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Positive Pion Photoproduction near Threshold

. G. JONA-LASINIO* AND H. MUNCZEKt

Istituto di FI'sica dell'Urli~ersitd, Rona, Italia, and Istitgto Saziorlale di Fisica lV'Ncleare, Seziorle di Rome, Italia
(Received August 4, 1959)

An investigation is made in order to test the compatibility of photoproduction data on positive pions
near threshold with some predictions of dispersion theory. The result is that no real disagreement necessarily
exists between these theoretical predictions and our still uncertain experimental knowledge.

INTRODUCTION

'HE interpretation of threshold pion interactions
has been in the past few years the aim of numer-

ous investigations' stimulated by some inconsistencies

appearing between theoretical predictions and results
of measurements. Nevertheless, the situation does not
look much improved since it is not yet very clear
whether this inconsistency is due to the uncertainty of
measured quantities or to the approximations of
theoretical calculations or even perhaps to the in-

adequacy of the theory in describing pion interactions.
One point in which theory and experiments seem to
disagree considerably is the behavior of pion photo-
production cross sections near threshold. Apart from
the rather delicate problem of the ratio between x
and x+ production, there is a striking difference between
the energy dependence of the 90' differential cross
section for ~+ photoproduction as predicted by the
approximate solutions of dispersion relations of Chew,
Goldberger, Low, and Nambu' and the experimental
values of this quantity.

In order to investigate how seriously one has to
take this discrepancy, we have made a new analysis of
photoproduction data on ++ in the energy range
E~= j.63 Mev, 87=200 Mev in the laboratory, com-
bining all available experimental data on angular
distributions with a "second approximation" to dis-

persion relations. In our analysis no attempt is made
to resolve completely the photoproduction problem

by determining theoretically the photoproduction

amplitude; a semiphenomenological treatment is fol-

lowed. We use only theoretical equations which look

more reliable and by connecting the different experi-

mental quantities through these equations, a com-

~ Now on leave of absence at The Enrico Fermi Institute for
Nuclear Studies, The University of Chicago, Chicago, Illinois.

t On leave of absence from Facultad de Ciencias Exactas
and Comision Nacional de la Energia Atomica, Buenos Aires,
Argentina.' For a general survey of the situation of threshold pion physics
see reports of 1958 ANNNal Ittterrtatiolal Cnnferettce ort High
Ertergy Physics at CERN, edited by B.Ferretti (CERN Scientific
Information Service, Geneva, 1958), p. 50 and reports of the 1959
Kiev Conference.' Chew, Goldberger, Low, and Nambu, Phys. Rev. 106, 1345
(1957) in the following indicated as CGLN. For a comparison of
CGLN photoproduction amplitudes with experiments see refer-
ence 1. Dispersion relations for photoproduction have also been
studied by Logunov, Tavkhelidze, and Solovyov, Nuclear phys.
4, 427 (1957);and L. D. Solovyov, Nuclear Phys. 5, 256 (1958).

patibility test is made. The result of this test is that
the equations used are compatible with our present
experimental knowledge on photoproduction. We
point out that a more accurate measurement of the
angular distributions of photopions would yield very
detailed information through a semiphenomenological
analysis similar to the one given in this work.

As a further result, our analysis seems to indicate
that some corrections to the theoretical static limit
are larger than estimated by CGLN. The difference
between our multipoles and those by Chew, Goldberger,
Low, and Nambu go in the right direction to make the
fitting of the theory with experiments satisfactory.
This might be an interesting point in favor of the
theory itself.

TABLE I. Results from the evaluation of the integrals. '

Re ('Fy+ Fm) Born termM+&2 Reseat tering
corr.

7.8
7.87
7.94
8.0

7.8
7.87
7.94
8.0

—23.78—24.98—26.30—27.52

Re3 (El+ Ml+)

2.52
3.50
4.34
4 94

—16.84—16.78—16.72—16.76

2.00
2.70
3.23
3.52

—6.94—8.20—9.58—10.86

Rescattering
corr.

0.52
0.81
1.11
1.42

7.8
7.87
7.94
8.0

Re3(M2+ —E2+ —Es —M2 )

—0.56—0.97—1.33—1.57

Reseat tering
corr.

