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Magnetic Moment of the Deuteron~t

H. D. YoUNo ANn R. E. CnTxosxvt
Carlegie INstitute of Teohlology, Pittsburgh, Persesylvamia

(Received July 23, 1959)

A contribution to the deuteron magnetic moment which results from the altered expectation values of
nucleon core spins in the bound state is calculated. The adiabatic approximation, in which the m-meson
clouds of a static-nucleon model are assumed to follow the orbital motion of the sources, is used. The two-
nucleon states are expanded in Heitler-London states; the expectation value of the deuteron magnetic
moment operator is related to single-nucleon matrix elements by means of an expansion corresponding to
exchange of various numbers of mesons between the nucleons. The single-nucleon matrix elements are
evaluated using the Chew-Low-Wick fixed-source theory. If an orbital wave function with a relatively
large D-state probability is used, the one-meson exchange terms give an increase in the deuteron magnetic
moment of about one percent. The two-meson exchange terms are considerably smaller than the one-meson
exchange terms.

I. INTRODUCTION

'HE work to be described is an attempt to deter-
mine the consequences of a simple meson theory

for the magnetic moment of the deuteron.
The 6rst attempts to account for the deuteron mag-

netic moment ignored the internal structure of the
nucleons and simply postulated a nucleon-nucleon
potential which is partly central and partly tensor
potential, as suggested by the existence of the deuteron
electric quadrupole moment. Such a potential leads to
a deuteron wave function which is a mixture of 8 and
D states, and hence to a contribution to the magnetic
moment associated with the orbital motion. It is easy
to show that the magnetic moment of the deuteron is
then

t e=t.—5(t.—s)Pn,

where p& is the D-state probability and t4 is the sum
of the proton and neutron moments; ts, =ts„+ts„. A
value of pD of about 4% gives the observed value of
p,q, although meson-theoretic calculations of the tensor
potential indicate that p& may be considerably larger
than O'P r s

It has been pointed out' that there are relativistic
eGects, resulting from the fact that the interaction of
the nucleons with an electromagnetic 6eld depends on
their kinetic energies. Because of uncertainty about the
transformation properties of the nucleon-nucleon poten-
tial, the magnitudes and even signs of these corrections
are not known with any certainty.
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If the nucleon-nucleon interaction contains spin-
orbit potentials ' there is an additional electromag-
netic interaction. '" At present, however, there is no
clear evidence, either theoretical or experimental, con-
cerning the magnitude or sign of the spin-orbit potential
for nucleons in 7=0 states ""

A third eGect, the one with which the present work
is concerned, is the modification of the internal structure
of the nucleons resulting from their binding in the
deuteron. Previous attempts to calculate mesonic con-
tributions to the deuteron magnetic moment have all
been based on some form of perturbation theory,
usually a Tamm-Dancoff method. "'3"These methods
suGer from the difhculty that the renormalization of the
coupling constant, and the elimination of the self-
energies and other unobservable quantities, must all
be done explicitly. The results of such calculations are
not quantitatively very reliable.

In the present work the deuteron moment corrections
are related to observable properties of single nucleons. '~

First, a model for the nucleon is used which consists of
a "rigid core" having a spin and a magnetic moment,
surrounded by a cloud of x mesons. The contribution
to the magnetic moment which we have calculated
results from the fact that the probability that a nucleon
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core spin has a given orientation may be diferent in
the bound state from its value for an isolated nucleon.

To calculate this contribution a Axed-source theory
has been used, in which all nucleon recoil sects are
ignored. The "adiabatic approximation" is used, in
which the meson cloud resulting from the fixed sources
is assumed to follow them if they are given some slow
orbital motion. The deuteron magnetic moment is then
made up of two parts: the contribution from the nucleon
cores, which is calculated using static nucleons, and a
part due to the slow orbital motion of the cores.

In the charge-symmetric theory the x-meson current
itself does not contribute to the deuteron magnetic
moment because it is an isotopic spin vector, while the
state of the deuteron has total isotopic spin T= 0.

II. MODEL

A. Hamiltonian

In the present model the nucleon is considered to
consist of a nucleon core surrounded by a x-meson
cloud. The 6xed, extended core is the source of the
meson field. No nonlinear interactions (such as meson-
meson interactions) are included.

The nucleon core itself has an internal structure,
resulting from creation of virtual nucleon pairs, heavy
mesons and hyperons, and so forth. We assume, how-
ever, that the structure of the core is not affected by
the change in the meson cloud resulting from interaction
of two nucleons, and thus the internal coordinates of
the nucleon core may be ignored. We use the Hamil-
tonian" "
II=+g Kate*as Es(e,*a +~—„"„)

+ps (a"+a r*)(~.r+~—,b) (2 1)

We use units in which 5, c, and the meson mass are
all equal to unity. A capital letter denotes the energy
of a meson whose momentum is the corresponding small

letter, e.g. , K=(k'+1)&. The meson creation and de-
struction operators are a&* and a&, respectively, where
the index k includes both momentum and isotopic spin
state; n,~ and n, are creation and destruction operators
for a nucleon core, where x includes position, spin, and
isotopic spin of the nucleon core. The value of Eo is
chosen to make the energy of an isolated physical
nucleon zero. The interaction operators are

V,s=n, *"Lfsv"(2K) l",ie' k exp(ik x)$n*, (2.2)

where fs is the rationalized but unrenormalized coupling
constant, and vI, is the source function.

