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Production of H-(1s2) by Hydrogen Atom Collisions
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The post matrix element form of Born's approximation is used to calculate the cross section for H (1s')
production in hydrogen atom collisions. The Coulomb wave function is approximated by a plane wave, and
two different wave functions derived by Chandrasekhar, one of which contains the inter-electron distance,
are used for the H state. The value of the cross section obtained with the wave function containing the
interelectron distance term is roughly 25% larger than the other cross section. Since the direct and exchange
charge transfer amplitudes, f, (8) and f, (7r 8), are—sharply peaked about 8=-0 and 8=x, respectively, the
interference terms are negligible. Thus, only f,(8) has to be calculated to obtain the cross section.

~

'HE charge exchange cross section for the collision
of neutral atoms of the same species is dificult

to calculate and in many cases nearly impossible to
measure within the framework of present experimental
methods. Nevertheless, it is becoming increasingly im-

portant to know the values of these cross sections for the
current problems of the upper atmosphere. The simplest
cross section of this class to evaluate is the hydrogen
atom case, and this paper presents the formulation and
calculation of reaction (A) in Born approximation.

H(1s)+H(1s) ~ H (1s2)+H+. (A)

(IIp' e2V')+ = (FIp
e2—V)% =&I—(1a)

In the center-of-mass system, and with the neglect of
spin-dependent forces, the nonrelativistic equation for
this process is given by
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In the laboratory system, r1, r2 are the proton coordi-
nates, and r3, r4 are the electron coordinates. e is the
electron charge; 5 is Planck's constant divided by 2m,

and the particle masses are as follows: m= elec-
tron, M= proton, Mr=M+212, Ms=M+2m, pl Ml/2,
p=212M/Ml, p2

——MM2/2M1. The relative coordinates
for the prior system (primed) are
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and the relative coordinates for the post system (un-
primed) are

Mrl+m(rs+ r4)
Xl= rp rl, X2= 14 1'l, R= —1'2.

M2

Conservation of energy is given by

~

—R' —(It4/m) xl'+ (p/m) x2'
~
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2@1 2P2
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(1c) In (2a), Ep, Z„are the magnitudes of initial and final
wave vectors of relative motion, respectively, while ep, e„
are the binding energies of H(1s) and H (1s2), re-
spectively.

With the assumption that 4=+ g (R)lt (xl,xs) is
a permissible representation for the wave function,

e e'
+ (xl,x2) being a member of a complete orthogonal set

X1 X2 Xl. X2 of H wave functions, one readily obtains the equation
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for g„(R) as given by For large R, I-~ and H ~ become

2@28
V'R'+ +E„' g„'(R)

O'IRI

2poe
g ~*(xi)xo) V(R,xi,xo)

A2

sinI E~—(le/2)+rli n —ln(2K R)]J
E„R

expi jK„R (l7—r/2) +i!i n ln (—2E„R)]
B)

X+(R,xi,xo)dxidxo. (2b) and G(R, R") reduces to

The inclusion of the R ' term in V of (1e) causes V to
decrease faster than R ' for large R, and the inclusion
of this term in H p of (1d) causes Hp to assume the true
unperturbed value of (Hp —e'V) for large R. The Born
approximation consists of the replacement of 4(R,xi,xo)
in (2b) by

+=exp(iKo R')$o(xi')po(xo'),

in which relation pp is the normalized hydrogen wave
function for the 1s-state. Equation (2b) is solved subject
to the restriction that g„(R) is outgoing for large R and
is finite at the origin. ' The approximate solution of (2b)
subject to these boundary conditions is readily obtained
by using the Green's function as given by

E~
G(R,R")= P (2l+1)Pi(cosO~)

4~ t=p

expiI K„R n—ln(2E„R)]

X P (2l+1)i' exp(ig&)Li(R)PiI cos(pr —0)].
L p

expiLE„R—n ln(2E„R)]
G~ exp ( pm/—2)I'(1+in)

XexpiI E R" cos(or —O)]F(u; c; s),

with a = in, c—= 1, and s= iK R"
I 1 cos(—or 0)]—. The

solution of (2b) is given by

Thus, the asymptotic form of the Green's function can
be written as'

X g„(R)= —(2poe'/i'i') G(R,R")P„*(xi,x&) V(R",xi,xo)
,
(2c)I (R")H (R), R)R".