~p
~0
~p
~p

ts W is expr essed in pion mass units. Multipoles are in units
10» cm/sterad&.

"SECOND APPROXIMATION" TO DISPERSION
RELATIONS AND DESCRIPTION OF

THE METHOD

In the following we shall refer for notation directly
to the Chew, Goldberger, Low, and Nambu paper.
Photoproduction amplitudes given in CGLN are
obtained through a comparison of the dispersion
relations expanded in powers of 1/M (inverse of the
nucleon mass) with the equations of the static theory.
However, it is dificult to say whether this expansion
is correct under dispersion integrals especially con-
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sidering the convergence of integrals in the high-
energy region. The S-wave contribution seems par-
ticularly affected by this treatment.

We will remark, as a first step to obtain more reliable
informations from dispersion relations, that by adding

Eqs. (9.1) and (9.2) of CGLN we get a subtracted
relation in which the only important contribution
under integrals is given by the P-wave amplitudes.
All integrals are more convergent than in Eqs. (9.1)
and (9.2). Having used Eqs. (7.1) and (7.2), we write

Re[pi+ (M+ c2)/qt2] =Re(EO+ (2M1++Ml —) (M+62)/q+3M2 3M2+ 2E2+1E2-

+»[Mi++Ei++ (3M2++2M2-) (M+ &2)/q]+ (13/2)*'(2M2++E2+) ) = —
I if~(M/W) [(W+M)' 1]'*—
(1)

(W—M) [(M+ei) (M+ e2)]'*(" 2W'dW'

7r ~41+i q'(W' —M) [(M+ei') (M+ em')]'*

1 1—4Mvi/(W' —M')
XIm [Eoq +Mi+(3&u4'+2(M+&2') —6Mvi/k')+Mi (M+e2')]

W"—W' W"+W' —2M' —4M vi

(0i 12Mvl Ei+ Ml+
J (1)

Ei)W2 —M2 W' —M J'

where W=total energy (in pion mass units), x=cos8
= (k&o,—2Mvi)/kq, ei(42) =nucleon energy in the initial
(final) state, q= pion momentum, ar, =pion energy, and
k=photon momentum. All quantities refer to the c.m.
system. 2Mvi ——2 (2M+1)/(M+1) (see below). Also

we have that f=pion-nucleon renormalized coupling
constant, I4=I4v —

I4 for isotopic superscripts + and —,
and I4=Iiv+Ii„ for isotopic superscript 0, with
= 1.78e/2M, 44„=—1.91e/2M, and e= electronic charge.
Only S and P amplitudes have been retained under the
dispersive integrals.

The upper sign goes with isotopic superscripts +, 0
and the lower with isotopic superscript —.On the
left-hand side we have indicated also the D-wave terms
which are well approximated by the Born terms alone.

Higher multipoles have been supposed negligible.

Our procedure consists in using for Immi+ and
ImEi+ the approximate expressions of CGLN in order
to evaluate integrals, neglecting ImEO. In this way
we expect to attain some advantages: the main con-
tribution to the integrals comes actually from the
33-resonant state. The high-energy region is not so
important because of the good convergence of the
expressions. No 1/M expansion is made in the kine-
matical factors so that the method represents a second
approximation of dispersion relations in an iterative
calculation. The momentum transfer at which this
expression has to be evaluated has been chosen in
order to get x=coso =0 at threshold. In this way no
contribution appears from the unphysical region.

With the same method described above we have
also treated Eqs. (9.3) and (9.4) which we report for
reference here.

2M(W —M)ef i 2M8'—M
Re%3=Re[3 (Ei+ M i+)+D-wav—e terms] =

~ q [(M+ei) (M+ 42)]'
28' 2Mvi. W+M W' M' 4Mvi— —

4M 1 ~" 2S" d8"
+-

4Mvl W +M K 1IE+1 W M q [(M+e2 ) (M+42 )]'

XImi 3(Ei+—Mi~)
J w —w W"+W' —2M' —4Mvi

—W+W —2M+4Mvi/(W' —M) Fiq'+(M+e2')F2
2

J , (2)
W"+W' —2M' —4M vi )

W—M (M+ei) '*

Re%4=Re[3(M2+ . E2+ M2— E2 )+higher wave terms]=-', q'
2W (M+e2)

