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The theory of thermally stimulated currents is investigated in the limits of slow and fast retrapping. A
method of obtaining the ionization energy E of the relevant traps is discussed. This method depends on the
shift of the conductivity maxima with heating rate and does not involve prior knowledge of the trapping

cross sections or of the heating rate.

1. INTRODUCTION

HE problem of determining trap energies is of
fundamental importance in the study of lumi-
nescence and of photoconductivity. For luminescent
malerials, a possible approach to this problem is a
“glow curve” analysis. The phosphor is excited optically
at a very low temperature and is then allowed to warm
up in the dark at a uniform rate. The resulting curve of
luminescent intensity versus temperature shows peaks
characteristic of the trapping levels. The analysis of
such thermoluminescent data is usually based on the
original work of Randall and Wilkins,! which assumes
that carriers which are thermally excited from the traps
have a negligible chance of being retrapped. The
energies of the trapping levels may be determined from
the experimental data in a number of ways. The most
widely used approach is that of Garlick and Gibson.?
These authors observe that the approack (from the
low-temperature side) to a glow curve maximum is of
the form L=conste?/*T, where L is the luminescent
intensity and E is the ionization energy of the trap in
question. A plot of InL versus 1/kT thus yields E. This
method has been criticized by Haake,® who points out
that the relevant part of the glow curve is generally
not observable because of the presence of nearby peaks
or because of background noise. An alternate mode of
analysis has been proposed by Grossweiner* who
-expresses E in terms of the peak temperature and the
temperature at half maximum. Still another method,
which employs the shift of the peak with heating rate,
is due to Booth.®
Recently, Bube®!! has studied the energy levels of
traps in photoconductors by similar techniques. Instead
of the luminescent intensity, one measures in this case
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the thermally stimulated conductivity as a function of
temperature. A plot of the conductivity versus tem-
perature displays peaks similar to those observed in
glow curves. Bube obtains the trap energy from the
peak value of the conductivity. If the carrier mobility u
is known, the energy of the traps may be obtained
from the peak conductivity ¢(7T,.) and the peak tem-
perature T, through the relation:

E=kTwIn[Negu/o(Tw)], (1.1)

where N, is the density of thermally available states
in the conduction band and ¢ is the electron charge.

In this paper we present a theory of thermally
stimulated currents. Our theory is an extension of the
work of Randall and Wilkins,! insofar that explicit
solutions will be obtained in the limits of slow and of
fast retrapping. In order to be specific, we shall refer
throughout to conductivity, not luminescence maxima.
However, it is clear that with minor modifications our
remarks apply equally well to the latter case. In Sec. 2
we present a new method for obtaining trap energies.
A critique of the various methods of determining trap
energies is included in Sec. 3.

2. THEORY OF THERMALLY STIMULATED
CURRENTS

For simplicity, we shall assume a single set of traps
with energy E; (see Fig. 1). These traps are partly
filled with electrons by optical excitation at low tem-
perature. During the subsequent heating in the dark,
these electrons may be thermally excited to the conduc-
tion band. Once in the conduction band, an electron
may be retrapped into the states at E; or may re-
combine with a hole, either directly or via a recombina-
tion center. We assume that: (a) the rate of dis-
appearance of electrons due to recombination may be
described by a recombination lifetime 7; and (b) the
electrons in the conduction band are nondegenerate, so
that Pauli principle effects may be ignored.
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Under these conditions, we may write down the
following rate equations:

dﬂ{

p = — ;N Sve~E* T +p,(N;—n;)Sv, (2.1a)
t

dn, n, dn;

—_————— (2.1b)
dt T dt

The notation is the following: N;, N,=concentration
and effective concentration of trapping and conduction
states, respectively, #;, #.= concentrations of electrons
in traps and in the conduction band, S=cross section
of a trap for an electron, v=thermal velocity of electrons
in conduction band, E=E,—E; (see Fig. 1), k=Boltz-
mann’s constant, and 7T=temperature in °K. The
resulting conductivity is:

0= N qu. 2.2)

The solution of Egs. (2.1a) and (2.1b) is straightforward
in the limits of slow and fast retrapping. We shall now
investigate these limits.

Slow Retrapping [ (N;—n,)Sv<+s1]

In this case, every electron in the conduction band
recombines with a hole, retrapping being negligible.
If it is assumed that the temperature is a linear function
of time

T= To‘{“bf,
the solution to Egs. (2.1) is:
1 pr
;=m0 exp[—— . NcSve‘E”“TdT], (2.3a)
m=~de 'ﬂﬁ exp[Tl—T]z—brd—m, (2.3b)
o 4T’ br ar

where 7o is the number of electrons in the traps at
time {=0. The conductivity is therefore:

o(T) =ngu= N Svgurng

E 1 pT
Xexp[—-——-f NcSve‘E”‘TdT]- (2.4)
ET bJ7o

Differentiating In[¢(7)] to find the maximum of
a(T), one obtains:

[ E ] NaSET 2 -
exp| — |=——— .
Pl bE

where T, is the temperature at which ¢(7) is a maxi-
mum. In differentiating (2.4), the slow variations of
N, u, v, S, and 7 have been ignored.? It has been
assumed that E/kT,,>>1.

