energy state
is singlet. The succeeding argument is valid for this case, too.

643

with
tan20;= (D—E)/2h;. (8.5)
We get the following energy eigenvalues:
BO=—3(D+35)+[4 (D~ Ey+hi7,
E,(9=0, (8.6)

E;9=—1(D+3E)—[1(D—E)*+hs]h
The statistical average of a spin is given by

aEn( %)

(Sizy=2 expl—E./RT /2. expl — Ex9/kT ]

oh;

) Ginh{[X(D—E)P4h2RT
D S EPh AT

X (e—(D+3E)/2k T

+2 cosh{[$(D—E)?*+h#1/ET} ). (8.7)
This equation should be solved for
(§2)=(S12)=—(S22).
With the abbreviation
x=[(S=*+ ((D—E)/272) ],
0=kT/ Tz, (8.8)
d=(D+3E)/2Jz,
we get
2 sinh (x/6)
(8.9)

x= .
e~ %42 cosh(x/6)
At the absolute zero temperature, this becomes simply

= {<S:c>2+[<D_‘E)/2JZ]2}%= 1,
(S)=(1—[(D—E)/2J5T}" (8.10)

This shows the diminution of the expectation value of a
spin due to the crystalline electric field.

In order to have a nonimaginary value of (S.) in
(8.10), (D— E)/2 must be smaller than Jz. This require-
ment is just the same as the condition for the existence
of an antiferromagnetic state, or a Néel temperature, as
we shall show below.

The Néel temperature is obtained by putting (S;z) —0
in (8.7). With the abbreviation

2D/Jz=A4,, 2E/Jz=As,

or

(8.11)
kTN/]Z=0N,
we get
e~ (Ark3an /4082 cosh[ (41— A2)/49n ]
=[8/(41—A,)]sinh[ (41— 42)/46y]. (8.12)

From this equation we can see that the condition for the
existence of a Néel temperature is

14— 4] <1,
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F1c. 6. Néel temperature of tetragonal nickel salts, whose
tetragonal axis is the hard direction of the spins, versus ratio of
anisotropy energy to exchange energy.

or

1| D—-E| <3z, (8.13)
in consistence with the condition for {S,) in (8.10) to
have a real value.

The absence of the antiferromagnetism discussed
above may be expected in some magnetically dilute
salts. We may see a very rapid decrease of the Néel
temperature when we dilute samples gradually. Nu-
merical values of 6y=FkFTy/(D/2) as a function of
a=D/2Jz are shown in Fig. 6, where E is taken to be
zero. The effect of D on the Néel temperature is small
except where a=D/2Jz is larger than about 0.8.

In the case of NiF,, the argument given above is not
strictly applicable because of the two kinds of sites in
a unit cell. Though it is possible to extend the same type
of calculation to NiF,, we shall here simply contend
ourselves with the following approximate consideration.
As we have seen in the classical treatment, the spins in
NiF, are almost aligned along one line and the deviation
from it is very small owing to the small value of E/Jz.
So we may approximately evaluate the value of (S) by
taking F~0. Then we have

(S)~[1— (D/2Jz)*].

From the measured anisotropy of the susceptibility the
value of D may roughly be estimated from (3.7). We get
D~6 cm™ from the value of X,—X;;=1.102X10~* at
301.15°K.? This value is rather big as compared with
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those measured in other nickel salts. (S) is very close
to 1.

9. DOMAINS AND DOMAIN WALLS

As we have seen in Sec. 4, there are four equivalent
arrangements of the spins in which the net magnetic
moments are pointing in the (100) directions. When the
magnetic field is absent, the crystal is naturally divided
into domains of these four kinds of magnetization direc-
tion. We shall briefly discuss a possible structure of
domains and domain-walls.

The high anisotropy energy in the [001] direction
makes a domain wall perpendicular to the ab plane
highly unfavorable. On the other hand, the effective
ferromagnetic anisotropy energy in the ab plane is more
than two orders of magnitude smaller than that out of
the ab plane. We may expect, therefore, that a domain
wall perpendicular to the ¢ axis is energetically the most
favorable one. A favorable domain shape then is a flat
plate perpendicular to the ¢ axis. We shall further dis-
cuss on this type of domains and domain walls.

