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A self-consistent crystal potential is constructed for cubic BN. Exchange is included according to the
Slater free-electron approximation. The effect of the heteropolar character of the potential is included
explicitly in an approximately self-consistent treatment of the valence-electron charge density. The energy
gap is found to be about twice that of diamond, consistent with the results of other zinchlende crystals and
their diamond-type analogs. The maximum of valence band and the minimum in the conduction band are at
the center and (100) face of the Brillouin zone, respectively. It is suggested that the heteropolar potential
splits the valence band into two sub-bands. The lower sub-band width is about 5 ev, while the higher (which
contain three times as many states) has a band width of about 4 ev. The energy gap between the sub-bands
is about 10 ev. The effect should be common to all zincblende crystals and may be observable by soft x-ray

emission.

1. INTRODUCTION

N recent years a great deal of experimental in-
formation has been obtained relating to the energy
bands of III-V zincblende crystals.! This information
suggested some time ago to Herman? that the hetero-
polar zincblende crystals can be regarded as perturbed
homopolar diamond-type crystals. This perturbation
consists primarily of two terms, one coming from the
atomic cores and the other from the valence electrons.
The first term, which is the larger, consists chiefly of
the ionic potential derived from the difference of
nuclear charges. This ionic potential perturbs the
valence electron distribution so that more electrons
are found near the group V ion than the group III ion:
the valence electrons have screened the ionic potential
and the “effective charge” is less than one.

An accurate calculation of a zincblende crystal
potential requires the calculation of both terms.
Dependable results can only be expected, however, if
they are obtained for the diamond-type analog of the
zincblende crystal. So far this has been accomplished
only in Herman’s calculations of the energy bands of
diamond.? In the first paper? (I) of this series, we showed
that Herman’s diamond potential was approximately
self-consistent. We shall now present self-consistent
calculations for cubic boron nitride using the same
methods; in so doing we take advantage of the fact
that for atoms in the first row of the periodic table the
core contribution to the crystal potential is known
quite accurately. We are therefore focusing our atten-
tion on the screening effects produced by the valence
electrons; it is our object to calculate these self-
consistently. It should be the case that these effects
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will be quite similar in all zincblende crystals; using
our methods it should be straightforward, e.g., to
calculate the bands of AIP once the bands of Si have
been calculated correctly.

In Sec. 2 we outline our general method for calcu-
lating the crystal potential. In Sec. 3 we present the
results of the energy-band calculation. A critical
comparison of the present approach with previous
calculations based on the cellular approximation is
given in the last section.

2. VALENCE CHARGE DENSITIES AND
CRYSTAL POTENTIAL

The cubic form of BN has been prepared only
recently.5 The lattice constant is 3.615 A, which is
about 29, larger than the lattice constant of diamond.

The calculations to be presented here were carried
out using our “effective potential” formulation® of the
OPW method; this formulation was also used in our
study of diamond (I).* The boron 1s wave function
was taken from the self-consistent calculations with
exchange of Glembotski, Kibartas, and Iutsis.” These
gave E;B=—15.4 ry. The nitrogen 1s wave function
was taken from the similar calculations of Hartree and
Hartree.! They do not give the 1s energy but by
comparing the result for boron and carbon (Z:°
=—22.7 ry according to Jucys®) we estimate E;,N
= —31.4 ry by extrapolating linearly the effective Z’s
of boron and carbon (Ei;=Z?). From the 1s wave
functions we have calculated the Fourier coefficients of
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ENERGY BANDS OF SEMICONDUCTORS:

for boron and nitrogen. It was shown in reference 6
that while p states move in the crystal potential V., s
states see an effective potential

V=V A+V, (2)
where
V,=V2B+VN, 3)
V. B=(E—E.B)[15sB,
VN=(E—EM[1s]N. (4)

In order to compare the potential in BN with that of
diamond it is convenient to split the potential into
two parts,

Ve=V 47,0 (5)

which are, respectively, symmetric and antisymmetric
with respect to reflection about an origin located
midway between the two atoms in the unit cell. With
respect to the diamond lattice these potentials transform
like T'y and Ty, respectively. (We use the notation for
the irreducible representations of diamond of Herring!®
and of zincblende of Parmenter.!t) Thus each can be
expanded in a Fourier series,

Ve=>.V.* cosk: w(k)ry,
V2=3_.V.% sink- t(x)ry. (6)

Here ==a81(111) and (k). denotes a symmetrized
combination of plane waves belonging to equivalent
reciprocal lattice vectors and transforming according
to the irreducible representation a.

