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valid, but it is the only direct comparison with theory
one can presently make. The errors shown in Fig. 7 have
been derived from the error limits quoted in the text
by standard statistical methods, with the assumption
that all errors are standard deviations.

It is seen that in those cases for which the information
is most reliable (high retardation factors and large
anomalies) the relation is linear with a slope of unity.

It is not possible to justify fully such a simple function
in terms of the theory developed by Church and
Weneser" and by Nilsson and Rasmussen. ' Barring
fortuitous cancellations, this relationship does seem
to mean that for the cases examined the anomalous
part of the electron-ejection matrix element does not
change rapidly when that for gamma-ray emission
becomes severely attenuated.
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The nuclear magnetic moments determined from the hyperfine structure of the 2S~ and ~Eg states are
systematically smaller than those determined by methods of magnetic resonance. The Breit-Crawford-
Schawlow correction, which takes into account the finite dimensions of the nucleus, together with the
Bohr-Weisskopf correction which takes into account the spatial distribution of nuclear magnetism, succeed
in explaining at least the order of magnitude in the preceding difference. However, in the two corrections,
certain factors are determined graphically, while others are to a certain extent erroneous, owing to incomplete
solving of the Darwin-Gordon differential system. All these diRiculties are removed in the present paper
and the final result is a completely analytical expression for the total correction. The numerical calculations
made for soHg"' starting from the ground state 'Si (Hg rr) fail in good agreement with the value of the
nuclear moment determined by magnetic resonance.

I. INTRODUCTION

~ ETERMINATION of the nuclear magnetic
moment from the hyperftne structure of a certain

element is made with the greatest accuracy in the
following circumstances:

(1) Considering only the '5; and 'I'; states, the
hyper6ne splitting is maximum for the 'S; ground state.

(2) If the element studied does not normally contain
the necessary electronic configuration, a suitable ioni-
zation must be produced, as the Fermi-Segre formula
is rigorously applicable only for atoms with a single
valence electron.

Under these circumstances, the magnetic moment is
given by the formula

where a8 is the interval factor of the 'S~ state, while

x(s,z,) is the relativistic correction of Racah:

Z.
, (I,2)

137'

the rest of the notations being the usual ones. The
subscript 0 refers to the fact that the moment is obtained
by an optical method.

The magnetic moments determined from the formula

(1) are for almost all nuclei smaller than those deter-
mined by nuclear magnetic resonance, and the difference
is on account of the assimilation of the atomic nucleus
with a point magnetic dipole. Setting I' for the factor
which takes into account the 6nite extension of the
nucleus and the distribution of nuclear magnetism, D
for the diamagnetic factor, and pg for the magnetic
moment determined by resonance, we must have the
following equality:

lao/I'= yz/D,

where D has approximately the expression

D= (1—3.19&&10 'Z;&),

(I,3)

while I is the product of the Breit-Crawford-Schawlow
correction (Q) and that of Bohr and Weisskopf (A.):

(I,5)

In the following we shall establish a rigorous analytic
expression for the Q factor which should meet the
requirements of a precision determination as is the case
in the magnetic resonance method. First of all we shall
solve very precisely the Darwin-Gordon differential
system for the wave functions inside the nucleus and
we shall perform by a particular method the integrals
on the perturbed electronic wave functions outside the
nucleus, which leads us to the explicit expression of the
magnitude of F in the 8reit-Crawford-Schawlow
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theory. After obtaining the accurate value of Q, ob-
taining the I' does not oGer outstanding diTiculties.

For the S, (k= —1) electrons, the solutions of the
system (II,4) obtained by the development in series are

II. ELECTRONIC WAVE FUNCTIONS

For the space region outside the nucleus we shall use
the perturbed electronic wave functions of Rosenthal
and Breit' obtained by solving the Darwin-Gordon
differential system in the (—o/m, c'«1) approximation,
where e is the quantized energy of the valence electron.

@) aC+Sop (2+y)+aC J p, (2+y),
Qp

——C+{ (k —p) J& (2+y)+(y)V& +i(2+y)} (II,1)
+C {(k—p)J 2, (2+y) —(y)lJ (p,+))(2V'y)}.