B. Magnetic Moments

The nucleon core has spin one-half and isotopic spin
one-half. Its magnetic moment depends on its charge
state, so the magnetic moment operator for the core

0. F. Chew and F. E. I.ow, Phys. Rev. 101, 1570 (1956).
'r G. C. Wick, Revs. Modern Phys. 27, 339 (1955).

p"=~(8.)+(p-b) (2.5)

In the calculation, (S,) will be proportional to 1/pi, so
that only the ratio a/pi ——p,, appears in the final result.
The experimental value of this quantity will be used.

In order to describe how (S,) is calculated, we first
discuss the wave function f(r) which would be used if
the nucleons had no internal degrees of freedom. We
use a function containing a mixture of S and D states,
with total angular momentum J=1 and J,=1. Since
we shall use a axed-source model, it is convenient to
represent this function using spin functions referred to
an axis system in which the nucleon cores are at rest and
which rotates with respect to the fixed axis system. We
call this the deuteron axis system, and denote quantities
referred to it with a bar. We take the nucleons to lie
on the z axis, and describe the orientation of this axis
with respect to the 6xed s axis by means of the usual
spherical coordinate angles 0 and p. We then 6nd

8,=2 'sin0e '&8++cosOSs —2 '*sin0e' 8, (2.6)

where the spherical components Ss——8„
8~= w(S.+iS„)/K2

are used, and

Pi ——r '(4') &L(N+w/V2) cos'-,'8Xi—(u —v2w)

Xsin0e'&Xs+(I+w/V2) sin'-, ee '~x i$, (2.7)

where the functions X are eigenfunctions of 8O, and
I and m are the usual S and D radial functions.

Now, making use of the adiabatic approximation, we
generalize the meaning of the spin functions so that
they represent also the internal degrees of freedom of
the nucleons. We replace X by a normalized eigenstate

e

"M. Cini and S. Fubini, Nuovo pimento 3, 764 ($956).

can be written

9 =k(&+Pcs)& (2 3)

where n and P are constants, and e and vs are operators
for the core spin and isotopic spin, respectively. The
total magnetic moment of the nucleon is the sum of this
Inoment and the contribution from the meson current.
Thus we have

pp s(&/pl+I/ps)+(px)and pn s(&/p1 0/p2) (pw),

where 1/pi ——(o.,)," 1/ps ——(a.,rs), and (p ) is the contri-
bution of the vr-meson cloud. We note that p, =n/pi.

In the deuteron the total magnetic moment is the
expectation value of the operator

,'n(~, '—+a,')+ ',P(~,'r-s'+~, 'rs')+p-+p„, b, (2.4)

where (p„b)= spD is the contribution from the orbital
motion of the cores. However, because the deuteron is
a T=O state, neither the meson current nor the part
of the core moment containing r3 contributes to this
expectation value. Hence, defining the total core spin
as S=-,'(e'+e'), we have for the total magnetic moment



MAGNET I C MOMENT OF DEUTERON

of the static theory which contains two nucleon
cores lying along the z axis (separated by a distance r)
and an associated meson cloud. In the next section we
show how the states 0 can be constructed.

The deuteron state vector is

the deuteron in these states:

+„=C„+g X„(k)C„o+P X„„(kl)C„i,&+

(2.12)

%'i= (2.7 with 4 instead of X ); (2 g) Equations for the amplitudes can be obtained from the
variational principle

our objective is to calculate

&S.) =& F„So~,).
This depends on the matrix elements

(4'~&SoIC ~ ) .

(2.9)

Only two of these are independent, because the value
of any matrix element must be invariant with respect
to a rotation about the z axis and a reQection in the
x—y plane. This symmetry leads to the following rela-
tions:

p= (ei,So%'i) = —(@ i,So+ i),

q = (e&,S+@o)= (+o,S+4 i)
= —(+o,S—+i) = —(+—i,8-%'o)

~

(+o,8o%o) =0.

(2.10)

When these expressions are substituted into (2.9) and
the angular integrations are performed, the result is

C. Heitler-London States

The principal problem in this calculation is to evalu-
ate the matrix elements p and q, defined by Eq. (2.10).
It is here that our method divers significantly from
those used in previous attempts to calculate the
deuteron magnetic moment. Rather than expand the
state of the deuteron in states containing two "bare
nucleons" and various numbers of mesons, we use a
method" described in A to expand the deuteron state
in states containing two physical (clothed) nucleons and
various numbers of meson in scattering states.

As in A, we define operators which, operating on the
vacuum state, create physical nucleons. For a nucleon
at x, P *

~
0)=

~
x). We specify that each F" shall contain

only meson creation operators and one nucleon core
creation operator.

The Heitler-London states are defined as combina-
tions of states of the form P,*E„*~O).The states used
in the present work are linear combinations of the
states constructed in A, chosen to be eigenstates of
total angular momentum and total isotopic spin.

Assuming that the Heitler-London (H-L) states form
a complete set, we can expand the state vector 4' of

&S.)= f-', (I+w/v2)'p —
o (e+w/K2) (I—&2w) q]dr.

"0
(2.11)

In our fixed-source calculation, p and q are functions of
the internuclear distance r.