12 Tn the case of direct recombination 7 may depend on the
electron concentration, hence indirectly on the temperature. In
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F16. 2. Shape of a typical conductivity peak. E/ET,, has been
taken to be 30, but the shape of the curve is not sensitive to the
value of E/kT, provided this value is large.

Equation (2.5) is not suitable for finding the energy
E, unless the cross section S is known. Additional
information may, however, be obtained from the
maximum conductivity ¢ (7). Since E/kT,, is generally
large (for Bube’s samples this parameter was about 30),
we may use an asymptotic expansion for the integral
in the exponent of Eq. (2.4). One then obtains [using
(2.8)7]:

Tw)= [ ~ 1 6
0‘( m) =00 €XP —k7—_ ], (2- )

m

where oo=NugSTno. The quantity oo is virtually
independent of the temperature T,. We shall see
shortly how the above result may be used to determine
the energy E.

It is instructive to study the shape of a conductivity
peak. By arguments similar to those leading to Eq.
(2.6), one readily finds:

A2 i

g0

~e+explen—e]| when (2.7)

where e=E/kT; ¢n=E/kT .

It is easily verified that the maximum conductivity
predicted by (2.7) occurs very nearly at e=e,. In a
typical case, the error made in using (2.7) instead of
(2.4) to find T is less than 1°K. Figure 2 shows a plot
of Eq. (2.7) with €,=30. When ¢, (i.e., T<KTy),
the plot is linear. The existence of this linear region is
the basis of the method of Garlick and Gibson.?

that case the development we present below must be modified
somewhat.

€ €,
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Fast Retrapping [ (N;—n,)Sv>> <]

In this case the time required for thermal equilibrium
to be established between electrons in traps and elec-
trons in the conduction band is much shorter than the
recombination lifetime. For this reason, there is
effective thermal equilibrium between the traps and the
conduction band. Let us denote the fofal number of
electrons by #n=#n;4n.. Then:

an e ny N, E

dt T T\ N; kT
where it has been assumed that N>>N, exp[— E/kT].B3
The solution of Eq. (2.8) is

1 T

N=1mno exp[—z
To

(2.8)

NcNFIT‘le‘E/"TdT], (2.9
and the resulting conductivity is:

N op
G(T)=ncqn=xyi~qno

E 1 T

Xexp[——~
ET Nabrdr,

Nce—E”chT]. (2.10)

Differentiating In[¢(7)] to find the maximum, one
obtains (for E/kT,>1):

E N kT2
exp[—]= . (2.11)
kTl NpTE
The maximum conuctivity becomes:
E
o (Tw)=00 exp[——————- 1] (2.12)
kT,

where go= (N u/N;) gno and the shape of the conduc-
tivity curve is:

AP (=) ot

ao

~etexplen—e]| when e~ve, (2.13)

Equations (2.11), (2.12), and (2.13) are to be compared
with Egs. (2.5), (2.6) and (2.7), respectively.

Determination of Trap Energy

Two important results emerge from the preceding
analysis.

18 If the initial occupancy of the traps is very large, the above
treatment should be modified somewhat to take account of
degeneracy. This modification may be made by introducing on the
right-hand side of each of Egs. (2.11) and (2.12) a factor
[N:/N;—ni(Tm) . This change has no effect on the determination
of trap energies by the method of the text. However, a high
degree of degeneracy does change the shape of the conductivity
peak somewhat from that given in the text.
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(1) The shape of a conductivity peak is virtually
independent of the retrapping rate. In the immediate
vicinity of the peak there exists a universal curve of

the form
o(T) E E
—In[ ]= f exp[
a0 RT kT,

E
-—] (2.14)
kT

oo is, to a very good approximation, independent of
temperature.

(2) There exists a universal relation between the
conductivity and the temperature at the maximum

of the form
a(Ty) E
— ln[ ] =—-i1,
oo kT

(2.15)

where o is to a good approximation independent of T,.

This suggests a convenient method for obtaining
the trap energy E. From Egs. (2.5) or (2.11), we note
that T’ depends on the heating rate 4. In a typical
case, the heating rate might be 1°K/sec with
T'»~200°K. Changing the heating rate by a factor of
two will shift 7', about 5°K. If then ¢(7,) and T, are
measured for different heating rates, and In[o(7))] is
plotted versus 1/kT ., the slope of the resulting straight
line will yield E.