The notations are those in the above-mentioned
paper of Rosenthal and Breit, namely:

y= (2Zr)/aH, . p= (k' —a')'*; a =Ze'/hc;

F(;)(x) = —G(0)[0.5ax —(0.1a+0.112 498a') x'

+ (0.048 213a'+0.009 040a') x'
—(0.006 942a'+0.005 915a'
+0.000 378a') x~+ (0.000 379a'

+0.001 561a'+0.000 327a'

+0.000 007a') x'+
G(;) (x) =+G(0)[1—0.375a'x'+ (0.1a'

+0.042 187a4)x4—(0.008 333a'

+0.021 428a +0.002 260ao) x'

+ (0.004 315a4+0.001 674a'

+0.000 071a')x' —(0.000 404a'

+0.000 530a +0.000 068a
+0.000 001a")x"+ . .].

(II,5)

The passage from the (pi,(to) components of the wave
function to the (F,G) components in the more current
notation, is made by taking account of their diR'erent
normalization:

1 1
(F,G) —+ —(Pi,gp); 47r

~

(F'+G')r'dr=1. (II,2)
(4m) ~ r ~ p

Finally, the determination of the C+, C coefficients
from the normalization and continuity conditions on
the nuclear surface gives us

C+=4'-(0) (4~)',
2Z'

t'C l I'(1 2p) L1+(k p)f') j—
y 2p

& C, & r(1+ 2p) [1+(k+p){.„~

where {),= F(rp)/aG(rp). The—functions of the 'S;
state are obtained for the particular case k= —1.

For the space region inside the nucleus, we suppose
a homogeneous distribution of the nuclear charge as
well as the —U(rp)/re, c'))1 (rp=1.216&&10 "Al cm)
condition, which is fulfilled for heavy nuclei. In this
case we have to solve the following differential system
for the small (F) and large (G) components of the wave
function:

dF F
+ (1—k)—= ——,'a(1—-'x')G

dS x

The G(0) constant, as determined from the condition
of sticking to the nuclear surface of the interior and
exterior wave-function components has the following
expression in the approximation yp«1:

yp, p
—2(1—p)

G'(o) =4 -'(0),
I'(1+2p) -1—(1—p)|-

where

q(a) = 1—0.406 666a'+0.072 975a4
—0.0007 441a'+0.000 497a'—

1 (a) = oo {1+0.106 233a'+0.016 649a'
(II,7)

+0.002 788a'+0.000 479a'+ }.

FpGpdx. (III,1)

As FpGp+FG, the following transformation may be
made:

III. THE BREIT-CRAWFORD-SCHAWLOW
CORRECTION

The hyper6ne splitting is—in the relativistic theory—
proportional to Jp" FGdx. By setting the subscript zero
for the wave functions corresponding to a point nucleus
atom, the Q correction factor is defined by the ratio'

dG G
+ (1+k)—= +-,'a(1 ——',x')F;

dS X.

(II,4) Q= FoGodx
4x

FoGod*

here x= r/rp.
= 1 FpGp(lx FpGpdx . (III,2)

0 0

' J. Rosenthal and G. Sreit, Phys. Rev. 41, 459 (1932). 'M. Crawford and A. Schawlow, Phys. Rev. 76, 1310 (1949).
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By using the following mathematical formula for wave functions. The calculations are very tedious but
calculating the integrals from Bessel function products, not intricate. One obtains

I
"~.(&)~.(5)

d)=2 "
pi

r (x)r-,' (p+) —x+1)
X

r-,'(&—.+x+ 1)r-,'(&+.+X+1)r-', (—&+v+X+ 1)

9 p2

F(;)G(;)dx= ——aP '(0)
10 r'(1+2p)

(1+a%)
X yo

'(' »&(a), (III,9)
L1—(1—p)f]'

(III,3) where ((a) is given by the development
the expression of Q becomes

2p(4p' —1) x" '
Q= 1— (1+p) yoP&

—' . (III,4)
3r2(1+2p) 2p —1

The undetermined parameter x from (III,4) is

graphically estimated and is found to be about one
unit. We shall now show that indeed x 1 and that
moreover it does not depend on the nuclear radius but
only on Z. I et us now introduce the following notations:

F=F++F and G= G++G for x ~&1;
(III,5)

and G= G{,) for x ~& 1;
where F+ is proportional to C+, F to C t according
to (II,1) and (II,2), etc.]. The integral between
infinite limits from F G (III,1) is now decomposed into
a number of integrals which may be performed
separately:

((a) = 1+0.162 675a'+0.025 192a4

, +0.004 446a'+0.001 047a'+ (III,10)

We want to emphasize that the various developments
involving the electronic wave functions inside the
nucleus are determined within a relative error of about
10 ', even for the extreme case Z= 137.

