
632 A. V. PHELPS

of electrons, ions, and excited atoms with ground-state
atoms, and the electron yieMs due to ions, excited
atoms, and photons are known. At present the only
gas for which this information is available is helium.
Even':in the case of helium, our knowledge of such
processes as molecular ion formation from highly
excited atoms and the net yield of electrons from
cathode surfaces is unsatisfactory and constitutes a
possible source of significant error in our calculation.

Our conclusion that the net effect of resonance
radiation can be described in much the same manner
as the eGect of delayed nonresonance photons is one
more example of the fact that the transport of resonance
radiation cannot be treated properly using conventional
diR'usion theory. Thus, the time constant character-
istic of the resonance radiation, 1/Ar, varies as the
square root of the electrode separation and is inde-

pendent of gas density while the time constant charac-
teristic of. conventional diffusion, 1Vd/D. , is directly
proportional to the gas density and to the square of the
electrode separation.

Two outstanding features of the analysis presented
in this paper are the complexity of the problem and

the fact that none of the processes found to control the

current buildup in helium are the simple processes
involving atomic ions, atomic metastables, and non-
resonance photons usually considered in the analysis
of experimental data. Examination of available data
as to ion and excited atom behavior in neon and argon
suggests that the existence of four closely-spaced meta-
stable and resonance states would lead to more com-
plicated calculations than for helium. The calculations
are not expected to be significantly simpler in the
molecular gases except possibly in the case of hydrogen
where there are no metastable molecules" and where
the time required for the destruction of metastable
atoms and for an H2+ ion to be converted into an H3+
ion" is believed to be very short.
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Corrections to a previous paper by the second author are presented. A calculation leading to the simpli6-
cation of the pair correlation functions is also presented.

'HE purpose of this brief paper is twofold: to
correct some errors in a previous article, ' and to

extend the utility of the theory by demonstrating a
great simplification of the pair correlation function. It
is to be emphasized at the outset that the errors in no

way alter the physical arguments advanced by Rice
or the final formulation of the diffusion coeKcient.

Ke proceed by remarking that the dynamical theory

presented previously is based on the Einstein relation

with F the frequency of atomic jumps and Ax the
length of a jump. Equation (1) is conveniently rewritten
in the form
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with tt the site fraction of vacancies, and P(ill)) the
frequency of occurrence of a configuration in which the
migrating atom has large amplitude of vibration
properly oriented and there is a properly phased motion
of the surrounding atoms. The summation is to be
taken over all atoms that can jump into the vacancy.
This usually consists of just the nearest neighbors and
has been so indicated by n.n. I'ollowing the arguments
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presented by Rice' P((8})is given by the modal matrix R. By completing the square

E&"'(ql q&) 2 3N 3N

&((~})" 1' II~(q qo—)dq;, (3) I'"'(q,q)= g (2 k&/m~, ")'* g (2 k&/m „')&
q
—Uo»T p 3 p=l

with I 1 the frequency with which the migrating atom,
treated as independent, attains the critical con6guration
and where P("' is the joint probability of 6nding
particles 1, , k within the ranges dql dq& about
ql qz. The factor exp( —Uo/kT) arises from the
requirement that the jump frequency be conditioned on
ql q0. Finally, the factor g j=128 (q;—q jz) arises from
the assumption that there is a negligible contribution
from all con6gurations with values of q;&q;o, since the
state wherein q;= q;0 is already one which occurs with
low probability. The joint probability P("' is related to
the probability density I'&"i defined in Eq. (R-20)2 by

P (h) ~hjp (L)

with v a free volume to be determined subsequently
Note that a factor ~" is missing in the 6rst form of
Eq. (R-32).

Consider now the displacements q1 and q2. In the
3E dimensional cartesian coordinate system (we neglect
the 6 translation and rotation coordinates of the crystal
as a rigid body) these represent displacements of atoms
1 and 2 in speci6ed directions along unit coordinate
axes. %e have'

(qlq2) =P'" (ql)&'" (q2)g12

1» I 2

&&exp .2kT I -3 mCO„"

Xexp[ —(1/2kT) (allql'+2a12qlq2+a22q2') j, (8)

with cv„ the angular frequency of the pth mode when
there are no constraints. Ke have here used the fact that
the determinant of the transformation matrix has the
value unity. Moreover, L„ is related to the normal

eigenvector E;l, corresponding to column i of the
transformation matrix by [note the factor of W2

difference from (R-31)]

3N

I
p
= 2 (al~ql+a2iq2)+~p
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Consider now the sum