The spin arrangement in a domain wall is deduced
from Fig. 2 and from the discussion in Sec. 5, particu-
larly from (5.6). The expected arrangements of the
ferromagnetic moments in a 90° wall and a 180° wall are
shown in Fig. 7(a) and Fig. 7(b), respectively. The
sublattice spins are rotating gradually as we proceed
along the ¢ axis, and at the same time the angle between
the two sublattices are changing. The ferromagnetic
moment at the middle of a 90° wall is zero. The direc-
tions of the two sublattices in both sides of the domain-
walls are shown in the same figures.

Now we shall estimate the wall energy and thickness.
When a 90° wall consists of # atomic layers perpen-
dicular to the ¢ axis, the anisotropy energy per unit area
may be given by

oan>EA 5™/ a?, 9.1)

where a is a lattice constant. While the exchange energy
is estimated as

Oox=(nJ25%/2a%) (m/ 2n)2. 9.2)

n is determined so as to make owa11= Gan—t0ex minimum.
We get

ne~er J 2/ AE~AQ. (9.3)

This value is one order of magnitude smaller than in the
case of iron. A more precise calculation leads essentially

" to the same result. The wall energy is given by

UwallgES")/az’\’o.l erg, (9.4)

which is one order of magnitude smaller than that in
iron. The wall thickness and energy of a 180° wall may
be twice as large as those of a 90° wall.

Let us now estimate the size of a domain in a crystal
with rectangular cross sections as shown in Fig. 8. We
shall consider a domain structure shown in Fig. 8. The
magnetostatic energy per unit area in the dc plane is
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given by

Winag=1.71 2d, (9.5)

where I, is the magnetization per unit volume, 4 the
domain width in the ¢ direction. The wall energy per
unit area in the bc plane is given by

'wwauﬁZES 2l/ ad.

The total energy per unit area is

(9.6)

w= wmag+ Wwally

which is a minimum with respect to the domain width
when

d= (2ES%/1.71 2a),

9.7

F1G. 7. (a) Rotation of magnetization in a 90° domain wall in
NiF,. The moments are in the ¢b plane and z; indicates z coordinate
which becomes larger as ¢ increases. Directions of sublattice
magnetizations in the domains in both sides of the wall are shown
by Si(20) and S:(215)(2=1, 2). (b) Rotation of magnetization in a
180° domain wall in NiF,.

14 C. Kittel, Revs. Modern Phys. 21, 541 (1949).
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F16. 8. A domain structure in a crystal with rectangular
cross sections.

Therefore the width is of the order of

d~0.06/* cm, (9.8)

which is nearly two orders of magnitude larger than in
the case of iron. This is due to the small magnetic
moment in NiF,.

It seems to be probable in this crystal that there are
some domain boundaries related with crystal imper-
fections or internal strain.

10. CONCLUDING REMARKS

We studied the magnetic properties of NiF, theo-
retically with the use of a spin Hamiltonian approach
which is considered to be very good in this case. Our
theory seems to be consistent with almost all the data
measured so far, except the neutron diffraction data by
Erickson. The spin arrangement proposed by Erickson
seems to be consistent neither with the fluorine nuclear
resonance data nor with the torque data below the Néel
temperature. Moreover, this arrangement seems not to
be possible theoretically as we discussed in this paper
with reference to the former work. Erickson’s data on
NiFs, however, does not seem to be very accurate be-

“cause of the weak intensity of magnetic scattering.

. So we may say, at the present stage, that the model
proposed here is reasonable. We expect further experi-
mental studies to make the matter clearer.!®

15 After this paper was prepared for publication, M. Peter ob-
served the electron spin resonance of Ni?** in ZnF;. According to
his measurement, the parameter D in the spin Hamiltonian (2.1)
is definitely positive. The observed values are

D=125.5 kMc/sec (4.19 cm™),
E=80.1 kMc/sec (2.67 cm™),
g='2.33.

