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Two-Nucleon Potential from Pion Field Theory with Pseudoscalar Coupling*
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The two-nucleon potential is derived from ps-ps pion Geld
theory, using the Tamm-Dancoff method with the subsequent ap-
propriate renormalization of the two-nucleon amplitude, up to
orders i,"(p/e)' and g'(p/e), g' being the equivalent ps-ps coupling
constant and p, e the nucleon (relative) momentum and rest mass,
respectively. Neglected are the mass and charge renormalizations
and the pion-pion scattering term. It is shown that the only
quadratic term is —Vs(r) (Ps/2es)+H. c., where Vs(r) is the second
order static potential. All remaining terms of order g'(p/e)' are
converted by a canonical transformation to terms of order g (p/e)
or a linear combination of a static and an L S potential. In the
case of ps-ps coupling, in particular, no velocity-dependent po-
tential besides the quadratic one mentioned above follows from
diagrams of one- and two-pion exchange without nucleon pairs;

thus the nucleon-pair diagrams are the only source of an L S
potential, if there is any, up to the orders considered. The nucleon-
pair diagrams are also estimated assuming the effective pion-pair
interaction Hamiltonian, the static limit of which agrees with the
S-wave static model of Drell et at. The L S potential thus obtained
has the right sign in the odd state and changes its sign in the even
state, while its magnitude seems in both states somewhat too
small. As for the static part of our potential, the new correction
Lg'(p/e)7 cancels out the conventional fourth-order term Pg'1
appreciably; the entire static potential becomes quite close to the
second-order static potential down to distances of the order of the
pion Compton wavelength, except for the central force in the
triplet even state. The details are shown on graphs. The ps-pv
coupling case is treated separately in the following paper.

1. INTRODUCTION

"ANY calculations have been done to derive the
L S potential from pion field theory. ' They seem

to claim that some L S potential follows if we retain
velocity-dependent terms from diagrams of at least the
fourth-order.

We here present a similar report. The present work,
is, however, the most systematic and exhaustive among
all done thus far, though conservative in the basic spirit
of deriving the potential.

Our work is conservative in the sense that we assume
the adequacy of expanding the two-nucleon potential in
powers of both the equivalent ps ps coupling consta-nt g'
and the nucleon (relative) momentum p over the nucleon
rest mass I(.. We also simply drop the mass and charge
renormalizations and use the renormalized coupling
constant and mass throughout the paper. We neglect
also the pion-pion scattering term. Insofar as we assume
all this, the Tamm-DancoG method is convenient for
deriving the potential (Sec. 2). To get the correct
potential we perform wave function renormalization,
which takes due account of transition from the Tamm-
DancoG two-nucleon amplitude to the nonrelativistic
Schrodinger wave function (Sec. 3).

Our work is, however, systematic and exhaustive
since we retain all terms up to g'(P/tt)' and g'(p/tc). We
remark 6rst that we get the second-order static potential
if we keep only terms involving g', neglecting all nucleon
recoils. If we go one step further as regards both g' and
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p/x, then terms involving g' and g'(P/x) together give
the fourth-order static potential; the correction of
g'(p/tt) is shown to be equivalent to a g'-term. ' It is,
therefore, essential to retain terms involving both
g'(P/tc) and g'(P/tc)' to discuss the lowest order velocity-
dependent potential. This is exactly what we have done
in this paper.

Such a work was done by Okubo and Marshak. ' Here
we are presenting an almost complete answer to the
problem outlined above, achieved mainly through the
following three improvements. First we here evaluate
not only the velocity-dependent term, but also the
static potential of orders g'(p/tc) and g'(P/tt)s. This is
important because we thus can claim the consistency of
our basic assumpt:ion Lthe expansion with respect to g'
and (P/tc)]s and eventually the reliability of the
velocity-dependent potential obtained.

As another improvement, we make use of a canonical
transformation (Sec. 5) which remains arbitrary when
we define the wave function renormalization. We can
show that the only essentially quadratic term is —Vs(r)
X(p'/2x')+H. c., Vs(r) being the second-order static
potential, and all remaining terms involving g'(P/x)' are
converted, after a canonical transformation is applied,
into terms of order g'(P/x), or a linear combination of a
static potential and an L-S potential (Secs. 4 and 5).