Xexp(iKo R')4o(xi')4o(xo')dxidxodR", (2d)
Let 5'~, 2 represent the two solutions of the confluent
hypergeometric equation, F the conQuent hypergeo-
metric function, I'& the Legendre polynomial, F, the
gamma function, and co——li'/me', n= —p,o/teE„ao,

p! i= argI'(i+1+in),
cosO= cos9 cosg"+sing sine" cosQ —p").

and the amplitude for scattering, by

f (8) = — exp( —urn/2)
27rA2

Xr (1+in) I expiI E„Rcos(m —0)]

Then the quantities Li and Hi of (2c) are defined as
follows'.

F(i+1+in) 2l+2; i2K~R) =W—i+Wo, Hi=Ei+iLi)

exp( —en/2) I
I'(i+ 1+in) I (2E„R)' exp(iK„R)

(2l+1)!
X (Wi+ Wo),

XF(8; C; S)f„*(xi)xp)V(R)1Xi,xo)

Xexp(iKp. R')Pp(xi')Po(xo')dxidxpdR. (2e)

The evaluation of f (8) is still prohibitively dificult,
but the next approximation reduces this diS.culty to a
tolerable level. One of the criteria for the validity of the
Born approximation is that

i exp( —pm/2) I
I'(i+1+in)

I
(2E R) ' exp(iE~)

(2l+1)!

g2

Avp BEEpep tÃE&cp
=I I«1.

X (Wi —Wo).

'W. F. Mott and H. S. W. Massey, The Theory of Atomic
Col/isioes (Oxford University Press, New York, 1949), second
edition, p. 112.' Reference 1, pp. 52, 53.

With this condition exp( —pm/2)I'(1+in)F(a; c; s) is
nearly unity; consequently, the approximate Born

' Reference 1, p. 46.
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amplitude reduces to the form

The calculation of f„(8) can be simplified by the intro-
duction of the coordinates (xr, xs, xp ——xs') as independent
variables. With this change of variables, f„(8) and
V(R,xr,xs) are given by

@28 ff (8) = — exp[i(Ar x&—As xs+A3'xp)]
2@A

Xf„(xt,xp) V(xr)ixs, xo)

XPp (xt)Qp (xp) dxtdxpdxo&

V(R,xr, xs) = V(xr, xoxp) = Ixt xs+xol ' (3b)

—
I (Mr/Mo)xs —xp —(m/Mr)xr I

At ——(m/Mt)As, As ——Ko—(Mr/Ms)K„,

As ——(M/Mr) Ko—K„.

It is easily shown that the eGect of the last term of V
in (3b) is, to a very good approximation, Ixs—xpI
thus, the working formula for f„(8) is given by (3b)
with the last term of V replaced by Ixs —xsI '. This
amplitude is the approximate Born-post matrix ele-
ment. The exact matrix element given in (2e) is equal
to the prior matrix element, with interaction given in
(1c), provided that exact H wave functions are used. '
The calculation of the prior matrix element with the
plane wave approxima, tion and the same H wave
functions serves as a test of these approximations. The
author will present the results of this task in a future
paper. '

The details of the calculation are deferred until the
eGects of particle identity are discussed. In the formula-
tion that has been presented, the approximate solution
has been obtained for an incoming state Ct ——4 (1234)
=exp(iKp'Rt')pp(xrr )go(x» ) which is a solution of
Hpr 4't=EC't. (Here Rt' ——R', xrr'=x&', x»'=xp'. ) By
permutation of the laboratory particle coordinates, three
other systems of prior relative coordinates are derived,
the e8ect being to change the ordering of the particles

4 E. Gerjuoy, Ann. Phys. 5, 58 (1958); Phys. Rev. 109, 1806
(1958). (These two articles contain an extensive bibliography of
the theory of rearrangement collisions. )

~ The author has calculated both post and prior cross sections
(unpublished) for the reaction p+He(ls') -+ H(ls)+He+(1s) (as
weil as for other final states) and found substantial agreement.
Of course, only the wave function of He(ls~) is approximated for
this reaction, since there are no Coulomb functions.

f„(8)=—(poe'/2a. A') exp( —iK„R)

XP„*(xr,xp) V(R,xr, xo)