If our crystal potential were a superposition of
spherically symmetric atomic potentials VB(r) and
VN(7) then

Ve=VN1+V.58, (7
Ve=VN=V.5B, (8)

VN = (1/2) f VN(r) exp(i- 1), 9)

VB= (I/Slo)j< VB(r) exp(ix-1r)d%, (10)

where Qo= a3/4 is the volume of the unit cell. This is the
case with respect to the core potential and using Eqgs.
(7) and (8) the valence contribution to the potential
can also be represented in terms of valence contri-
butions from B and N. The various contributions to
VN and VB for the first few values of « are listed in
Table I together with the first few Fourier coefficients
of [1sT8 and [1s]N. For simplicity we have used the
value of Voo calculated by Herman for diamond
(—2.87ry);slight changes in this value do not affect the
relative positions of the bands.

10 C. Herring, J. Franklin Inst. 233, 525 (1942).
11 R. H. Parmenter, Phys. Rev. 100, 573 (1955).
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TasLE I. Fourier coefficients of the atomic potentials of boron
and nitrogen. The core exchange potentials are taken to be the
same as the one calculated for carbon by Herman.2 The last
column represents the sum of the second, third, fifth, and sixth
columns. The V2! terms are significant only for the difference
between the boron and nitrogen values.

52 % Veouror  Vewoore  [1s] Veoul®  Vexoh'al  Verys
Boron
(111) 0.383 0.020  0.0212 —0.111 0.051 0.343
(200)  0.292 0.019  0.0200 —0.030 0.014 0.295
(220) 0.150 0.017  0.0152 0.167
(311) 0.112 0.012  0.0128 0.124
Nitrogen
(111) 0.630 0.020  0.0099 —0.192 0.089  0.546
(200) 0480 0.019  0.0095 —0.046 0.022 0475
(220) 0.243 0.017  0.0087 0.260
311) 0.181 0.012  0.0072 0.193

2 See reference 3.

The method of calculation of the valence electron
contributions to V,® has already been discussed in I.
The same methods were used here, with wvalence
electron exchange determined by the Slater {free-
electron approximation. It will be observed that
Vets® in BN is practically the same as in diamond.
Furthermore V<>V so that Ve can be treated as a
perturbation. For self-consistent calculations this
approach has the advantage of rapid convergence. Now
the unperturbed eigenfunctions of V* are the same as in
diamond. We split the valence electron charge density
into two parts,

)

and each of these can be expanded in Fourier series,

p*=2x Px8<’<>1'1;
P =2_x px*(K)ry'. (6"

To first order in V¢,p? is determined by V*. In fact the
effect of VV* on p® turns out to be negligible. Thus p* in
BN is the same as in diamond. Hence the Coulomb
and exchange contributions of ps to V,; are the same as
in diamond, and these have been calculated self-
consistently in I. We have now to calculate p°.

From the corresponding result for p* we anticipate
that p,* will be appreciable only for the first one or two
smallest values k. In principle p,® should be calculated
by averaging pc«(k) over all occupied states of the
valence band labeled by k. As in I we shall replace this
average by a sampling of wave functions at I', X, and
L. We shall consider errors in this approximation later.