The two remaining integrals can no longer be
integrated in the relatively easy way used for the
others. For them we shall have to consider the following

auxiliary mathematical theorem, whose demonstration,
being so simple, will not be reproduced here.

Let us take two functions f(x) and fo(x) which meet
the following conditions:

(1) lim f(x) =&~; lim fo(x) =+~;

(2) lim{ f(x)/fo(x)) =1;

Jp "p
P+G+dx — Ii+G+dx

kp
(3) lim ~~ f(x)dx=+; lim ~~ fo(x)dx=W~;

~p~p j 0~ j~p

~oo

+ F(@G(,gdx+ $F+G +F G+]dx
0 1

F00

+ F G dx. (III,6)

f(4), f(x)dx/0, ~; fo(x)dx/0, ~
&0

for x()40, ~.
From the above properties it results that

In the following we refer only to s; electrons.
The first integral is identical with that in the de-

nominator of the expression of Q in (III,1)—its evalu-
ation b

'

(III,3)

f(x)dx= fp(x)dx if x()«1.
Xo ~) gp

The second integral is obtained very simply by the
development in series of Bessel's functions and by (F G +F G )dx

stopping at the first term

eing made without any difficulty by using

to estimate the integrals we are interested in by taking
Ca 3 only the first term in the various Bessel functions which

F+G+dx= —aP„'(0) yo
—'. (III,7) appear.

2p(4p' 1) Thus the fourth integral will be

pl (1+p) yo
—2(i—»

F+G+dx = aP '(0) — (III 8)
r'(1+2p) (2p —1)

The third integral may be evaluated term by term
by using the analytical expressions in (II,5) for the

yo (C ) 2 ~'V

C+'I
4vrr02 ~ c+I I'(1+2p)r(1 —2p) "))o y'

1—(1+p){
=+at' '(o) yo '" ». (III,11)

r'(1+2p) 1 (1 p)t'
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In a quite similar way we perform the last integral

FGdx

distribution of nuclear magnetism, and for E~&E(i,
p(R) =0 outside the nucleus. By inserting the explicit
values for the gg and ql„we obtain the expression of the
A correction factor.

yo C -' (1-p) ~" dy=—a C+'
4rrro C+ I'o(1—2p) & yo y'"+"

where

A= j" p(R) {nsrfs+nIrfr)drs,
(~)

(IV,2)

where

2p(4p' —1) HQ=1- (1+p) y " ', (III,13)
31'o(1+2p) (2p —1)

(1—
p) 1—(1+p)f 'yo '" "

of '-(o) . (III,12)
rs(1—2p). 1—(1—p)f~ (1+2p)

Now we add up all integrals and, considering (III,1)
and (III,6), we obtain the following expression for the

Q correction factor (Breit-Crawford-Schawlow):

tl s= 1— FGdr
~

FGdr
0J 0

ps( ro) 00

rir, 1———i'
I

1——IFGdr )~ FGdr;
jo ( Zs& jo

or, in its better known form, 4

A = 1—(nses+nr er)
where

(IU,3)

(IV,4)

2p Mo (III,15)

Obviously, it does not depend on the nuclear radius
but only on Z. For p —+1 the limiting value 4 is
obtained.

IV. THE BOHR AND WEISSKOPF CORRECTION

Taking into account the spatial distribution of
nuclear magnetism as well as its double origin (intrinsic
spin magnetic moment and orbital magnetic moment)
leads to the necessity of another correction. In brief,
their theory is the following:

We write the separate interation of the optical
electron with the two parts of the nuclear moment'

W= Ws+Wz, = /*en[As(r)+Ar, (r)ggdr
(~)

16=~—
&& egrI

3
p(R) {nsCs+nr9r, )d&a

{&)
I+('Sf) state

(IV,1)
I —(spi) state

where p(R) = oo*(R)q(R) =const for a homogeneous

' A. Bohr and V. Weisskopf, Phys. Rev. 77, 94 (1950l.