X exp(iKo R') $o(xr') po(xs') dxrdxodRo. (3a)

in the incident state, 4, , (i = 1, 2, 3, 4). The normalized
singlet and triplet states (of the electron coordinates
without the spin functions) are 4, , ~(12)=2 &[4(1234)
&4 (1243)] and 4, , ((21)=2 &[4 (2134)&4 (2143)], in
which relations the subscripts, s and t, refer to the upper
and lower signs, respectively. Since P„(xr,xs) is a nor-
malized singlet state in the electron coordinates, the
singlet amplitude, f, (8), is calculated with a normalized
singlet incoming state. [The subscript e is now dropped.
lf„(xt,xo) =g(xr, xo), K„=K.] For a given post relative
coordinate, R, C, (12) and 4, (21) are used in (3b) to
obtain the singlet direct and exchange amplitude, re-
spectively. Equation (4a) is presented for clarification
to the reader. The initial states

i=1 ~ 4, Hp C,=BC', 4't=C(1234),

4 r ——4 (1243), 4 p
——4 (2134), 4 4

——4 (2143),

C,=exp(iKo R )Po(xr, ')yp(xs, '),
jt '

lr i~ '0
X13 —X22 ~ X23 =X12 ) LL = LL2 ~

X14 X21 p X24 =X11
&

LL4 = iL1
&

P(12) 4, (12)+Sf,(8),

iP(21) C, (21)+Sf,(s.—8),

S=R ' exp{i[ER—rr 1n(2ER)]}$(xr,xs),

f.(8) =~&f(8)

are retained in the expressions for the asymptotic form
of the wave functions in (4a) to show the relation be-
tween the amplitudes and the initial states; however,
they vanish since initial and final bound states are in
diGerent channels. 4 Let X~', X„'represent the triplet and
singlet proton spin functions, respectively, and &&', X &',

the corresponding electron spin functions. The antisym-
metrical initial state, 4, is given by (4b). The proba-
bility

4 = {[4(»)—4' (»)]x.'+ [4' (»)+4' (»)]x.'}"'

+{LC'.(12)—4"(21)]xn'
+[4,(12)+4,(21)]X,}X, (4b)

density of this incoming state is

I'=;, g dx, 'dx—,'IC I',
spin J

with I' normalized to the number of spin sta, tes. This
value is I'= 1+to cos(2Ko. Rr'), and its average value is
P= 1.'

The antisymmetical singlet amplitude and the di8er-

In the evaluation of I' only the contribution from R&' ~ cc is
included, for with R1' large the bound state part of C that contains
R2" vanishes. If both parts are added, I'=2. This situation is
analogous to e—e Coulomb scattering in which case, with a value
of I'=2, the calculated cross section is a measure of all electrons
scattered, directs and recoils. Since the cross sections of this paper
are for the total production of H ions, the analogy is apparent.
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ential cross section are given by

I'= ([f.(8)-f.( -8)7x.'+I.f.(8)+f.( -8)7x, »~,
~=—'. (~i/~') 2 Ib'I'

SP111

=(ef/~*)[—"If (8)—f (~—8) I'

+—,'. lf.(8)+f.( —8) I'7,

54=AKp/l4r& vy=kK/ps .

(4c)

As the calculation shows, the interference terms in

(4c) are negligible for the energy range investigated.
Thus, the total cross section, Q, is given by

are defined below.

Iro(a b) = gx x(1—x)s 4' y(1—y
4o J,

fg 8) 1
XI +

4 844r ger) Urer~
I4'(u, b) =Ire(b, a),

I,= (1—x) (1—y) (b'+Ass)+x(1+Ass)

+y(1—x)[(1+a)'+Ars7,

r, = (1—x) (1—y) b'+x+y(1 —x) (1+a)'

+x(1 x) I&s AsI'+y(1 x)

X[1—y(1 —x)7 I
A&—As I'+2xy(1 —x)

o

dg sing
I f, (8) I

2
X(As-A, ) (As-A, ).

dg sing
I f(g) I

s (4d)
Is'(a, b) = [(1+a)'+A&'7 '(b'+A&') '(1+As )

Is'(a, b) =Is'(b, a).

It is emphasized that the omission of the interference
terms is a numerical approximation, and does not mean
that the identical particles are treated as distinguish-
able. If triplet H states exist, the differential cross
section is given by (4e) in which formula the notation is

obvious.

«= (sx(~)/n*)[ s I f~(8) —f4(~—8) I'
+r's

I f~(8)+f~(~ 8) I'7 (—4e)

The wave functions used to represent the H state are
those derived by Chandrasekhar, ' while Heinrich's~

calculated va, lue of 0.747 ev is employed for the electron
affinity of H . The calculations are presented under
Cases I and II.