We also carefully discriminate between the ps-ps and
ps Ps theories sinc-e we found interesting differences be-

2 The fourth-order static potential is, therefore, the Taketani-
Machida-Onuma potential and not the Brueckner-Watson poten-
tial. This is correct as far as we assume the expansion with respect
to gs and (p/e). The consistency of this expansion has been
criticized by Fukuda, Sawada, and Taketani, Progr. Theoret.
Phys. (Kyoto) 12, 136 (1954) and A. Klein, Progr. Theoret. Phys.
(Kyoto) 20, 257 (1958). According to the present work, the new
correction is shown to cancel the fourth-order potential signiG-
cantly (see the details given in the Gnal section), suggesting that
the expansion is at least better than has long been suspected.
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606 M. SUGA WARA AN D S. OKUBO

tween predictions of these theories: a large difference in
the L S potential, a very small di8erence in the static
potential, and no difference in the quadratic term.
(Details are shown in the following paper. ') This great
difference in the L S potential is due to the fact that no
velocity-dependent potential, except for the quadratic
one just mentioned, follows from diagrams of one- and
two-pion exchange without nucleon pairs in case of
ps-ps theory (Secs. 5 and 6) while the corresponding
diagrams give a large L S potential in the other theory. '

Of course, there is considerable question whether we

can estimate the contributions from the nucleon pairs in

ps-ps theory, to which we can hardly apply the method
outlined above. We here assume the effective pion-pair
interaction Hamiltonian, the static limit of which agrees
with the 5-wave static model of Drell et al. ,

4 and then
estimate the diagrams including the pion-pair interac-
tion once and twice (Sec. 7). This method, seemingly the
only reasonable one though hardly justifiable at the
moment, gives an L S potential from the one-pair dia-

gram. This is shown to have the right sign and a strong
isospin dependence, though its magnitude seems to be
too small. (Detailed comparisons among various L S
potentials are given in the following paper. ')

In the final section the main conclusions are sum-

marized. Our entire potential is shown there graphically.

2. TAMM-DANCOFF AND NONRELATIVISTIC
APPROXIMATIONS

The derivation of the two-nucleon potential essen-

tially consists of reducing the relativistic field-theoretical
Schrodinger wave equation,

(II,+a') Ie)=El+),

to the nonrelativistic two-body Schrodinger wave
equation

(2)

where E=W+2s.
We do this reduction in the following steps. The first

is the customary Tamm-DancoG expansion:

I p)=
J ~(pips) l pips)dyidy2

+ c(pipsk~) I yipsk~)dyidpsdk~+, (3)

with subsequent elimination of amplitudes including

pions, such as c(piysk ), etc. Here we drop all mass and
charge renormalization terms. If we retain up to the

two-pion exchange terms, we get

(2Ep —E)c(p)+ ~U2(p, k,E)c(p+k)dk

+ I U4(p, k,k',E)c(p+k+k')dkdk'=0, (4)
J

where c(p) is c (pip2) in the c.m. system, E, the relativistic
nucleon energy for momentum y, and U2, U4 contribu-
tions from, respectively, one- and two-pion exchange.
Specifically U2 is given by

I

f (Qp&27'~up+&) (I—p&27 ~B p—2)
U, (y,k,E)= (5)

(22r)2 ei (Ep+Ep+2,+a) E)—
where N~ is the free positive-energy Dirac spinor and co

the relativistic pion energy for momentum k.
We then make the nonrelativistic approximation,

Ep=~+p2/2~, everywhere in (4) and (5):

(Np'7sr~lp+g) = —2 ~

e k s kLy2+(p+k)2]

2K

~. (2y+k) Lp' —(y+k)'3

2Ep E= (p2/s) —W. —

These equations are correct to order ~ ' and are suffi-
cient to derive the potential to orders g2(P/z)2 and
d(P/~)

The remaining two steps are the transition from c(p)
to p(r) in (2) and the elimination of E or W from Us
and U4. These are explained in the following sections
separately.

3. WAVE-FUNCTION RENORMALIZATION

Since the Schrodinger wave function f(r) in (2) is
supposed to be a substitute for 4' in (1), it is most
appropriate to define P(r) such that

"IP(r) I'dr

=(+I+)=J"J l~(y p ) I'dyidp2

p2+ (p+k)2 —22W
=—1—

Ep+Ep+2+ca E- 2Kco

(p2+ (p+k) 2—2sW i '
(7)

2~~ )

'M. Sugawara and S. Okubo, Phys. Rev. , following paper
/phys. Rev. 117, 611 (1959)).