As an example of the perturbation calculation of
o«® consider the states at the top of the valence band
at k=0 which were labelled Tz in the diamond lattice.
(In a tight-binding picture these levels consist of
bonding p wave functions.) The perturbation V¢ mixes
this level with I';s (which may be labelled antibonding
$) with the result that some charge is shifted from the
boron half of the unit cell to the nitrogen half. Actually

p=p*+p°
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only the lowest I'js level (which is degenerate with
I'25» when V'=0) mixes appreciably. If these two wave
functions are expanded in Fourier series

s = a1 (111)+a,(200), (11)
Tis= b1 (111)+85(220), (12)

[where (IJK) is equal to {((2r/a)(IJK)) multiplied by
a suitable normalizing factor] then

(D25 | V2| T15) =4[ V2 (@214 a1d5) (Vi + Vn®)
4 (016174-20202) Vano®].  (13)

The form factor 7 sink-+ has been included explicitly
in (13), so that the values of V,* can be taken from
Table I. Now (13) can be substituted in the 2X2
reduced secular equation between |T'ss®) and |T';3®)
and new eigenvalues and eigenfunctions obtained. In
this approach |Ts®) and |I';3®) are regarded as
quasi-degenerate and are treated by degenerate per-
turbation theory. Corrections due to mixing of, say,
[Ta5r®) with |T15®) are very small and can be
neglected.

The wave function obtained from this secular
equation will have the form

[Tosr @)pn= (14€%)7Y{ | I'er)+i€| T'15)},

and from (14) with the aid of Poisson’s equation the
nonzero Fourier coefficients of the Coulomb potential
of this charge density can be calculated. It turns out
that p,* is practically unchanged; terms of the form
(T25|T'15) however transform like I's» and contribute
to p% The results for V,* and V,® for each of the wave
functions included in the sampling of the valence band
are listed in Table IT. It was shown in I that in this
sample terms from X and L should be weighted,
respectively, 3 and 4 times as heavily as terms from I'.

The Coulomb screening just calculated is reduced by
exchange. In T we found that satisfactory results were
obtained for diamond from the Slater free-electron

(14)

TaBLE II. The contribution of charge densities representing
different sub-Zones in the valence band to the Fourier coefficients
of the crystal potential. The next to the last line lists the total
={T}+{X}+{L}. Each of the latter represents the contribution
of each term multiplied by the degeneracy and weighting factors
listed in columns 2 and 3. Column 4 gives the result for Ve=0
and columns 5, 6, and 7 the self-consistent results including Ve.

Term Degeneracy Weight V1115(0) Vins Viue V 200%
I 1 0.0072 0.0074 0.0030 0.0018
Tos 3 0.0146 0.0137 0.0077 0.0038
{T} 1 0.0510 0.0485 0.0261 0.0132
X 2 0.0101 0.0099 0.0014 0.0000
X, 2 0.0097 0.0096 0.0018 0.0000
{X} 3 0.1188 0.1170 0.0192 0.0000
L, 1 0.0035 0.0035 0.0000 0.0000
Ly 1 0.0104 0.0104 0.0014 —0.0008
Ly 2 0.0106 0.0104 0.0039 0.0005
{L} 4 0.1404 0.1388 0.0369 0.0008
Total 0.310 0.304 0.082 0.014
{T'} alone 0.408 0.387 0.209 0.105
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TaBLE III. Energies in ry of various terms in diamond and
cubic BN, using the Slater free-electron exchange potential.

Diamond Energy Boron nitride Energy
o —2.41 r,w —2.48
Ty ® 0.35 r,® 0.31
Tg5r —0.80 Ty ® —1.16

: Pls(l) —0.35 P15(2) —0.11
X, o —2.07

X, —1.64 XM —1.21
X,® —1.29 X;® —1.37
X, ® —0.28 X, ® —0.39
X;® —0.29

Lo —1.55 LW —1.42
Ly ® —1.97 Li® —2.16
L3 —1.14 LW —1.26
Li® —0.14 L,® —0.20
Ls —0.14 L;@ —0.13
w,® —2.02

Wi® —1.34

w,® —1.60 W@ —1.24
Wo® —1.28 W@ —1.33
W@ 0.22 w,® 0.38
W@ 0.71 W@ 0.80
Wo® 0.04

. W@ 0.20

Ig 0.40 Eg 0.77

approximation for exchange among the valence elec-
trons. According to the Slater approximation valence
electron exchange produces an effective potential
proportional to p* where p is the valence electron charge
density. In semiconductors p is nearly constant and
can be written

p~14e(111), pin14-(¢/3)(111). (15)