28"dWef 2M 2M(W+M) 4M
+fI4 +-

2Mv W—M W M 4Mv 4M» W—'+M—' ~ ~~+i q—'(W' —M)[(M+4, ')(M+.,')]:
1 —2M —W' —W+4M vi/(W' —M)

XImi 3(Ei+-Mi+)
W'+ W W"+W' —2M' —4M vi

r,q'+ (M+ 4,') S,
W"+W' —2M' —4M v,)
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The convergence of integrals is the same as in Eq. (1).
All integrals have been evaluated analytically with

the method indicated in Appendix I. We have con-
sidered only contributions from terms containing
sin'a33. Terms containing sin2aa~ and the small phase
shifts were estimated and found negligible. CGLN
expression for the multipoles are listed in Appendix II.
Our results are summarized in Table I. Figures include
also the contribution of the isotopic index 0, which is
well approximated by the Born term, and concern
directly m+ photoproduction.

As expected, "rescattering corrections" are very
large in Eq. (1). In Eq. (3) a cancellation makes the
contribution of integrals negligible. Waves higher than
t= 1 in Eq. (2) and /= 2 in Eq. (3) were eliminated by
projection.

Comparison with CGLN multipoles will be made
later.

By the procedure described we have obtained
predictions of the theory about some particular com-
binations of the multipoles. All values obtained have
probably the same degree of reliability. To go further
with our analysis we consider the expression of the
angular distribution of photopions which, retaining
only S and I' waves and SD interference terms for the
anal state of the pion, reads'

-az x 10crn /Ster

lL

150 Mev
Eg (Lab)

200

Fro. 1. (a) Present analysis. (b) Interpolation of
experimental data. '

eScients a, and then determining from the 5 equations
we get combining the 3 theoretical predictions (1), (2),
and (3) with these coefficients, the 5 parameters S, X,
Y, E, and D. We have taken ao and a~ as known since
they are the best established experimentally. Then a2
is calculated and compared with the experimental
values. Actually the calculation is~'not so straight-
forward since the interference term due to D waves
contains a rather complicated combination of M2~ and
EaL. To supplement the information given by Eq. (3),
we may observe that the right-hand side of Eq. (1) is
very weakly x dependent. Then we write the approxi-
mate relations

do——=Gp+Gr cosg+Gs cos 8,
dQ Q

Mr++Erp+L(M+es)/q7(3Msi. +2Ms ) 0,

2Ms++Es+ 0.
(6)

where Q=co,q/(1+k/M)s is the statistical factor. as,
a&, and a2 can be easily expressed in terms of the
multipoles —supposed to be real—in the following way:

as S'+X'+ Y'+——SD,

ug ———2SE,
e =E'—X'—F'—3SD,

where
S=Eo(q/kQ) i,

D= (—3Ms++3Mp —Es —6Es+) (q/kQ) i,

X= s (Ei+™i+)(q/&Q) i (5)

X+Y= —(2M,++ M, ) (q/uQ)»,

X+Y+Z= —3(Mr++Erg) (q/kQ)&.

Actually higher multipoles contribute to the angular
distribution; however, neglecting measurements at
small and large angles (150')8)30'), a quadratic
parabola gives a reasonable Gtting of the data. A
more re6ned analysis would be practivally meaningless
considering the type of discussion we have in mind,
owing to the present experimental errors.

The method that we follow from this point on
consists in taking from experiments two of the co-

' See for instance M. Gell-Mann and K. M. Watson, Annual
Review& of Nuclear Sck nce (Annual Reviews, Inc. , Palo Alto, 1954),
Vol. 4, p. 241.

This is not completely correct since higher multipoles
are present; however, we consider the approximation
to be in line with the analysis based on 5 parameters
of the experimental data, which contain all multipoles.
Making use of Eqs. (6), we find easily

D= M~ —E~—Ep —M~
—L2q/(M+ e,)](M i++Et~). (7)

We are now ready to use all our equations in order
to calculate a2. In Appendix III we give for reference
the algebraic system which has to be solved. The
result of the calculation is given in Fig. i.

As input parameters we have taken the interpolation
of experimental data given in reference. 4 ao is constant
and equal to 14.8)&10 "cm'/sterad; ar is interpolated
by the formula at= —5.7(q/k(%au, )&7)&10 ' cm'/sterad.