4 Drell, Friedman, and Zachariasen, Phys. Rev. 104, 236 (1956).
+

I
~(ylp2k. ) I'dyldp2dk. + . (~)
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TWO —NUCLEON POTENTIAL 607

Upon eliminating c(yiysk ), we can show that to orders We can show the following useful relations:
g'(p/«) and g',

(e
~
0)= @*(r)[1—vs+v4$&(r)dr,

where p(r) is the coordinate-space transform of c(y) and.

"[y'+(y+k)'jf(y, k) '"'dk= {P'g(y r))+

[y' —(y+k)'3f(y, k)e '"'dk= [P',g(y, r)3-

(16)

r~

v, = (1/o~)Us(k)e '«'dk.

I-Iere

V&(r)= Us(k)e ' 'dkf
~J

(12)

into
L(p /, )—W+ V,+V,)y(r) =0 (14)

{(P'l )—IV+V+[(P'/2 ) j+V-
+[[(P'/g«), »3-,»j-

+ (l) [Vs,»3-—L(P'/«), v4'j-} ~(r) =0, (15)

where [A,B) =AB BA. It—is no—w clear that terms up
to g'(p/«) and g' need be retained in (10) to derive the
potential up to g'(p/«)' and g4(p/«).

Two comments are added. Firstly, our defining equa-
tion (9) does not uniquely specify the wave function
renormalization; (13)may be multiplied by an arbitrary
unitary transformation. This canonical transformation
is exploited in the next section to simplify the velocity
dependence of the potential.

Secondly, our wave function renormalization (13)
induces imaginary terms in (15), since the transforma-
tion is not unitary. However, Vs and V4 in (14) already
include imaginary terms, which come in upon elimi-
nating E (or W) from Us and U4 in (4). In the next
section we show that all imaginary terms proportional
to g' are cancelled out exactly after the transformation
(13)is done. We can prove generally that the Hermiticity
of the potential is secured independent of the perturba-
tion expansion as far as we define it (r) by (9).' '

4. SECOND-ORDER POTENTIAL

We remark that Us(y, k,E) (5) includes, after the
nonrelativistic approximations (6) and (7) are made,
two characteristic factors, y'+ (y+k)' and y' —(y+k)'.

' S. Okubo, Progr. Theoret. Phys. (Kyoto) 12, 603 (1954).

is the second-order static potential. e4 is a certain
Hermitian term involving g' the details of which do not
have to be specified for the following arguments. The
term of order g'(p/«) on the right-hand side of (10)
disappears under the integral.

We now define the wave-function renormalization:

p(r) = [1—(vs/2)+ (v&'/8)+v4'1y(r), (13)

where v4'= (v4/2) —(vs/2)'. The operator in (13) is just
the square root of the operator occurring under the
integral in (10). This transforms

which are correct for an arbitrary f(y,k) [g(y, r) being
its coordinate transform). In (16), {A,B}+=AB+—BA,
[A,Bj =—AB—BA, and y—= iV—is the momentum
operator. It is, therefore, seen that 5' occurs in the
potential only in the combination (P'/«) —W and also
only in the anticommutator form.

It is now straightforward to eliminate 5' through the
customary iteration procedure' using the identities

{(P'/«) —JV, A)+——[P'/«, A7 +2A ((p'/«) —W),

{(P'/«) IV {(P'—/«) IV B)+—)+
= [p'/«, [p'/«, Bj-]-
+ [P'/, B3-((P'/ )-lV)+4B((p/)-IV)

(17)

V(r y) = V, (r) {(p/2„) V, (r))+
+ [(P/~") V()( y)+H
+»Vs(r)+ [[(P'/8«), »j-»1-

+V4 L(P'/«) v4'3 —(1g)-
The second term comes from the second term in (6).
The third term is due to the last terms in both (6) and
(7). It is readily seen from (16) and (17) that this term
is of the commutator form. All remaining terms are of
fourth-order, the first of which originates from the
second term in (7) and the well-known difference be-
tween the potentials of Taketani-Machida-Onuma and
of Brueckner-Watson. ' Other terms are the same as
those in (15).