(C„,S"C„)= (C„,a"'C„), (2.16)

and it is the latter expression which is evaluated in most
of the following calculations. For example,

(C,S"C ) = P P P $v!(3r i')!]-'—
N=o v=o lg&

X&K
I
Gi ' ' 'Gp 0' (4+i' ' '8~l x)

&&y'Idio' '~+i*o ' ~ily) (217)

It is convenient to separate contributions to p and

q corresponding to different numbers of exchanged
mesons. We therefore write

8 0+8 0+8 0

Ao++A i++Ao+

8o++Si++8o+
v=

(Ao++Ai++Ao+) ~(Aoo+Aio+Aoo)~

(2.18)

where the numerator is the matrix element of S in the
state (2.12), and the denominator corrects for the fact
that 4 as given by (2.12) is not normalized to unity.
The subscripts refer to the number of exchanged
mesons; the superscripts on S denote the component
of S, and those on A denote the value of nz for the cor-
responding state. In calculating the various contri-
butions to these quantities we shall use an additional
subscript in parentheses to denote their origin.

~Le„, (a —Z)e„]=0. (2.13)

In general the H-L states are not eigenstates of H, and
they are not orthonormal. At sufficiently large distances,
however, it: is expected that the amplitudes X (k)
will be small and X (kl) smaller, so that approximate
calculations of them will be sufficient. Assuming that
the H-L states are approximately orthonormal and
eigenstates of II, we obtain approximately:

(k)= —E 'V ~ (k;), (2.14)

X„.„(kl)= —-,'(X+1.) 'V ~ (kl;), (2.15)

where V „(k;)=(C„.o. ..,HC ). The norms of the
H-L states, and the various matrix elements of II, can
be expanded in terms of single-nucleon matrix elements.
These expansions are given in A. Similar expansions for
the matrix elements of S~ (X=O, &1) can all be obtained
easily from corresponding expansions for the norms of
the states. Because we deal always with symmetric spin
states,
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In evaluating these expressions, all the terms corre-
sponding to zero- or one-meson exchange will be
included, but only the two-meson terms which involve
the ground states or the ~

—
~ excited states of the nucleons.

Only the basic H-L state contributes to the zero-meson
terms; therefore Ao'=Ao+=1, and So = —So+=1/p).
Thus the zero-meson terms give just the values of p and

q for noninteracting nucleons. The one- and two-meson
exchange terms give corrections to these values. Making
Taylor series expansions of the denominators in (2.18),
we find

SI (o) So A ~ (o) —O) (3.6)

where x" ranges over the four bare-nucleon states. The
product SpAy(0) may be written in the form

soAi&o) =p&-' z~ & 'P" c(~'I ~I*")(*"Ivo'I&)
+(~'IV *I*")(z"

I 1*)l(y'Iv. ly) (35)

because for either 0.0 or 0-+, only one of the matrix
elements (x"

I el@) is different from zero.
In this approximation, then,

p =So'+ (Si'—So'A i+)+ (S2'—So'A o+)

—A i+(Si —So'A i+),

q =So++Si+—oSo+(A i'+A)+)+So+
—oSo+(A2'+A2+)+oSo+((A i')'+ (A i+)')

+~So+A PA i+—
o Si+(A i'+ A i+).

(2.19)

Si&o)+—oSo+(Ai&o) +Ai&o)+) =0; (3 7)

the first term in the closure expansion for Si(o) is
exactly cancelled by the change in the normalization.

The next term in the closure expansion for (3.1) is

2 K*-,ft '(&+&) 'I& 'I
I

"p&&*"plv*l*&
+(*'

I
V~*

I
~"p&&*"p

I
~ I*)j&y'I v, I y&, (3.8)

III. ONE-MESON EXCHANGE TERMS

We calculate first the one-meson terms from the
zero-meson Heitler-London state. These will then be
combined with the one-meson terms from the one-
meson H-L states, which have a very similar form.

A. Zero-Meson Heitler-London State

The X= 1 terms in the expansions for the zero-meson
H-L states are

S«o) =Eo L&*'I «o I ~&&y'I ~~*I y&

+&*'I~~*~I*&b'I

amp�ly&j

'('I (+ )'
+v.*(11+~)--l*&&y'Iv. ly&, (3 1)

Ai&o) =Z. I &~'I ~~ l*&b'I ~.*l y&

+&*'I~~*
I
z&&y'

I ~~ I y&j

=Z. 21' '&*'I V~*I*&b'I v~ly&

In Eq. (3.1) the matrix element containing &r can be
approximated by making a closure expansion using a
complete set of one-nucleon states which are eigenstates
of the total Hamiltonian. The first term in this expan-
sion gives

Z. I~-' 2*- I &*'I ~l*"&&~"
I
v *I*&

+&*'I v~'
I
~"&&*"

I
o

I ~&&&y'I v~ I y&.

These matrix elements for the physical nucleon states
can now be expressed in terms of matrix elements for the
corresponding "bare nucleon" states. "We denote by
I z) the bare nucleon state corresponding to the physical
nucleon state lx&. The operator V), is understood to
contain the unrenormalized coupling constant fo when
it appears with physical nucleon states, and the renor-
malized coupling constant f when it appears with bare
states. Expression (3.3) then becomes

P), E—'pi—' Q,"L(z'I &rim")(x"
I
Vglx)

+ (~'I V~ I*")(*"
I
~ I*)3&y'I v~ I y) (3 4)

where the Ix"p& are the meson scattering states with
one meson in a plane wave. In this calculation it is not
necessary to specify whether the complete set with
incoming waves or the complete set with outgoing
waves is used. It is assumed that one or the other is
used consistently.