This result also strongly supports our theory. The values of D and
E estimated roughly in this paper are D=6 cm™and E=1.5 cm™,
not far from the observed values. It should be noted that our
estimate of D is not very accurate, because it was derived from the
value of X;1—X1 at one point of temperature. The estimate of E/J,
may be much more accurate, but J; may be underestimated from
T~ and 6 because of the molecular field approximation. The writer
wishes to thank Dr. M. Peter for informing him of his experimental
result and for permitting him to quote it here prior to publication.
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Note added in proof.—The behavior of the paramag-
netic susceptibility near the Néel temperature is par-
ticularly noteworthy. According to the formula (3.1) in
the text, X, increases very sharply near T and diverges
at Ty, while X;; shows no such increase near Ty. After
some manipulation (for brevity we neglect J» and J3),
X, in (3.1) is reduced near Ty to

X 222N gug?/3k(T+6)]- (T—To)/(T—Tx),
where
Tw—T(EY kT (3/16)+ (Jz/ |\ ])]=20.06.

This behavior of X, has actually been observed by
Shulman (to be published) in his NMR measurement
and by Cooke (private communication for which the
writer wishes to thank). Burgiel, Jaccarino, and
Schawlow (spoken at 1959 Cleveland Meeting) ob-
served the same behavior in powdered NiF, and
Ni(I03)22H:0. We can fairly generally show that this
sharp increase of the magnetic susceptibility near Ty is
a common feature to weak ferromagnets and the smaller
the ferromagnetic moment below Ty, the sharper the
increase of x.

APPENDIX I

We shall here study the equilibrium orientation of the
spins under the magnetic field using the classical spin
model as in Sec. 4. We shall then calculate the torque
when the magnetic field is applied in the (001), (110),
and (100) planes.

The polar angles of the magnetic field H, the corner
spin S; and the body center spin S; are written as
(60,00), (01,001) and (8s,¢s), respectively.’® These angles
are shown in Fig. 3.

The exchange, the anisotropy, and the Zeeman
energies are written as follows: '

Eex= (NV/2)87 15[ cosfy cosfs
~+sinf; sind, cos(p1— ¢2) ],
Eun= (V/2)S*[D(cos?01+-cos?s)

— E(sin%); cos2¢1—sin0; cos2¢2) ], (A1)
E,=— (N/2)usSH[ g, cos(cosdi+ cosfy)
~+-sinfy cos o (g1 sind; cos g+ gs sinfd, cos )
~}sinfy singo(ge sind; sine;+g; sinf sings) .
Putting
2= 0:1+61)/2=0
(‘p2+ (01)/ @, ( 2+ 1)/ ’ (A.Z)

(p2—p1)/2=y, (6:—01)/2=5,

16 For convenience we shall take S parallel to the magnetic
moment; S points the reverse direction to the true spin.
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we get

€= (Etotal/ %N 871§ 2)
= cos (6—4) cos(6-+38)+sin (6—8) sin(§46) cos2y

+341[cos?(6—8)+cos?(6-+6)]
—54,[sin*(§—8) cos2(p—y)—sin%(9+8) cos2(o+¢)]
—B{g. cosbo[ cos(0—8)+cos(8+6) ]
+-sinf, cos ol g1 sin(0—8) cos(p—y)
=+ g2 sin(04-6) cos(o+¢) ]
+-sinfy singo g2 sin(§—38) sin(o—1y)

+g15in(649) sin(e+¢) ]}, (A.3)
where 4; and 4, are given by (4.4) and
B=ppH/8JS. (A4)

When the magnetic field is not large, i.e., 8, 8/41 and
B/A; are small, the equilibrium spin orientation is very
near to that with no magnetic field. So we shall take the
deviation from the latter as new variables. Considering
the result of Sec. 4, we write

0= (r/2)—,
o= (r/4)+n, (A.5)
2¢=1F~A2_§'.

The quantities £, §, 7, and { are all expected to be small.
Now we expand the energy expression (A.3) in the
powers of these quantities. The expansion up to the
second order with respect to £, §, , and ¢ is

e= const-+ A £+ Bs?+-Cn?+ D2

+X (864+3n0)+at+-ontdr, (A.6)
where
A=2+A1+%A22, B=A1+%A22,
C=242, D=3(1+4342),
X = — (g1+¢2)8 sinby sin(po—m/4),
a=—2g,8 cosbo, (A7)
g1+g2 8J, . .
c= —ZBAg( 1 +N sinfy sin(po—/4),

d=—%(g1+g)8 sinfy cos(po—m/4)+344%.