DISCUSSION

The agreement between the calculated a2 and the
experimental values of this quantity can be considered
satisfactory. Even if the experimental errors are very
large, the energy dependence seems to be quite well

43eneventano, Bernardini, Carlson-Lee, Stoppini, and Tau,
Nuovo cimento 4, 323 (1956).Tbis paper contains a summary of
most of the previous experimental data in the same energy
range. Measurements of m+ angular distribution have been
recently made by J. H. Marlmberg and C. Robinson, Phys. Rev.
109, 158 (1958); and Knapp, Imhof, Kenney, and Mendez, Phys„
Rev. 107, 323 (1958).
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Eo x 10 cm Ster

JL

XS-

Thi

CGLN

7.8
8.0

—18.3(') —20.'8

Re FI+ +"F2

—19.8
(b)

Re3 (BI+—M I~.)

(a) 4'7
2.5

TAnLE II. Values of the expressions in Eqs. (1) and (2)
in CGLN approximation.

150 Mev 200

FIG. 2. Energy dependence of Ep.

Er (tab)

' Barbaro, Goldwasser, and Carlson-Lee have recently meas-
ured oo at 161 Mev and Gnd oo ——18.5&1.3X10 + cm'/sterad
in agreement with CGLN predictions. A. Barbaro (private
communication}.

6H. L. Anderson, Proceedings of the Sixth Annua/ Rochester
Conference on High-Energy Physics (Interscience Publishers, New
York, 1956), p. 20.

r H. Y. Chiu and E. L. Lomon, Ann. Phys. 6, 50 (1959).

reproduced. We may perhaps say that this agreement
is an argument in favor of the procedure followed and
the constancy of ao appears not incompatible with the
theory. To illustrate this last point, we remark that
an ao greater than the experimental value used in the
lower energy region gives a calculated a2 smaller in
absolute value.

However, appreciable variations of a&, say 20%%u&,

would not bring the calculated values of a2 outside the
experimental errors.

We must conclude that a constant ao is not in-
compatible with the other experimental data: however,
at the same time a behavior similar to the one predicted
by CGLN~~is not excluded. ' In order to resolve this
question definitely, a more accurate knowledge of the
angular distribution is necessary.

Another interesting feature to discuss is the diGerence
between our combinations of multipoles and those by
CGLN. The energy dependence of Es (see Fig. 2) rests
essentially on the assumed constancy of ao. The
difference between CGLN values and ours yields an
indirect estimate of their unknown function iV( ~. We
want now to compare the right-hand side of Eqs. (1)
and (2) with the values of the same combinations of
multipoles in the CGLN approximation. It is not quite
clear which set of phase-shifts has to be used in evalu-
ating CGLN expressions since this evaluation depends
critically on the assumed low-energy dependence of
all phase-shifts. In Table II the values of the CGLN
expression for the combination of multipoles included
in Eqs. (1) and (2) are calculated using (a) the whole

set of phase shifts by Anderson, ' (b) setting equal to 0
the small I' waves. Chiu and Lomon~ values for the
small phase shifts have also been used and the result
is practically the same as for (a). The unknown CGLN
function E' ' is set equal to 0. Re3(Et+—M&+) agrees
very well with our values while for Re (Ft+L(M
+ex)/q)Fs) an indication that our values are higher

than those by CGLN seems to exist, independently of
the set of phase shifts used.

M&+ and E&+ can also be obtained separately from
our combined analysis. However, their values are
differences of large numbers and thus are not very
accurate. We wish to point out that M~+ and E~+
agree substantially with the CGLN values while lower
values are found for the positive quantity M& . This
might explain the values found for the right-hand side
of Eqs. (1) and (2).

Sln @33
f(W', W) dW',

q'

sin @33
P g(W', W) dW',

~.M+1

where f(W', W), g(W', W) represent rational functions
of their arguments. Functions g have a simple pole for
W'= H/' and P indicates the principal value. We have
taken the following eGective-range formula for tan0, 33.

tan+33 =
co*(1—ra&*)

where a&*=W —M' and r=1/~„; ro„= resonance energy.
We have put the values a= 0.11 and r = 1/2. 16 obtained
by Anderson and Davidon' through a best Qt of all
data on scattering experiments.