Case I
fr = Xr[exp( —ax& —bxs)+exp( —axe —bxr) 7,

a = 1.03925, b =0.28309,

1 8a'b'(a+ b) 'Ej=-
4m. (a+b)'+64a'b'

In all that follows, the unit of length is the Bohr radius
and the unit of energy is the binding energy of H(1s).
The methods of integration are amply illustrated in
other papers. '

f(8) = (128psNr'uo/4rr) [b(1+a) (I,'+Is' 2I,')—
+a(1+b) (I4o+I,o 2I,o)7 (5a)

In (5a) iV&'=rrlVr=9. 8781X10 ', and the other symbols

7 S. Chandrasekhar, Astrophys. I. 100, 176 (1944).
8 L. R. Heinrich, Astrophys. J. 99, 59 (1943).
4 J. D. Jackson and H. SchiR, Phys. Rev. 89, 339 i1933); E.

Corinaldesi and L. Yrainor, Nuovo cimento 9, 940 (1952).

Iso(a, b) = [(1+a)'+Ars7-' dx x(1—x)

I '(a,b) —Iso(b, a),

tg gq' 1
XI +

48444 gn, ) 44,v, & (5d,)

I = (1—x)(b'+A ')+x(1+Ass)

»=x+(1—x)b'+x(1 —*)IA, —A, I'.

Case II
Ps(xr, xs) =cVr[exp( —ax&—bxs)+exp( —axs —bx&)7

X[1+cIxr —x, I7,
a= 1.07478, b =0.47758, c=0.31214,

24r'Es'([(a+b)'+64asb'7a 'b '(a+b) '
+c[ab(a' —b') '(7a '—7b '+3a'b '—3b'a ')
+560(a+b) '7+c'[3(a 'b '+a 'b ') (6a)

+1536(a+b) s7) =1
S2 =m E2=9 8093X10

f(8)= (128peer's'as/re) [b(1+a) (Ir'+Is' 2Is')—
+a (1+b) (I4s+Iso 2Ise)+ bc (1+a) (—Iq'+ Is'

2Is')+ ac (1+b) (—I4'+ Is' —2Is') ].
In (6a) Ire through Is' are formally the same as presented
under Case I. In order to reduce the integrals of (3b)
that contain the term

I
xq—xs

I / I
xs —xs

I
as a factor of

the integrand, the approximation 3~=0 was used. "
Without this simplification, I3' and I6' reduce to triple
integrals, and the numerical evaluation of these inte-
grals is prohibitively complicated. Since this approxima-
tion limits the accuracy to which f(8) can be calculated,
this approximation is also used to derive the terms I2'

"Bransden, Dalgarno, and King, Proc. Phys. Soc. iLondon)
A67, 1075 (1954).
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- 2.0
tt

LOGI0 Q

—I.O

I,'(a, b) =
~Jp

pl
dx x(1—x)x,—& dy y(1—y)

Ol o
P —0
Is.
O
cjs
Iz—
z
X0
Io -2
1st
Q)

VI
lh
O
K
O
u

E

XI 3y'I +(B
BQt BVr

(B B)—3yxr 'I + I+(9/4)xr s

(BQr Bvr)

( B B 8
+ z'I + I

—2(yz'yR S)
(BQr Bvr ) 88y '

0.,5 ! I.,5 2,0 2,5 ~GIOE

E & INCIOENT ENERGY IN UNITS OF I KEV-LABORATORY SYSTEM

Fro. 1. Cross sections for capture (see text for explanation of
curves I, II, and A).

and I5,'. I~' and I4' are derived without this approxima-
tion since little simplification is obtained.

Is'(a, b) =b '(1+A ') '((3b' —A ')(u+1) 4

X (b'+As') '+2(a+1) s(b'/As') '

—2(a+1)—'[(a+b+1)'+Ass] ' (6b)

—(a+b+1)(u+1) '[(a+b+1)'+Ass] '})

Is'(a, b) =Is'(b, a),

Is'(a, b) =2b(a+1) 4Isr —b
—'(u+1) 4I,s

+2b '(u+1) 'Iss —2b '(a+1) 'I
—(a+b+1)b '(u+1) 'Its,

Is'(a, b) =Is'(b, a),

(B B) (B
&& 2ysI + I

—2y'x,—'I +
t BQr Bvr) EBQr Bvr)

( B B
+syXr' I +

( BQr Bvr )

—(945/16)ysv] ""—(105/8)y'v] "'x —'

—(45/16) vr
—'t'x, —'

I,

I4'(a, b) =I,'(b, a),

Xr ——x(1+u)'+ (1—x)b'+x(1 —x) I Ar —A, I',

Q&
——(1—y) (1+Ass)+y(1 —x) (b'+Ass)

+xy[(1+a)'+Ars j,
»= (1—y)+y(1 —x)b'+xy(1+ a)'

+y(1—y) I
As —As

I

',

Z&= IA, +x(A, —A, ) I'

R S=(1—y)As [A&+x(Ar —As)].