3N Lp

3 Skip
+lp+mp

(a1lql+ a21q2) (almql+ a2mq2)
p,=3 l, m=3 mCOp,

Rl„E. „
(ailql+a2lq2) (almql+a2mq2) 2 . (10)
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where

2U= Q a,jq,qj+2 Q al,qlq, '+2 Q a2jq2qj'

By the de6nition of the modal matrix, 4

R-'gR= x,

with g the matrix of the coefficients a;;, i, j/1, 2 and
x the matrix of the eigenfrequencies. Noting that
Ii '= R22 'R ', we have

7 3 i 3

+al,ql'+2a12qlq2+a22q2', (6)

(12)

which may be rewritten (note the factors of 2)

2U= p m~,"2Q;2+2 p a„q,1R,1Q1
i=3 l, i 3

+2 Q a2jq2+jl'Ql'+allql +2a12qlq2+a22q2 ) (~)
l, 7=3

where cv is the ith eigenfrequency of the crystal when

the two degrees of freedom are constrained, Q; is the
corresponding normal mode and E;l is a component of

' Equations prized by R refer to reference 1.
T.L.Hill, Stati sticaI, Mechanics (McGraw-Hill Book Company,

New York, 1956).

The substitution of (12) into (10) leads to three terms,
the 6rst of which is

ql [all 2 P1m allalmf
l, mal, 2

=(ql'/lpl)(al lpl —2 a l~l-ai. ), (13)
l, m,+1,2

with Bl the cofactor of Plm. The right-hand side of

(13) may be rewritten as q12(lp'I/I pl) with p; =a;;,
i, jQ2. Proceeding in a similar manner the other

4 See for example F. B.Hildebrand, Methods of A pptied Mathe-
matics (Prentice-Hall, Inc. , Englewood CliGs, 1952).
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terms may be evaluated. The final result is To calculate the free volume v we use the conditionf»» ) m
& '

(q q,)= I II, II j 2mkT
so that

lirn g~2(') = 1,g~ (19)

Xexp
A2

, Ui+
kT n" e and

&"&(q )= e ""'/(a &q'))» (20)

where

2o,ycE2

+ (UiUs)»
CEyg Cl2g

U;= q;s'/Zs n, i',

&j ~k &jk

(14)

(15)

where (q') is the mean square displacement and we

have used the fact that the ratio of the product of the
frequencies is, to a good approximation, the product of
the two highest frequencies in the crystal. The mean
square displacement is to be evaluated for these high
frequencies from

(q„')=2k T/&&&o&„'. (17)

We are now ready to turn to the critical question of
normalization. By the definition in Eq. (5) (note the
n: and the change in sign of the L„' term when compared
to (R-30) as well as the factor exp[(Ui+ Us)/kTj}

with the coefficients n j~ being the weight of the kth
normal mode contribution to the displacement qj.
Similarly, n j&' is the weight of the kth normal mode
contributing to the displacement qj when the degree of
freedom corresponding to q~ is constrained. Note that
as the distance between the atoms whose displacements
are qi and qs increases, n,'/cr, "~ 1, riirrs/g o.i,'as, ' ~ 0
and therefore

lim P&'& (qi q,) = expL —(1/kT) (Ui+ Us) j, (16)
&iy~oa w(qs)

t& = (w(q')) *.

It is pertinent at this point to make some further
comments about the assumptions involved in the theory
proposed by Rice.' First note that the jump of an atom
into a neighboring vacancy may be accomplished not
only when the shell atoms have exactly the critical
amplitude, but also when this amplitude is exceeded.
If the critical configuration is already improbable, the
integration over even more improbable states should
give a negligible contribution. Just this point is being
investigated in detail by one of us' (OPM) and will be
published along with an alternative formulation which
appears to lead to results equivalent to the first presen-
tation. ' Second, note that Eq. (8) would appear to
eliminate the necessity of considering the pair corre-
lation functions. In a formal sense this is true since
g»&'& is defined in terms of E&s& by Eq. (5). However,
as in the theory of Ruids, there are advantages to
considering the motion of atoms at first as independent
and then correcting for the correlation. This is particu-
larly usef ul when model considerations are used as is
shown in a separate publication. ' The decomposition
into independent probabilities multiplied by a corre-
lation function is, of course, just the decomposition of
Eq. (5). Finally, we note that none of the corrections
have modified the physical arguments advanced by
Rice' but only the details of the calculation of g~2

&') .
The reduction of the pair correlation function exhibited
in Eq. (18) should greatly facilitate numerical compu-
tation.
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