B. One-Meson Heitler-London State

We now proceed to the calculations of the one-meson
exchange contribution from the one-meson H-L states4,„.The amplitude of the one-meson H-L state is
given by Eq. (2.14). An expansion for U " (p); is
given in A; keeping only terms corresponding to
exchange of one meson, we have

v-"-(p;)=Z C& '+(~+&) '3H*"pI v *I*&

&&&y"
I v~ly)+&*"

I
V~*I z&&y"p

I
v~

I y&) (3 9)

In the expansion of A ~ (; k) at least one additional
meson is exchanged; thus the one-meson H-L state does
not contribute to Ai. Furthermore, only the first term
of the expansion for (C,SC z), which is (x'

I
&r

I
zk&(y'

I y&,

should be included in the one-meson exchange con-
tributions. Therefore, the contribution of the one-
meson H-L state to Si is

1
s„„=p ——+ I &* I.I*"p&&*"plv.*l*&

»*"I' .I E+I'
+&z'I v,*l*"p)&*"pl~l*H&y'I v. ly&. (3.10)

C. Evaluation of One-Meson Exchange Terms

The result (3.10) has exactly the same form as (3.8)
except for the expressions containing the energies.
Combining (3.8) and (3.10), we find

s,= p L&*'I l~"p&&*"pl v,*l~&
I ~~" /P

+&*'I V~*I ~"p&&~"pl ~l ~&3&y'I v Iy&.
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(o)
I

C

where

(3.18)

Fzo. |.Diagrams corresponding to one-meson exchange terms.

The higher terms in the closure expansion used in
(3.1) can be shown to combine in an analogous way
with corresponding terms for the multimeson H-L states.
Thus the sum of all the one-meson exchange contri-
butions is

Si—SoAi=g. g P.2E-'E„-'L(x'I elx"rs)
x(x"~

I
v,*lx)+(*'I v,*l*"I)

(3 12)

where the sum on e includes all multimeson states but
not the unexcited nucleon states lx). However, since
not enough is known about the states which contribute
to (3.12), we must resort to some approximation
methods.

The expression (3.12) has the form of a closure ex-

pansion for the quantity

2(E-') P, lt-'(x'IeV, *+V~*elx)(y'I V, ly), (3.13)

where (E ') is the average reciprocal energy of the
m-meson states, except that the zero-meson term of the
expansion is missing. We therefore replace (3.12) by

S —SoA =2(E ') IQ E '(x'IeV *+V elx)(y'IV Iy)
—P .- E-'L(x'

I I
x")(x"

I
V *

I x)
+(x'I V *Ix"&(*"

I
e

I
x)](y'I V

I y) I (3 14)

This expression can be represented pictorially by the
diagrams of Fig. 1, in which solid lines represent physical
nucleons, dashed lines represent mesons, the cross
represents the operator e, and the bubbles represent
excited states of the nucleons.

The matrix elements in (3.14) can be related im-

mediately to the corresponding bare-nucleon matrix
elements:

and a and b are differential operators: a=d'/dr' and
b= —r 'd/dr. The factor kp' leads to a factor —a, and
the factor k+k to a factor b —'T.he results (in T=O
states) are

~P =6(E )p 'Lffo f']—(4 ) 'oF(r), (3 19)

~C = (E ')p 'I:ffo—f'](4 ) 'bF( ) (3 2o)

An alternative procedure for evaluating (3.11) is
given by a method which is essentially equivalent to
fourth-order perturbation theory, except that the re-
sulting expression is completely renormalized. We use
a formula for the one-meson scattering states'":

I xPg) = 44~*
I x)—(H P~i p—) 'V„I

x)-. (3.21)

We insert this into (3.11) and make closure expansions
where needed, keeping only the zero-meson term in
each. This is a reasonable procedure because the ~

—
~

resonant state does not appear in the expansions.
Equation (3.11) then becomes

Si=pi 'Zpn2(&P') '(x'll:(eve —V.e)
x(v *v *—v.*v„*)+(v„*v.*—v.*v„*)

X (eV,—V.e)] I x) (y'I V~I y). (3.22)

The operators a and b associated with the p-inte-
gration operate on a function H(r) which is related to
F(r) by having an extra factor 1/P' in the integrand.
Furthermore, because the meson p is emitted and reab-
sorbed by the same nucleon instead of being exchanged,
we evaluate the function at r =0 after applying the
operators. We obtain

EPi= pi '(f'/4e)'12I bH(r)]„paF(r), (3.23)

&pi= pi '(f'/44r)'12I bH(r)]„pbF (r), (3.24)

where

s,-s,~,=2(E- »; LU,/f)-1]
XZ~& '(x'Ievp*+V. *elx)(y'IV~ly) (3 15)

1 (4n)' t" k4vg'

[bH],-o=- — dk.
3 (2~)P Jo (ko+1)P

(3.25)

Inserting the explicit expression (2.2) for Vi„we find

Si—So~i=2(E ')pi '(ffo —f')
Xgj,), —',i poK—' expLik (y—x)]
x(x'I (ee k+e ke)~'lx)

x(y'I k~"Iy), (3«)
where the isotopic spin index is now written explicitly.
We use the spherical components of e and k:

e k=o.pkp —o+k —o k+.