S. CANONICAL TRANSFORMATION

The third term in (18) consists, if the commutator is
actually evaluated, of many velocity-dependent terms
quadratic with respect to y. Some of these are explicitly

' We do this iterational elimination of W' in coordinate space,
rather than in momentum space, even though we can show they
are equivalent. The reason for this deliberate procedure is to show
explicitly that our elimination method of 8' does not mix the
unphysical singularities near the origin exhibited by V2(r). We,
therefore, do not agree with Srueckner and Watson's argument on
this point in Phys. Rev. 92, 1023 (1953).The present work shows
that the convergence of this procedure is at least better than
suspected before (see the reference 2).

This elimination gives many imaginary terms. How-
ever, if we do the wave-function renormalization (13),
all the imaginary terms proportional to g' are exactly
cancelled out. The potential in the equation satisfied by
p(r) [15$becomes, if we retain terms up to g'(p/«)' and
g'(pl«) consistently,
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given in the paper by Okubo and Marshak. ' The trouble
is that they are too complicated. We here propose a
completely diferent approach to these quadratic terms.

As we have remarked in Sec. 3, an arbitrary unitary
transformation is left undetermined when we de6ne the
wave function renormalization, (13). We, therefore,
define P(r) finally as

p (r) = LI+iS2 ,S2S—2+—iS4+ ]y (r), (19)

where S2, S4 are Hermitian and of orders g' and g4, re-
spectively, and we require that they be of short range so
that P(r) and p(r) agree asymptotically.

The canonical transformation of this type causes a
term in the potential which is of the commutator form
with p' to transform into a term of the higher order in
g' but of the lower order in (p/1~). Thus the only essen-

tially quadratic term is the second term in (18).
If we choose S2 as (1/81~)LV2(r)(r y)+H. c.], the

third term in (18) is totally converted into a fourth-

order term,

iP2(r) S2j— (1/81~) (r' +)V2 (r) (21)

which is purely static. Thus the one-pion exchange

diagram does not produce any velocity-dependence
other than the second term in (18), up to g'(p/i~) and

g'(p/1~)'. This is one of the characteristics of ps-ps
theory. '

6. FOURTH-ORDER POTENTIAL
(NO-PAIR TERMS)

The correction of g'(p/1~) comes only from the energy
denominator expansion. It is again very convenient to
utilize relations analogous to (16). Because of these we

can drop from U4(y, k,k', E) in (4) )or its nonrelativistic
approximation) those terms which include either
Lp'+ (p+k+k')' —2aW) or Lp' —(y+k+k')2j: Since
such terms eventually reduce to commutators between
p' and some functions except for higher-order terms,
they are dropped through the canonical transformation

(19), if they are Hermitian, or are cancelled by the last
term in (18) due to the wave-function renormalization
if they are imaginary. '

Using these lemmas, we can show that the entire
correction of order g'(p/1~) from pion-crossing diagrams
including no nucleon pairs is purely static, and the
entire relevant correction from pion-uncrossing dia-
grams without nucleon pairs becomes a velocity-de-
pendent term which exactly cancels out the fifth term in

(18), which is due to wave-function renormalization

(13).We thus reach the conclusion that no L S potential
results from diagrams including no nucleon pairs, in
case of ps-ps theory, up to g'(p/x) and g'(p/ )'; i~the only
velocity-dependent term is —V2(r) (p'/2a')+H. c.

We finally give our entire potential:

Vv, v, (no-pair)

= V2(r) —{(p'/2~'), V2(r) }++V4(r)

g4p' 3 3 6 2i 27 27
+ —+ ++++

(4v ) 'K 4x 4x' x' x4 x' 2x' I

3 ii 20 46 54 27
+ (~i~2) —+ +—+ + +

2x 2x' x' x' x' x'

9+2 (~1~2) 4 16 32 12 6
EF] 0'2

4 3x' 3x' 3x4 x' x'

9+2(~i~2) 2 11 28 12 6
+ Si2 + + +—+— e ', (22)

3x' 3x' 3x' x' x'

where g= (p/2') f—is the equivalent ps-pv coupling con-
stant, x—=pr, and V4(r) is the Taketani-Machida-
Onuma potential. ' The final term of (22) is the sum of
(21) and a term involving g4 (p/i~) resulting from the pion
crossing diagrams. These are found to be of comparable
magnitude.

Xl X2 8$H'= ~p'+i ipse„~ppx-
p /2 8xp

(23)

where 8$/Bt is the canonical conjugate to p. This is just
the relativistic generalization of the S-wave static model
proposed by Drell et a/. 4 We, therefore, assume that a
choice

X g=h2=0. 4

is adequate. We then evaluate the two-pion exchange
diagrams which include (23) once and twice; these are
called the one-pair term and the two-pair term, re-
spectively.