Thus the (111) Fourier coefficient of the exchange
potential can be obtained directly by a formal expan-
sion of the charge density as in (15). We have checked
our result against Herman’s, which was obtained by
numerical integration; the two are in good agreement.
According to (15) the exchange screening is directly
proportional to the Coulomb screening; thus the
exchange potential associated with p® is readily calcu-
lated. This completes the calculation of the crystal
potential listed in Table I.

We must now consider the accuracy of our method
of calculating the valence contributions to p® and p®.
In I we argued that the value of p* should be correct
to within about 109%,. This is essentially a consequence
of the fact that p*(k) varies only slightly on going from
T to X or L, as can be seen from Table II. The same
result is valid for p* in BN. It appears, however, that
p® varies substantially throughout the Zone. Let us
define the energy difference between the highest
“bonding” state in the valence band and the lowest
“antibonding” state with which V* mixes the former
appreciably as AE(k). Then we see that this variation
is caused by large changes in AE(k) throughout the
reduced Zone. The values of AE(k) at T, L, and X,
respectively, are 0.45, 1.0, and 2.6 ry. Thus the largest
contribution to p® comes from the neighborhood of I
while the neighborhood of X makes a small contribution.
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The question now arises as to the accuracy of our
point sampling of what should be an integral. In this
case we estimate that our values of p® are correct to
about 309%,. This corresponds to a change in V. which
is quite small (£0.02 ry) so that the energy bands that
we calculate should not be sensitive to errors from this
source. Although the values of p,* are of some intrinsic
interest, the nonanalytic behavior of the energy surfaces
near I' makes more detailed calculations unattractive.

The value of Vig* listed in Table IT suggests that
the (200) x-ray diffraction spot should have an inte-
grated intensity about 20 times smaller than the (111)
spot. According to Wentorf'? the observed ratio is high,
and is consistent with this estimate; the data presently
available do not allow a more quantitative comparison.

The values of p11:® and p111¢ can be used if desired to
calculate “effective’” charges. Whatever the definition
of effective charge the result will not have great utility.
The maxima of the valence radial charge densities of
neutral boron and nitrogen fall at about half the
interatomic spacing in the crystal so that if free-atom
wave functions are used in defining the effective charge
these wave functions will overlap so extensively as to
render the result meaningless.

It is possible to ask what point charges would give
the same antisymmetric potential. This leads to a
valence ‘‘screening” charge of about 0.3 for either
V11® or Vini®; the “effective charge” is then about 0.7.

3. ENERGY BANDS

With the potential listed in Table II it is a straight-
forward matter to calculate the energy bands of cubic
BN from those of diamond by using the perturbation
methods described in the last section. The results are
listed in Table III where they are compared with the
corresponding levels in diamond. The energy bands are
also shown in Figs. 1 and 2 for diamond and BN,
respectively.

By comparison with the results previously obtained®

E (Ryd) E(Ryd)
0.5 0.5
L 4
0.0=_* 0.0
Ly A,
L.O— Ay X -1.0
Ly !
L
-20F= -20
L, A,
-2.6 _ -26
Tra' (1) k=(000) 2774 (100)

F1c. 1. A sketch of the energy bands of diamond along (100)
and (111) axes of the Brillouin zone.

12R. H. Wentorf (private communication).
13 J. C. Phillips, Phys. Rev. 112, 685 (1958).
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F1G. 2. A sketch of the energy bands of cubic BN. Note that the
valence band is split into two sub-bands.

for the energy bands of diamond-type lattices along A
it seems highly probable that the minimum in the
conduction lies at X. The energy gap is then about 10 ev,
or about twice as large as the gap in diamond. It is
interesting to note that the increase in the gap results
from the depression of the top of the valence band,
I'ss, by Ve through interaction with I';s. This is much
larger than the depression of the conduction band
through the splitting of the twofold degenerate level
X:1®, The latter splitting is quite small although in
general it need not be (e.g., X1® is split by a large
amount). This results from a cancellation of terms
involving V111* and Vaee®. It is probable that the same
mechanism is operative in AIP and accounts for the
increase in energy gap of that crystal compared with
Si (3.0 ev compared to 1.1 ev).