Jp

(B B) 1
dx x(1—x)'I +

(BQI BV1) Q1V1

pl (B B)s 1
Iss —— dx x(1—x)

I
+

E BQ1 BV1) Q1V1

4p

(B Bq 1
dx xI

~BQr BVr) QrVr*

(B Bi 1
Is4 — dx xI——

0 KBQs Bvs) Qsvs*

(B B)s 1
Iss ——

i dx x(1—x) I +
~p (BQs Bvs) Qsvsf

Qr = (1—x) (b'+As')+x(1+A s').,=*+(1—x)b'+x(1 —*)
I
A, —A, I',

Q, = (1 x)[(1+a+b)'+Ass]—+x(1+As2)

vs ——x+ (1—x) (1+a+b)'+x(1 —x) I
As —As I',

A discussion of the derivation of these integrals is
presented in the Appendix.

The results of the calculations are presented in Table I
and Fig. 1. The curves labelled I and II correspond,
respectively, to Cases I and II. Also plotted in Fig. 1 are
the experimental results (labelled E) for the cross
section per gas atom of reaction (B).u6cj

H+Hs ~ H—+H,+.

A basis for the comparison of the measured values of

(8) (curve 8 in Fig. 1) with the calculated cross sections
of (A) is that Hs behaves 1ike two isolated H atoms in

the charge transfer process. Unfortunately, the approxi-
mations of this paper are not valid over the energy range
for which these measured values exist; consequently, no
conclusions can be formed from this comparison. How-

ever, there is some evidence that tends to refute the
concept that H2 can be treated as two isolated H atoms.

"S. K. Allison, Revs. Modern Phys. M, 1137 (1958).
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TABLE I. Table of cross sections. Q= cross section in units of so44=8. '19.10 'r cm';
E=incident energy of H atom in units of kev—laboratory system.

Q(&)

QÃ&)

25.8

3.56

19.1

6.32

11.7

11.2

5.60

20

1.92

3S.6

4.94 10 '

6.5 10 '

63.2

9.00 ~ 10 '

1.2 ~ 10 '

112

1.15 10 2

1.5 10 '

200

1.05 10 3

1.3 10 '

356

6.95 ~ 10 ~

8.5 10 '

The preliminary theoretical work of Gerjuoy and Tuan's
X3 Xz—Xgshows that no simple relation exists between the cross

sections for reactions (C) and (D),

H++H ~ H+H+,

H++Hs ~ H+Hs+,

(C)

(D)

X
~

eXpLiK1 (Xs+Xt—Xs)).E'+e'

although the calculated values of (C) agree very well

with the measured values of (D)."Thus, any conclu-
sions concerning the validity of the approximations of
this paper will have to await the support of future
measurements of (A).
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APPENDIX

The procedure for deriving the integral I' of Case II
illustrates the methods of integration used in this paper.
Consider the integral given by

I= dztdzsdzs e PXit( Atx 1 As'X s
X3 Xz X2

With these representations inserted into (Aia)
coordinate integrations are performed to get (Aib).

(84r)'b(1+a) t dK1 cl'
l dKsI=

E '+ e' cin' & E '+n'

X[(1+a)'+(At+ K1+Ks~'j—'

XLb'+ ( As+Kt+Ks J'g
—'I 1+(As+Kt J'1—' (Alb)

In writing (Aib) and all following relations, the limit
operations are understood. The Feynman integral
representation

(ab)
—'= f dx x(1—x)Lb+ (a—b)xj—4

Jo

(see reference 9) is used for the relevant factors of the
integrand so that the Ks-integration can be performed.
The Ks-integration is then done and the operation
lim sf)s/Bns is performed so that (Aib) is reduced to

(Ss)'b(1+a) t dK1I= Li+
~
As+ K1 ('g-'

J E &+es

tz
X ' dxx(1 —x)L1861-4xt—&+66,—'x1—

&

J,
+(9/4)61 'X1 &—48Q'Dt 'Xt '

+As Xs) —(a+1)X1—bXs—Xs]. (A1a) —12Q'6 'X —l—3Q'6,—'X,—lj,
(A1c)