The' two-pair term is shown to be purely static up to
(p/a). The result is

V~, „,(two-pair)

)I.i'p 6 Ei(2x)

(4m-)' vr x'

XPp 2 "Eo(2x) Ei(2x)
+ (~&~2) + — . (25)

(4n)' ~ x' x4

The one-pair term is shown to include an L.S potential:

V. FOURTH-ORDER POTENTIAL
(PAIR TERMS)

Since we do not know any other reasonable methods to
estimate diagrams including nucleon pairs, we assume
here the effective interaction Hamiltonian



The result is

V„, „,(one-pair)

)rig'p, p1 1 y
' )tsg')4 8(~i~s)

6I —+—
I

e—"+
(4Ir)' KX X') (4Ir)'

5 (1 5y
X,(2x)+ I

—+ (II,,(2x)—
2x3 t. x' 2x' j (44r)'«

12 (1 23 ) /'3 23 &

X—
I
-+ I&o(2x)+ I

—+ I& (»)
Ex 4x) &x 4x)

03

0.2

O. I

&a 0
PO

II

- O. l

EN

AL

SOR

X=- fLt'

609

)(zg'p' ( 1 4 10 12 6 )
) I + + + +(4Ir)'«(x' x' x' x' x')

)
4 10 4 2)

- 0.2

- 0.3

V, (r)

0-PAIR) [(22)]
0- PAIR) +

IRS) [(22)+(25)

(2 8 4 2i
+s»I + + +—

I
.

(3g' 3g' g' g'J

)tig'ps 12 (2 3
——

I
—E'p(2x)+ —E' (2x

(4Ir)'« Ir t x' g' j
)tsg )4 (1 1 )+ 8(...,)I —+—I.-s. L S.(4ir)'«) x' xs)

To get (26), we have used the ps-ps vertices twice and
the pion-pair term (23) once. It might be conjectured
that we should better use the ps-ptl vertices to have a
better estimate of the one-pair term. If we do so, the
first term of the L S potential Lproportional to )ttj is
droppe, and a very minor correction has to be mada ein
t e third term of (26) Lwith )tt again). ' However, those
corrections with )tt are shown, as far as (24) is adequate,
to be relatively small in magnitude. Thus the main
feature is well represented by (26).

8. QUANTITATIVE DISCUSSIONS
AND CONCLUSIONS

Our entire potential L(22), (25), and (26)$ is plotted
in Figs. 1, 2, and 3, assuming g'/4Ir= 0 08 and (24), in
units of the pion rest mass against x=)ir, 1/ =1.414
)&10 "cm being the pion Compton wavelength. Curve 1
is the second-order static potential, Vs(r) in (22), and
curve 2 is the sum of the second- and fourth-order' static
potentials, Vs(r)+ V4(r) in (22). Curve 3 shows

„,~, (no-pair) given by (22), which includes our new
correction of order g4()4/«). Curve 4 includes, in addition,

V„, ~, (two-pair) given by (26) and (25), respectively.

V r
It is well known that V4(r) is too large a correctio t
s(r) even at distances larger than the pion Compton

ence 3).
' She exphcit expression is given in the following paper { fre er-

0.5 0.7 I.O I.5 2.0
I/p = t,4x IO-"em

FIG. 1. Our entire potential L(22)& (25), and (26) g is plotted in
units of p against x=—Ijr, for the triplet even state. C 1 2 3
and ~4 correspond, respectively, to the second-order potential, the
sum of potentials up to the fourth-order, the sum of all potentials
except pair terms, and the entire sum of all potentials.