We have used this formula because of its simplicity:
the values of the integrals depend essentially on the
behavior of +33 in the resonance region and the low-

H. L. Anderson, Lectures on the Physics of Mesons, Roma,
1957 (unpublished).
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APPENDIX I

We want to give a brief summary of the method
followed in evaluating dispersive integrals. The expres-
sions that have been calculated were of the form
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energy dependence is not critical. tA'e have

a'q'
sin o.~3=

~42(1 r~e)2+a2qs

To make the calculation easier we have used the
following approximation for q:

q L(W+M)/2M/(a&*2 —1)&

and for the denominator of Eq. (1) we have used

M*2 (1—re*)2+asq6~2)2(v*2F F

where rp= 1/232. 1. F& and F2 are quadratic expressions
in (o*.Ft (re* n)—(——(u* rr+—), F2 (a)*—P——) (u)*—P+), With
ct = —1 951+.67 431; .p = 1 951+. 20 378.

Integrals can now be evaluated by factoring the
integrand. They are reduced to the form

~oo (~92 1)f
gA; -d(u",

1 M 8'

where a, are the roots of the denominator.
The A; satisfy

A;=0,
1

Q A,a;=0,
1

APPENDIX II

The expressions for the multipoles extracted from
CGLN amplitudes are

M &+ efV——2qkft 2
tF—sr/(1+(vs/M)+ (g„+g )/6Mo)*

' —Xh +2) (ht2 —hs~) —1/gse~» sinn22F jrj
Mt =efv2qkPFsr/(1+co*/M) ts —(g„+g )/Mrs*

+ tsX(htt —hst) j
Et+——ef(v2/3) kqLFq/(1+co*/M)+-'sse' » sinrrssFq).

Notations are the same as in CGLN.

APPENDIX III

The algebraic system to be solved to obtain the five
parameters S, X, I', K, D, is reported here.

The three theoretical predictions (1)—(3) have been
combined with the 6rst two of Eqs. (4) using the
expressions for S, X, I', E, D, given by Eqs. (5). All
multipoles can be supposed real in the energy region
considered. Using 6, 0, and I' for the valuesiof the
right-hand side of Eqs. (1)—(3) reported in Table'I we
find

S—L(M+62)/q7(X+ I")+2D= (6+221') (q/kQ)&

X= (0/2) (q/kQ) &

L2q/ (M+ 62) g (X+I'+E)—3D= —I' (q/kQ) &

S'+X'+ I'2+SD= as
—2SE=a1.

A,u," '= i. Then
a,=S' 2SD+E' as.— —
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Mass Splittings within Baryon Charge Multiplets*

R. E. BEHRENDsf AND L. LANnovITZ
Brookhaverl, National Laboratory, Upton, Eem York

(Received July 30, 1959)

We have calculated the effect upon the mass splittings within each isobaric multiplet of a phenomenological
boson mass difference. It has been possible to sum the diagrams to all orders in the strong couplings but the
results are only valid to first order in the mass difference. These results can be compactly expressed as
derivatives with respect to the intermediate masses of a function related to the proper self energy. The
second-order perturbation results are also calculated.

INTRODUCTION

1 M~VER
the past few years, there have been several

attempts at explaining the mass diRerences
within charge multiplets by means of the electro-
magnetic self-energy arising from electric charge and
charge-magnetic moment interactions. ' These attempts

*Work performed under the auspices of the U. S. Atomic
Energy Commission.

t Now at The Institute for Advanced Study, Princeton, New
Jersey.' See for example, R. Feynman and G. Speisman, Phys. Rev.

have been beset by many difficulties, not the least of
which is the presence of divergent integrals which
must be cut off in a customary but unsatisfactory
manner. Moreover, in addition to this purely electro-
magnetic difFiculty, there exist the extremely complex
contributions from the combined eGects of the electro-
magnetic and strong interactions —contributions which

94, 500 (1954); Marshak, Okubo, and Sudarshan, Phys. Rev.
106, 599, (1957); J. Sakurai, Phys. Rev. 115, 1304 (1959);H.
Katsumori, Progr. Theoret. Phys. (Kyoto) 17, 803 (1957).