In the integration over k, the only terms which survive
contain the factors 0+k or ko'. The result can be ex-
pressed in terms of the integrals

Z(r)=oF, V(r)=bF, (3.17)

The dependence of APi and hei on r is the same as in
(3.19) and (3.20), but the numerical coeKcient is
pi '(f /44r)'12LbH(r)]„o instead of 6(E ')pi '(ffp —f')
X (4n.) '. The values of these coeKcients turn out to be
remarkably similar.

IV. TWO-MESON EXCHANGE TERMS

The two-meson terms which will be calculated are of
two kinds: the f47 =2 terms in the expansion (2.17) for
the zero-meson H-L states, and contributions from the
two-meson H-L states. The two-meson terms from the
one-meson H-L states are not included because they
all involve matrix elements for inelastic meson scattering
which are assumed to be small compared with the
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(a)

(c)

(b)
/

terms, we de6ne a function

dk vp

G(r) =42() —e'"'
(22r) 2 E'

in terms of which

(4 4)

FIG. 2. Diagrams corresponding to two-meson exchange terms.

matrix elements for the ground states and 2
—

~ resonant
states which appear in the other two-meson terms.

A. Zero-Meson Heitler-London State

~2(»'= —~v'pi '(a' —4&')G(2')G(r) (4 5)

where y= J2/42r, and we use the convention that when-
ever a product of two operators a or b appears, one of
them operates on each of the two functions of r follow-
ing. The corresponding contributions to A2 is derived
in the same way. The contribution of combination (1)
to hP is

The /=2 terms of (2.17) are

s2(» =z~( cl&x'I a~*«*~
I
x&&y'I «a~

I y&

+&*'Ia~*«)
I
x&&r'1«*a~

I y&

+-',&x'I a),ail x&&y'I a(*a *ly&7. (4.1)

hP2(»=6&) 'f)'GG,

and the contribution to Aq is

2p pi (a—b) GG.

B. Resonant Intermediate States

(4 6)

(4 7)

In evaluating these, one must make closure expansions.
It can be shown that in the erst and third terms the
zero-meson term in a closure expansion inserted next to
the e operator, is exactly cancelled by the corresponding
term of the normalization factors A~. Furthermore, the
one-meson terms in the closure expansion do not contain
the ~

—
~ states. Hence in the approximations used in

this calculation the first and third terms of (4.1) do not
contribute anything.

The remaining term of (4.1) is

S2(0) Z)t;i (*'
I
V2 (&+K) 'C17(rC27 (&+L) 'V(*

I x&

X (y'
I
V((H+L)-'C37(II+K)-'V), *l y&. (4.2)

The symbols CN7 indicate points at which closure
expansions are needed. The following combinations will

be considered: (1) zero-meson terms in C17, C27, and

C37 CFig. 2(a)7, (2) zero-meson terms in C17 and C27;
one-meson term in C37 CFig. 2(b)7, (3) one-meson

terms in C17 and C27; zero-meson term in C37 CFig.

2(c)7, and (4) one-meson terms in C17, C27, and C37
CFig. 2(d)7. In the one-meson terms, only the 2

—
2 states

will be included; combinations other than the above

are excluded because they involve either 1"=
~ states or

inelastic scattering matrix elements.

We calculate combination (1) first:

1 1
S,(,) ———P (*'IV Vi*lx)(r'IV V*ly)

pg k& E'L'

(J')'
expC2(k —I) r7

p, ) ( K'L' (2K) (2L)

We next calculate combination (2) in the closure
expansions for (4.2):

T.(P) = 4~P P.( q)
(2P)'*(20) '

expCil) (P)7 sinb (p)X, (4.10)
8/2

where P (PI7) is a projection operator for the state with
total angular momentum and isotopic spin denoted by
e, and 8 is the phase shift for meson-nucleon scattering
in this state.

We assume as before that the only important con-
tribution comes from the ~

—
2 state, and in this state

only from energies near the resonance energy coo. After
replacing the energy denominators (K+P) ' and
(L+P) ' by (E+~o) ' and (L+(do) ', we perform the
integration on p and obtain

2 (r'I Ti'(P)T2(p) lr)
= (4EL)-&()i(i expC2(1 —k) y7

X -'2~v~2(y'IP2(l&)
I y), (4.11)

S2(2) =—P (x'I Vie V)*l x&

pi ~() i" KL(K+P) (L+P)

x&r'I v ly"P&&r"Pl v *ly& (4.g)

Following Chew and Low,"we define an operator T, (p)
such that

&y'P
I V. I

y&= (y'I T.(P) Iy) (4 9)

It is shown in reference 16 that T, (p) can be expressed
as

where
x (x'

I
(r.k(ra 12.,"2.,&

I x) (y'
I
(r la km„7.„"

I y). (4.3)

Using the same procedure as for the one-meson exchange

3 t
" sin282(P)dP

(4.12)
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Equation (4.8) then becomes