0.3

I

-ODD

0.2

O. I AL

CD

(Q 0 r r
I / r

—L S [(26)]
I

-0 I "I
II I
II
lI I

I
I I
I I

I- 0.2-I
I
I
I
I
I

I
I- 03'I
I
I
I

I
I

- 0.4,'

X=- P t'

I:V, (r)
2:V, (r)+V„(r)
5:Yps-ps (NO-PAIR) [(22)]
4: Vps-ps (NO- PAIR) + Vps-ps

(PAIRS) [(22) + (25) + (26)]

0.5 07 I.O I.5 2.0
I/p, = l.4 X IO ' Cm

Fio. 2. Our entire potential [ (22), (25), and (26)J is plotted in
units of p, against x=—pr, for the triplet odd state. Curves 1, 2, 3,
and 4 correspond, respectively, to the second-order potential, the

exce t r
sum of potentials up to the fourth-order the sum of all t t' l

p pair terms, and the entire sum of all potentials.
7 0 a po en ias

wavelength. This leads one to suspect that the expansion
with respect to g' and (p/«) is badly convergent or even
that the potential concept is wrong. ' 5 According to our
figures, however, our new correction of order g'()4/«)
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I I

S IN G LET

0.2
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& EVEN

0
II
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-O, l

I
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I
I
I
I
I
l
I
I
i

I
I

- 0.2

I
I
I
I
I
I
t
I

I
I
I
I

I I I

- 0.3

—0.4
0.5 0.7 I.O

:V, (r
2:V, (r)+V (r)
3:V, , (NO-PAIR) [(22)j

O' Vps ps (NO PAIR) +

Vp, p, (PAIRS) [(22) +(25)
+ (25)1
I I

1.5 2.0
I/9 = I.4 x lO-[~crn

FIG. 3. Our entire potential [ (22), (25), and (26)] is plotted in
units of p against x=—pr, for the singlet states. Curves 1, 2, 3, and 4
correspond, respectively, to the second-order potential, the sum of
potentials up to the fourth-order, the sum of all potentials except
pair terms, and the entire sum of all potentials.

always cancels out V4(r), making the entire potential
(curves 3 or 4) quite close to the second-order potential
Vs(r) (curve 1) down to distances of the order of the
pion Compton wavelength, as should be if our procedure
is self-consistent. The central force in the triplet even
state is the only exception. Here curves 3 and 4 deviate
appreciably from curve 1 at x=1, though a significant
improvement is noticed.

These results suggest that our basic presumption Lthe
expansion with respect to g' and (p/a) j is better than
suspected in the past. ' ' This statement is not only
interesting itself, but is also important since the velocity-
dependent terms obtained in this paper can thus get a
sounder theoretical basis because they have the same
origin as those static corrections which improve the
situation appreciably.

It is interesting to remark that the higher-order cor-
rections are almost purely central; in the case of the
tensor force, curves 3 and 4 stay quite close to curve 1
at all points on the figures, while various central curves
Quctuate among themselves especially at distances
smaller than @=1.

Regarding the velocity-dependence of the two-nucleon
potential, we have shown that the only essentially
quadratic term is —Vs(r) (p'/2~')+H. c. Furthermore,
no other velocity-dependent term follows from dia-
grams of one-pion and two-pion exchange including no

nucleon pairs; diagrams including nucleon pairs are the
only source of an L S potential, if there is any.

According to our estimate of the nucleon-pair contri-
butions they have a minor eGect on the static potential
(the close behavior of curves 3 and 4) and give rise to a
strongly isospin-dependent L S potential. The sign of
this L S potential for the odd state is the right one; the
sign changes for the even state. The magnitude seems,
however, somewhat too small compared with potentials
proposed phenomenologically. '

Of course, it is an open question how reliable is our
estimate of the nucleon-pair diagrams. Assuming the
estimate is reliable ps-ps theory is characterized by an
L.S potential which has different sign in even and odd
states and has a very short range (practically vanishing
outside the pion Compton wavelength).

The anal comment concerns the higher-order terms
neglected here. According to the argument given in the
introduction, terms of order g' must be kept together
with terms of orders g'(p/K) and g'(p/Ir)'. This, of course,
aGects only the static part of our potential. This modi-
fication could be important since g' terms include, be-
sides three-pion exchange contributions, those two-pion
exchange contributions in which either pion-nucleon
rescattering or the pion-pion scattering term occur as
intermediate processes, even if we drop renormalization
diagrams. The various existing calculations' on the pion-
nucleon rescattering eGect agree in that an appreciable
attractive central force seems to be expected, though
these calculations are only to be trusted qualitatively.
There does not seem to be any work available on the
possible effect of the pion-pion scattering term on the
nuclear force.

According to some recent works, " pion-nucleon re-
seat tering could also be a source of a large L S potential.
We simply point out here that these calculations do not
a,gree even in the sign of the L S potential, " and the
reliability of their estimates is yet an open question.
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Detailed comparisons among various L S potentials are given
in the following paper (reference 3).
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