We assumed here that A, 42, 8/41, and /A, are small
quantities and expanded the coefficients in (A.6) in the
powers of these quantities.

£, 1,8, and { are determined so as to make the energy
(A.6) minimum. This is easily done and the result is as
follows:

2Ba Xa
= — y 6: y
44B—X? 44B—X?
(A.8)
Xd—4Dc¢ Xc—4Cd
= (=
8CD—1iXx? 8CD—-1iXx?
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Inserting (5.7) into (5.8), we get

£=1%g.8 cosby,

8= (8*/841)g.(g1+g2) sin20o sin(po—m/4),
gt

4
¢=(8/2)(g1+g2) sinfo cos(po—/4).

This result is used below to calculate torques in various
cases.

(A.9)

2 8J1
n= (3/2A2)( 8 +N) sinfo sin(po—m/4),

(1) Magnetic Field in the (001) Plane;
Torque Along the ¢ Axis

In this case y=m/2, so that
£=6=0,

e
n=(8/245) (g i

87,
‘ +—) sin(or—n/d), (A10)
PRRETY
£=(8/2)(g1+g2) cos(po—m/4).

The torque along the ¢ axis is given by

Troon= (N/2)upSH[sing, (g1 cosei+ g2 cosgs)
—cos¢o(gs singi+gisings) . (A.11)

Inserting (A.2), (A.5), and (A.10) into the above ex-
pression, we get

T[om]:NpLBSAgH Sin(<po—ﬂ'/4)
1+ 8J
x{(g gz——1)+(3ﬁ/2A2)
PN
1 87\?
x[ g1+g2) +—(——1) ]COS(¢0—7r/4)}. (A.12)
4 3\

(2) Magnetic Field in the (110) Plane;
Torque Along the [ 1107 Direction

We can calculate the torque in this case in the same
way as in the case (1). The result is

T[no] = (1/\/2)N}IBSA2H sinf
otg 87
——— )~ (v28/4s
X{( 4 4[>\|) (/26/4.)
. gitg2\*

X (g1:g2+%)] cosd } (A.13)

6 being measured from the [110] direction.
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(3) Magnetic Field in the (100) Plane;
Torque Along the [0107] Direction
We shall show only the result,
Tro10=NSupAsS sind{[ (g1-+g2)/4]
—(28/45)[g2—1(g1+g2)*] cost}, (A.14)

6 being measured from the [1007] direction.

APPENDIX II
The equilibrium conditions of the spins obtained from

the procedure in Sec. 6 are as follows:

cosf; sinfy cos(p2— ¢1) —sinb; coshs
—Az sin01 COSO1 cos2 §01—A1 sin01 C0501

+ B[ cosfly sinfy— sinfy cosf; cos(go— ¢1) 1=0, (A.15)
sinfs sin (@a— 1)+ A2 sind; sin2¢,;
: — B sinf, Sin(goo— ¢1) =0, (Alﬁ)
sinfy cosfy cos (pa— ¢1) — coshy sinf,
A4 5 sind, cosfy cos2ps— A1 sinfs cosfy
+ B[ cosfl sinfa— sinfy cosfz cos (@o— @) |=0, (A.17)
sind; sin(p2— ¢1)+ A2 sinfy sin2
+B Sinoo sin(«po— (02) =0. (A18)

APPENDIX III
The expressions of the coefficients in (6.7) are given
as follows:
a=A; cosb; sin2 ¢y,
b= A, cosf sin2 s,
¢=—sind; sinf; cos (g2~ 1) — cosh; cosfy
—1A4:(3 cos?1—1)+34, sin; cos2 ¢,
+ B[ cosfy coshi+sinbo sindy cos(po— ¢1) ],
d=—1%14, sin201+%A2(1+cos201) cos2¢y,
p= (1—Ak?) coss sin(ps— 1),
q=(1— Ak cos(g2— o),
r=— (1— Ak [cost cosh cos(pz— ¢1)-+sind; sinbs ],
s= (1—AF?) costy sin(p2— ¢1),
e= —sinf; sind; cos(@2— ¢1) — costy cosfa
—14,(3 cos?a—1)—24, sin%fs cos2 s
+ B[ cosfy cosflz+sinflo sinfz cos(po— ¢2) ],
f=—%A1sin?0,—3A45(14cos%s) cos2es.