Vp Vl,

&(exp( —ik r)(x'l(r k(r(r lr."r,olx)

&((y'I (31 k '(r—1(r k)(b1, 18—ro"ro") ly) (413)

Pcz3
S2(2) = P (42r) exp(il r)

3p1» 4E L (X+oop)(L+o)p)

C. Two-Meson Heitler-London States

The remaining two-meson exchange terms come
from the two-meson H-L state and are denoted by the
subscript (II). The amplitude of this state is given by
(2.15); the expansions for S2(n) and A2(11) are obtained
by methods already described. Discarding all terms
corresponding to exchange of more than two mesons,
we 6nd

from which we find

S2(2)' ——-', yonpp1
—'(a' —b')G1G1,

where
2

G1——42r
(22r)8 E2( E+o))o

(4.15)

The quantities 52&2)+, A2(2)', and A2(2)+ are obtained in
an analogous way. The final results for combination (2)
are

2 p2(2) = 'oy'np—p)-'b'G)G1,

~q2(2) 8 Y nppl (a +ab+b )G1G1 (4 17)

The calculation of combinations (3) and (4) proceeds
similarly. The only additional complication is the
appearance of the operator '0 between two projection
operators. We make the additional approximation
(xpl(rlx'q&=(xl(rlx')b„, . The results of these combina-
tions are

1 ~ 1 1
(4.14) Q + x' 42 x"kl

2(2 2(K+L) ) E+P L+P)

&& Dx"k
I
I'.

I
x&(y"l

I
I'.*

I y&

+(*"l
I
I'.

I
x&(y"k I I'I y)l

1 ~ 1 1

8122 (K+L) (K+P L+P)
(4.16)

x(y'I a, l
y"l&+(*'Ina,

l
x"k)(y'I a,*ly"l&j

&«*"klan.

I )&y"ill.*ly&

1 ] 1 1=p-'2
I +

8(~ (E+L)' ) E+P L+PJ

x (*'ICnT1t(k) —T)t(k)nlT. (k) I*')(y'I T.(l) ly)

Ap2(8) S2(8) Sp A2(8)
= —(4/9) yonpp1 '(a'+ 2b') G1G1,

14 q2(8)
——S2(»+——',Sp+(A2(8) +A 2(3) )

= (2/9) y'nop 1
—' (a' —2ab+3b') G)G1)

(4.18)

1 1 1+p-'E
I +

»)2 (K+L) ( K+P L+P)

X (x'I T,t(k) nT„(k)
I x)

X+Q Q L—
+p2(4) S2(4) So A2(4)

= —(1/81)y'n82p1 '(4a'+ 2b') G2G2,

hq2(4) =S2(4)+—-', Sp+(A2(4)++ 2(4) )
= (1/81)ypn 'p '(2a'+2ab+6b')G2G2,

where
d'k

G2(r) =42r haik
.r

(22r)' E(E+o)p)'

(4.19)

(4.20)

6p2' = —A 1+(S1'—Sp'A 1+), (4.21)

Qqp' ——-', S()+((A 1o)'+ (A 1+)')+4Sp+A p+A p'

—~2S)+(A 1++A 18). (4.22)

We evaluate these using only the zero-meson terms in
the necessary closure expansions because, as has been
pointed out, the ~

—
2 states do not appear. In this

approximation

The remaining two-meson terms from the zero-
meson H-L state are products of one-meson exchange
terms in (2.19):

1 1
(x'

I
(2T,t (k) T„(k) I x)

L+Q Q E-
&& (y'I T'(l) T.(l) I y)+c c (4 25)

for the terms arising from the cross term between the
zero-meson H-L state and the two-meson state.

It can be shown that the entire last term of (4.25)
is cancelled by the normalization terms. The singularity
1/(Q —L) in the second term can be eliminated by
making a partial fraction expansion and then using the
Low equation. We write

1 ) 1 1 q 1 1 1
+ I

= Z+ I, (4.26)
X+L(.X+P L+P)K+QQ I, Q I. — —

where Z is independent of I, and neither I" nor Z
contain a singularity. The Low equation, including only
zero- and one-meson states, is

V,*V„—V„V,*
T,(q) =-

S1'—So'A(+= 0, S1+—2Sp+(A 18+A)+) = 0,
bp2' ——0, (4.23)

Eqo'= 18So+(A18 A1+)2 (9/2)72p1 (a+b)2GG. (4.24)

T,t(l) T,(l) T„t(l)T,(l)-
(4.27)
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Using this, we obtain

Sptn) =pt
—' P Z(x'

l T,t (k)nT, (k) l g)

V„V,*—V,*V T„t(l)T,(l)xly' +P yl
0 ~ Q+L

+p ' 2 V(*'IT'(k) T.(k)l*)

FIG. 3. One- and two-meson exchange contributions to Ap as a
function of r (in units of K=1.4X10 "cm).

Qp (x l
E-'ag*ag

l x) 1«-)=
Pg (xl ag"apl x) 6.I

Therefore we take (E ')=1/6. 1.
This procedure is equivalent to calculating the

average energy by perturbation theory. In fact, the
integra1 which appears in the zero-meson approximation
for PI, (xlE 'a&*aI, lx) is proportional to the quantity
LbH(r) j, p, Eq. (3.25), which appears in the alternate
method for the evaluation of the one-meson exchange
terms.