9 (2p —1) (1+"f')
k(o)

10 (1+p) [1—(1—p)|j'
(2P—1) $1—(1+p)f )+2
(1+p) ~1 (1 p)i ~ 1+p 2P+1

(1—(1+p)t i '
XI I

. (111,14)
(1—(1—p)t'&

Now, comparing (III,4) with (III,13) we obtain an
analytic formula for the undetermined parameter z

~oo —r (s
as= ~ ~ FGlr PGdr);

Ido Jo
(IV,5)

oo —1 ~R
p req

PGdr
~

1—Itodr)
Zs)

Here the averages are taken with the real distri-
bution of the magnetism in the nucleus which is in fact
unknown. These averages can be performed in a rela-
tively simple way for a homogeneous distribution. For
a distribution which does not differ very much from the
homogeneous one, we shall be able to use the following
approximation, somewhat equivalent with the result of
Bohr and Weisskopf

x,y Iiodx
0

5 pZ~'
xx IiGdx IV6

3 Iso) &o Av horn. distr.

if f(0,y)=1.
By using (IV,5), (IV,6) as well as the accurate value

of the integral in the denominator of the (IV,5) ex-
pression, as results from (III,7) and (III,13) we can
express the A factor in a quite analytical way

(1+~~V) (2P) 2P (4P 1)

[1—(1—p)f3' I'(1+2p) 3Q

39 5 (Eqs
X &r(n)-yo'~'

280 3 (Eoj
t' 7 s(u) q

X ns+
I

1—0.387 016 Inr, , (IV,7)
Xr(u) )

4 H. Kopferman Eeremomeafe (Akademische Verlagsgesellschaft,
Frankfurt a Main, 1956), second edition, Sec. 73.
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here

X~(a)=1+0.225 063a'+0.037 471a4

+0.005 381a'+0.000 767a'+

4(a) =1+0.149 762a'+0.019 232a4

+0.002 852a +0.000 641a + ~

2p(4p' —1) (2p-1)
P=1— (1+.) y'-' 1+

31"(1+2p) (2p —1)

(1+a'f4) 2p '5 ( R i ' 39
X &x(a)~s

(1+p) 1—(1—p)f 3 (RoI „280

l'39
+I l(i(a) — l2(a) l~i I. (IV,8)

&280 1225 i
66

We want to emphasize that by obtaining the factor

Q in Sec. II, accurately, it was no longer necessary to
use the inaccurate value in the Bohr-Weisskopf paper
for the integral in the denominator of (IV,S) ~

The appearance of Q in the A factor as well as the
proportionality of (1—A) with y02' ' enables us to join
the two corrections Q and A in a single one, I'=QA,
which will have the following expression:

4p
f(x)[F(oG()]~-+l.ldx

[F(1)G(1)]~-+l~l
f(x)[F(eG(o]~=l.ldx

[F(1)G(1)]~—l~l 0

(Ikl —p) t
'
f(*)[F(,G(o]& l&ldx, (v,1)

(Ikl+p) "0

where f(x) is an arbitrary analytic function.

By direct integration we also obtain the corre-

sponding relations between the other kinds of integrals,
for the states k=+

I kl and k= —
I
k I:

[F+G+]~~l~ldx
4p

(2lkl —1) t-
[F"G+]g l pldx, (V,2)

(2lkl+1) "0

p1

[F'G']&~l~ldx

(Ikl —p)
p+G+]& l&ldx, (v,3)

(Ikl+p) "o

(Ikl —p) I"
[F+G +F G+]~—l~ld» (V 4)

(Ikl+p) "i

We also make a point of emphasizing that according t'"
to the (IV,6) formula, the ratio between the coeKcient g

[ +
of n~ and that of n8 is not a constant value but depends
on Z; indeed

FGdr PGdr

~1
(1—x [1—3 lnx])FGdx

t1
(1 x')FGdx—

4a
[F"G 3~-+l4ldx

(Ikl -p)
[FG]& l&-ldx-. (V,S)

(lkl+p)

Considering all these relations as well as the defi-

Q 387 Q16 I (Iv 9)
nitions of the Q factor, we obtain the following binding

l,
'

y, (a) ) ' ' relation:

while in the above-mentioned work of Bohr and
Weisskopf this ratio is 0.62.

Q(+Ikl) —1 2lkl+1(lkl —)
Q(—lkl) —1 2lkl —1&lkl+ ) (V,6)

V. THE Y FACTOR FOR pg ELECTRONS

Apart from the s: electrons, only the p: electrons are
those for which the Y structure correction is important,
on account of the proportionality between (1—I') and
the (2p —1) power of yo.

In order to obtain the I'(p;) structural factor, we
shall first establish general relations between the
integrals which are included in the definition of F(s~)
and the corresponding ones for F(p;). As a f'nal result,
I'(p;) is expressed in te™of I'(s:).