The following two integral representations are intro- Q'= jAs+x(At —&s)+Kt~',
duced to facilitate the integrations over the nine-

(1 )(, ,)+ ~(dimensional configuration space:
+2LAs+x(A1 —A,)j K„

1 c)s f dKs
~
xt —xs

~

= llm —

~ exppiKs (x1—xs) j, Xt= (1—x)&'+x(1+a)'+x(1—*) ( At —As
~

'.
2s' ~Bn'~ Ess+ns'

The integration of (Aic) over K1-space is simplifmd by

(1958}.
"T. F. Tuan and E. Gerjuoy, Bull. Am. Phys. Soc. 3, 171 the introduction of the Feynman representations for the
"See Jackson and Schiff, reference 9. terms 61 "Li+ (A,+Kt['7 s with n=2, 3, 4, S. These
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representations permit (Aic) to be written as

(8~)'b(1+a)I= dx x(1—x)
27r2

dK It 2 ~s( 1)n dn —2

J
I
K +e ]Zq" (rs —1)I f)uq"

X
dKr

dy x,—l 360y'(1 —y)zr
—'

E '+e'
With the new notation (A1d) reduces to

54
+72y'(1 —y)X&

—'Zt-'+ —y(1—y)x& 'Z& '
4.

(Sz)'b(1+a)I= dx x(1—x)xq I dy y(1 —y)
2 0 Jo

—QsL1440y4(1 —y)z& r+240ys(1 —y)x& rz& s (Aid)

+36y'(1 —y)x 'Z s7

X 3y' —3yX1 '
Q1

8' 9
+ Xr

4 Bul'

Z]
Z —( —1)

1
(rc—1)y BR

dKt ~2( 1)n gn 2

Q] V1 ~)

J L~rs+ es)Zp (& 1) l cju, ~—s

u& ——(1—y) (1+2ss)+y(1 —x) (b'+Ass)

+xy[(1+a)'+A rs1,

R=As+x(A& —As), T= (1—y)As+yR,

Q'=
i
R+Kris, Zr ——Ers+2T Kt+ut.

The following relations are used to perform the Kt-
integration:

2Kr R

ds
+R'~ 2ys —2y'X& '

au, '
a4 3y as )+—Xr-'

Bur 2 clur )

ci / cj'
+R

~

2ys —2ysx& '
M ( cjur'

83 3y 82 )+—x,—'
~

ur
—'v,—&

But 2 OuPi

)5 84 3y+ 2y' —2y'Xr ' +—Xr ' sr
* . (A1e)

BN1' BN14 2

With the omission of the factor outside the integral sign
(Aie) can be written in the form given for Iq' under
Case II in the main body of this paper.
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Range Straggling of Charged Particles in Be, C, Al, Cu, Pb, and Air*

R. M. STEXumzyMER
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. The straggling of the range of charged particles due to fluctuations of the ionization loss has been evaluated
for six substances (Be, C, Al, Cu, Pb, and air). The calculations extend up to Tp/'~c100, where T is the
kinetic energy and p is the mass of the incident particle. At high energies (T/pc 5), the integral giving the
range straggling becomes somewhat dependent on the ratio p/m, where m is the electron mass. Two separate
calculations have therefore been carried out, which apply to protons and p, mesons, respectively. The results
for protons can also be used for z and E mesons in the energy range of interest (T/pc'&5)

I. INTRODUCTION

ECENTLY tables of the range-energy relations
for protons' have been obtained for several

substances, which are based on accurate values' of the
mean excitation potential I. These tables were calcu-

~ Work performed under the auspices of the U. S. Atomic
Energy Commission.' R. M. Sternheimer, Phys. Rev. 115, 137 (1959). This paper
will be referred to as I.

'Bichsel, Mozley, and Aron, Phys. Rev. 105, 1788 (1957);
V. C. Burkig and K. R. MacKenzie, Phys. Rev. 106, 848 (1957);
D. O. Caldwell, Phys. Rev. 100, 291 (1955).

lated up to a maximum proton energy T„=100 Bev, in
order to enable one to obtain ranges of p, mesons up to
an energy T„10Bev. The calculations were carried
out for Be, C, Al, Cu, Pb, and air. In connection with
these tables, it seemed of interest also to obtain the
range straggling due to the Quctuations of the ionization
loss process as given by the theory of Bohr. ' In the
present paper, we give the results of these calculations.
It may be noted that the range straggling in nuclear
emulsion has been previously investigated by Barkas,

' Q. Bohr, Phil. Mag. 30, 581 (191$).