The coefficients of the one-meson terms, Eqs. (3.19)

I.2

I.O—

is from the one-meson terms, so (E ') is approximately
the average reciprocal energy of the one-meson states.
Since the excited states of the nucleon which enter are
T=2 states, for which there is no strong resonant
interaction at low energies, this average energy is
estimated by calculating the average reciprocal energy
of a virtual meson in the physical nucleon state, which
is given by'

X (y'l T, (l) T„(l)ly)+c.c. (4.28)

The remaining calculations are straightforward. The
energy denominators are represented approximately as
products of factors, each of which' contains only one
energy E or L, so that the functions F;(r) and G;(r) can
be used (see also 8). Finally, the contributions of the
two-meson H-L states are:

~p» = —(14/27) v'nspt '(2o'+4b')GtGt
—(2/243)y' .'(" ")-'(38"+55b)F.F.,

(4.34)
hqtt = (14/27)y'nppt '(a' —2ab+3b')GtGt

+ (2/243)y'ns'(pt~p')-'

X (19''—17ab+5 7b') FtFt.

V. NUMERICAL RESULTS AND CONCLUSIONS

A. Parameters and Wave Functions

The parameters f, fp, ns, and top which appear in the
model are chosen to 6t low-energy m-meson —nucleon
scattering data. The values used are':

f'/4m =y=0.08, ns 2 6, ——.
fp'/4n =0 25& (op

——.2.1.

The cutoff function used is nq
——(X'—1)/(X'+k'), with

X=7. This function is normalized so that v=1 when
IC=O, rather than when k=0. This modifies the coupling
constant by an insigniftcant (2 /o) amount.

For p, we use the experimental value 0.8796 nm. For
the average reciprocal energy (E ') appearing in the
one-meson exchange calculations, we assume that the
most important contribution to the closure expansion

0.8—

0.6—

0.4—

0.2—

0 0.2 0.4 0.6 0.8 I.O I.2 I.4 I.6

Fzc. 4. One- and two-meson exchange contributions to hg as a
function of r (in units of K=1.4X10 "cm). Aging is negative.

and (3.23), have remarkably similar numerical values:

6(E ')(ffp f')/4' =0.059—
12(f'/4pr)'LbH(r) j„p=0.055.

The functions F;(r) and G;(r), Eqs. (3.18), (4.4),
(4.15), (4.20), and their derivatives were obtained by
numerical integration. "The one- and two-meson con-
tributions to hp, not including those from the two-
meson H-L state, are shown in Fig. 3. One- and two-
meson contributions to Aq, not including the two-meson
H-L state, are shown in Fig. 4. The contributions to
Ap and hg ~from the two-meson H-L state are shown
separately in Fig. 5. It should be noted that the two-
meson contributions are much smaller than the one-
meson contributions except at very small distances. In

"The numerical values used are the same as those used in B;
the calculations were made by S. H. Vosko and R. E. Cutkosky
on an IBM-650 computer.
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FIG. 5. Contributions to d p and d g from two-mesons H-L state as
a function of r (in units of X=1.4X10 "cm). hP&qq~ is negative.

lations of the tensor potential, as discussed in 8, but
giving various D-state probabilities. Values of n used
are shown in Fig. 6.

The function w(r) used has an inner part correspond-
ing to a potential with a repulsive core. ' We used a
modified Hulthen function, "
tt(r) =E(expL —a(r —r,)j—expL —b(r —r,)$} for r & r, ;

=0 for r(r„

Figs. 3—5, p~ has been taken to be 1. Therefore the
quantities plotted are multiplied. by a/p& ——p, in calcu-
lating hp, .

The radial wave functions N(r) and m(r) are given,
in principle, by solution of the Schrodinger equation.
Since, however, the potentials are not known suKciently
well to obtain P by this method, we use a phenomeno-
logical approach.

Ke represent the radial functions by

N(r) = cosn'e (r), to(r) = sinn't (r), (5.1)

in which n' is a function of r. The usefulness of such a
representation is suggested by the "radially adiabatic
eigenstates" discussed in S. In the outer region we
determine o,

' from a phenomenological wave function
calculated by Iwadare et al.', this procedure guarantees
that the function will give approximately the proper
quadrupole moment. In the inner region we choose
values of o.

' consistent with meson-theoretical calcu-

a'
25—

20'—

I50

IO—

5D

VALUES I,II,III USED IN

OF SEC. VII—-- VALUES FOR IWADARE ET
~ "- " VALUES OF a' FROM A

CALCULATION ~

CALCULATIONS

AL. WAVE FUNCTION

RECENT MESON" THEORETIC

oo
0

I

0.5
I

I.O
I

I.5
I

2.0
I

2.5
I

3.0

Fro. 6. Values of a' (in degrees) as a function of r
(in units of %=1.4X10 u cm).

C. Conclusions

In interpreting the results of this calculation, it should
be pointed out that it is not intended to be a complete
and definitive calculation of all significant eGects which

TAmz I. Contributions to deuteron magnetic moment.