From an examination of the Darwin-Gordon diGer-
ential system for the electronic wave functions inside
the nucleus, we can write the following relation:

Further on, according to the definition of the h.
correction factor, we derive the relation for its trans-
formation by means of Q:

Q(+Ikl)[1—A(+lkl)] 2lkl+1(lkl —p)
(V,7)

Q(—Ikl)[1—A(—lkl)] 2lkl —1 (Ikl+p)

From (6) and (7) one obtains without any difhculty
the relation of transformation for the product I'=QA. ,
which is the one we had sought:

I'(+ lkl)-1 (2lkl+1) (Ikl -.)
I'(—Ik I)—1 (2lkl —1) (Ikl+p)
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In particular for
~

k
~

= 1 (the only case for which the
corrections are significant), we have

(V,9)

In order to compute I' we take into account the fact
that the nuclear state of 8pHg"' is given by the odd
neutron p» and that soHg"' fits in Schmidt's diagram.
The characteristic values which are included in the
expression of I' are: n& ——0; nz ——1, rp=1.216)&10
cm, (5/3)((E/Eo)')A„=1. The value of I' is

VI. COMPUTATION OF THE NUCLEAR
MAGNETIC MOMENT OF 80Hg

I'= 0.879 825. (VI,2)

As an illustrative example, we shall compute the
nuclear magnetic moment of 8pHg'" starting from the
ground state 6s'S~ of the SpHg"' u ion. For this state,
the quantities involved in the (I,1) formula are:
n~= 1.703 396; Z, =80; Zo=2; )t(s,80)=2.257 306;
(1—do/de) =1.236 539 (determined by the method of
finite diGerences and by the extrapolation of the
resulting series on the basis of the O'Alembert con-
vergence criterion). The interval factor as, determined
by the hyperfine structure' is 1.358 cm '. %ith these
data, we find the following value for pp.

On the other hand, the magnetic resonance test gives

p,g =0.4993 ~ ~

while the diamagnetic correction D is

D= 0.990 348.

(VI,3)

(VI,4)

(1) From hyperfine structure,

p, = p,o/V=0. 5031. (VI,5)

By using the ratios (I,3), we obtain the following
values for the moment:

p, p ——0.442 149@~.

s S. Mrozowski, Phys. Rev. 57, 207 (1940).

(VI,1) (2) From magnetic resonance,

p= pg/D=0. 5041. (VI,6)
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The half-lives of the first three excited levels of Mn'6 have been measured by looking at the cascade
gamma rays from neutron capture in Mn". They are found to be 10.7 3 mpsec, 4.9+0.6 mpsec, and
~&0.5 mpsec. A fairly plausible assignment of spins and parities to the erst, second, and third excited levels
of Mn56 would seem to be 2+, 1+, and 2+, respectively. The technique described in the paper should be
useful in those cases in which excited levels of unstable nuclei cannot be reached through beta decay.

I. INTRODUCTION

XCITED states of Mn" were investigated by
~ Green et al. ' by means of the Mn" (d,p)Mn"

reaction. More recently, gamma-ray spectra from

neutron capture in resonances of Mn" have been

investigated by Kennett ef al.' In Fig. 1, from the

paper of Kennett et al. , are shown the erst three excited
states of Mn" and the transitions observed following

neutron capture in Mn", The 210-kev level and the
109-kev level are fed directly from the capture state.
The 210-kev level is fed predominantly at the 1080-ev
(7=3 ) resonance; the 109-kev level at the 337-ev

t This work was performed under the auspices of the U. S.
Atomic Energy Commission.

' Green, Smith, Buechner, and Mazari, Phys. Rev. 108, 841
{1957).

2Kennett, Bollinger, and Carpenter, Phys. Rev. Letters 1, 76
(1958).

(J=2 ) resonance. The ground level of Mn" is known
to be a 3+ state. ' 4

This paper describes the measurement of the half-
lives of the 6rst three excited levels of Mn". A beam

7261 2, 3

210

7046
7152 FIG. 1. Excited states of

Mn" and the transitions
observed following neutron
capture in Mn'5.

109

26
56

Mn

83
. 4

3 Childs, Goodman, and Kieffer, Phys. Rev. Letters 1, 296
(1958).

4 Strominger, Hollander, and Seaborg, Revs. Modern Phys. 30,
628 (1958).