We have also calculated energy levels at W to check
a suggestion by Callaway™ based on group-theoretical
considerations that the maximum in the valence band
might shift to W in zincblende crystals. The valence
band levels at W in diamond are twofold degenerate
with W, lying nearer the top of the valence band. The
splitting of W, is approximately proportional to
Vin®— Vo while that of W, is proportional to
V1%t Vage® Thus the splitting of W, is about 10
times smaller than that of Wy; this is readily understood
in terms of the p and s characters, respectively, of the
levels. None of the levels at W are found to be near
T2, so that it appears quite likely that the maximum
in the valence band will be very near I'. This conclusion
is reinforced by the consideration that throughout the
Zone the levels near the top of the valence band have
primarily p character, and for the reasons just discussed
the shifts in these levels due to V* may be expected to
be small.

This argument may also be applied to the s-like
valence bands. As we have just seen, V¢ produces a
large splitting of W; inspection of Table III shows
that large splittings are also found at X and L. Similar
behavior should occur at all points on the Zone surface.

14 J, Callaway, J. Electronics 2, 330 (1957).
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Thus it appears that V¢ produces a large splitting of the
valence band, with the upper sub-band containing three
times as many states. The energy gap between sub-
bands should be of the order of 6 ev in BN; in GaAs the
sub-bands should be split by about 3 ev. This splitting
should be observable in soft x-ray emission'® or double
Auger emission.!®

The valence band width is reduced, compared to
diamond, from 21.5 ev to 18.0 ev. This small narrowing
is also consistent with the idea that BN is still pre-
dominantly homopolar.

4. COMPARISON WITH PREVIOUS WORK

Calculations for heteropolar semiconductors have
been carried out previously by Bell et al.l” for PbS and
by Birman!® for ZnS. Both calculations are subject to
the criticism that they neglect exchange (anunavoidable
approximation, since Hartree-Fock calculations are not
available for Pb and Zn). From Herman’s work® on Ge,
however, it is known that omission of exchange can lead
to the wrong order of s and p levels in the conduction
band. Our chief concern here, however, is the treatment
of the potential outside the core region. To study this

15D, H. Tomboulian and D. E. Bedo, Phys. Rev. 104, 590
(1956).

16 H, G. Hagstrum, J. Phys. Chem. Solids 8, 211 (1958).

17 Bell, Hum, Pincherle, Sciama, and Woodward, Proc. Roy.
Soc. (London) A217, 71 (1953).

18 7. L. Birman, Phys. Rev. 109, 810 (1958).

19 F, Herman, Phys. Rev. 89, 518 (1953).
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point we compare our calculation with Birman’s
treatment of zincblende.

Birman uses the cellular approximation in which
spheres are drawn around each atom; the potential is
assumed spherically symmetric within the spheres and
is zero outside the spheres. Application of the ordinary
cellular method to a tetrahedrally coordinated lattice,
where the largest radius of the atomic cell is twice the
smallest radius is itself open to grave doubt; again this
point is not our major concern. We wish to emphasize
that the spheres constructed have no fundamental
significance; the same remark applies to the “effective
charge” contained within the spheres. The significant
quantities are the Fourier coefficients of the crystal
potential as defined in Egs. (6)-(10) of Sec. 2 and as
listed for BN in Table I.

The most important feature of the present approach
is the ease and directness with which it leads to a
sel f-constistent crystal potential. It is possible to obtain
similar results using refined cellular methods (such as
augmented plane waves) but if the potential varies
appreciably outside the cores (which it does in diamond-
type lattices) it would appear that achieving self-
consistency would require rather more cumbersome
calculations.
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