PD
('Fo)

r

(nm)
bpp

(nm)
&p'+&pp

(nm)

H-L states are not included, for reasons to be discussed.
The results for d p, ', the additional correction calculated
in this paper, are summarized in Table I, along with the
corresponding values of po and Apo= s(p, s)—pa. ~—e
also show the result obtained when one uses the same
radial function v(r), but with ot'=0 everywhere, i.e.,
a pure S-state. The sign of hp,

' is opposite in this case
to that for the other cases. The totals in the last column
should be compared with the experimental value
pg —p, = —0.0222 "

The eGect of the contributions from the two-meson
H-L states has been calculated separately for wave
function II; the result is

Ap, '= —0.0005 nm,

which is considerably smaller in magnitude than either
the one-meson or the other two-meson contributions.

These results (except those from the two-meson H-L
state) are not excessively sensitive to the choice of core
radius in the radial wave function.

with r,=0.2, a=0.323, 6=2.26. The value of b was
chosen to fit approximately the triplet eGective range.

B. Numerical Results

I
II

III
IV

5.9
6.4
6.9
0

0.0074
0.0091
0.0112—0.0083

—0.0330—0.0355—0.0380
0

—0.0256—0.0264—0.0268—0.0083

The expression (2.11) has been evaluated numeri-
cally, using the wave functions and values of Ap and
Aq described above. Contributions from the two-meson

~' Numerical calculations of this function were made by H. N.
Pendleton.

~'These results may be compared with those of reference 13,
in which the bp' eNect was also examined (with a diferent
method). In contrast to the values shown in Table I, reference j.3
gives hp'~+0. 01 for a pure S state, and hp, '~+0.002 for a
potential having a dominant tensor force of the one-meson
exchange type.
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contribute to the magnetic moment of the deuteron.
It is, rather, an application and extension of a simple
model which has had some success in correlating in a
semiquantitative way low-energy phenomena involving
m mesons and nucleons. Therefore one shouM not expect
exact agreement between the result of this calculation
and the experimental value of p, —pd.

The calculation does show that the contribution to
pq resulting from D(Ss) is positive, opposite in sign to
the elementary D-state contribution, and is relatively
large, of the order of 1% of p, . Because both of these
corrections increase in magnitude with increasing p~,
their sum is less sensitive to p~ than one might expect.
The results are consistent (considering the approximate
nature of the model) with values of pn of 6%, and show
that the observed value of the deuteron magnetic
moment permits considerable freedom in the choice of

pD much more than would be thought possible if this

6(Sa) effect were not included. ' "
The limitations on the meaning of our results are

largely the limitations of the model used. Some of
these are the omission of all relativistic-kinematic
eRects, the use of the adiabatic approximation, the use
of a rigid core, the neglect of nucleon recoil, and the
omission of meson-meson interactions and nucleon-pair
eRects.

The uncertainty of the relativistic eRects was men-
tioned in the introduction. We further remark only
that these eRects are one of the reasons that one should
not expect exact agreement between this calculation
and the experimental value of p„and that they intro-
duce further uncertainty into the value of the D-state
probability of the wave function as determined from pd.

The validity of the adiabatic approximation is dif-
icult to assess. It depends on the relative frequencies
of the meson field and the orbital motion of the nucleon
cores, which in turn depend on the energies involved.
In the region where the nucleons interact strongly, their
kinetic energy is about equal to the meson rest energy,
and the average energy of the virtual mesons is not
very much larger than this.

It seems likely that the adiabatic approximation will

aRect the amplitude of the two-meson H-L state more

ss M. Sugawara, Phys. Rev. 99, 1601 (1955).

than that of the one-meson state. The two-meson state
makes its entire contribution in the region of strong
interaction and correspondingly large nucleon kinetic
energy. Also, the average meson energy is smaller; it
is of the order of twice the resonance energy (or about
4.2) for the two-meson state, compared to about 6.1

for the one-meson states. For these reasons, it is felt
that the contribution of the two-meson H-L state is
too unreliable to be included in the results. If it mere

added, it would not change the results significantly.
The other limitations of the model mentioned above

are all related. Two phenomenological features of the
model, the use of an anomalous magnetic moment for
the nucleon core, and the use of wave functions corre-
sponding to a "hard-core" potential, are intended to
compensate partly for these limitations.

By using an extended nucleon core with an anomalous

magnetic moment one hopes to include in a phenomeno-
logical way some of the additional currents associated
with nucleon recoil, nucleon pairs, E-mesons and
hyperons, and so on. This is a valid procedure as long
as the core of one nucleon is not distorted by the
presence of another. At small distances (say r G.3)
this is certainly not the case. The resonances which
have been observed recently"" in x-meson-nucleon
photoproduction and scattering in T=-,' states may be
associated with the internal structure of the nucleon
cores.

The strong repulsion between nucleons at small
distances is assumed to be due at least in part to these
same eRects. The eRect of this on the orbital wave
function of the deuteron is partly included through the
use of a function which goes to zero at a certain "core
radius.

The fact that in this calculation the principal effect
comes from the one-meson exchange contributions is
encouraging. This result suggests that it may be pos-
sible to make a more definitive calculation using just
the one-meson exchange terms but with a better model
for the T= 2 excited states of the nucleons than is now
available.

"Burrowes, Caldwell, Frisch, Hill, Ritson, Schluter, and
Wahlig, Phys. Rev. Letters 2, ii9 (1959).

24 Crittenden, Scandrett, Shephard, Walker, and Ballam, Phys.
Rev. Letters 2, 121 (1959).