The success of this method of measuring trap energies
depends on how much the position of a conductivity
peak can be shifted by a change in the heating rate.
Heating rates varying from 0.03°K/sec to 3.0°K/sec
have been reported in the literature.? For a typical trap
this implies a variation in T, of about 30°K. If T,
can be measured to within 1°K, the method will be
accurate to better than 59,.

3. DISCUSSION

It is worthwhile to compare the proposed method for
determining £ with that of Bube.®~! Bube’s formula
for the energy [see Eq. (1.1)] is deduced by assuming
that the number of conduction electrons at maximum,
#e(T), 18

1e(Tm) =N e EIFTm,

3.1)

Equation (3.1) is an ad hoc relation, which is used
without theoretical foundation; on the basis of the
preceding analysis we can determine how well it
succeeds in the limits of slow and fast retrapping. For
slow retrapping
(2
(L)~ 71—,
Tej

where 7o =[(Vi—n:)/N Jruet B1E0n,
= (N;,—n;)Sv. Therefore

and 7oL

nc(Tm)’\'Nce—E/kT'"[ (32)

T ]
(Ni_”i)Ttr .
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On the other hand, for fast retrapping
1e(To) ~ N o™ ER ./ (N~ n3) ]. (3.3)

On the basis of Egs. (3.2) and (3.3) we might expect by
interpolation that for an intermediate retrapping rate:

;T :l (3 4)
(Ni—n) (rF7e) ] '

From Eq. (3.4) we estimate that the energy E, as
determined by the use of Eq. (3.1), will be in error by
the amount :

AE~ET ln[

ne(Tw)~N ce‘E”““[

n;T :I (3 5)
(V=) (rFre) '

Clearly, the error given by Eq. (3.5) depends on
both the amount of retrapping and the degree of initial
saturation of the trap under consideration. The most
favorable situation obtains when there is very fast
retrapping and the trap states are initially saturated.
In that case, it can be shown that #;(7)~0.37N; and
that the error in the energy is only ~—3%&7 . In other
cases the error will always be negative and larger than
—31kT,,. How important this error is depends on what
the value of E is used for. We will see that it is not
necessarily negligible. As a case in point, we will
examine Bube’s application of this method to the
determination of trapping cross sections. In Bube’s
procedure, the energy is determined from the peak
conductivity [see Eq. (1.1)] and is inserted into Eq.
(2.5) to determine the cross section S. As we have seen,
Eq. (2.5) is valid only in the slow retrapping limit; in
the fast retrapping limit the exponential in Eq. (2.5)
should be replaced by the expression (2.11). Combining
these various equations in the appropriate limits we
obtain formulas for the error in Bube’s cross section
which can be represented by the interpolation formula:

ni TTtr
SBube= STrue( ( ) . (36)
Ni—ni/ \(r+74:)?

The logarithms have disappeared in Eq. (3.6) because
the error AE [see Eq. (3.5)] enters into an exponent.
It is clear from Eq. (3.6) that Bube’s procedure for
obtaining energy values leads to very considerable
errors in the cross sections in either the fast or the
slow retrapping limit.

If the energies in Bube’s procedure for calculating
cross sections were determined by the method we
propose, there would still be large uncertainties in the
cross sections because of the great sensitivity of the
exponential in (2.5) to an error AE in the energy value.
In a favorable case (E~0.35 ev, AE~0.016 ev) the
calculated cross section would be in doubt about a
factor of 3, in an unfavorable case by about an order of
magnitude. On the average we think the error would
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be smaller than the error made using Bube’s estimate
of the energy since there is no reason to suppose that the
recombination and trapping times will ordinarily agree
within a factor of 10. In any case, the error, AE, made
using our procedure should be a random error, un-
correlated to the trapping or recombination rates. We
cannot make an empirical comparison of the two
methods on the basis of the data available in the
literature since most of the reported experimental
data does not include all of the necessary information.
In one case reported by Bube,® sufficient data are
reported so that our procedure of analysis may be used
although we have no means of knowing whether the
experimental conditions were such that our analysis is
relevant (see our discussion below). However, if we
assume that it is relevant, we obtain an energy value
in agreement with that found by Bube.

Haake’s criticism® of the method of Garlick and
Gibson? has already been mentioned in the Introduction.
This method requires for its application a peak which
stands a factor of 10 or more above the background.
The method has the disadvantage that it does not make
use of the data near the peak (which are the most
accurate data) but derives the trap energy from the
“wings” of the peak.

The method of Grossweiner* involves the measure-
ment of the half-width of the peak. In a typical case
this half-width may be 5°-10°K. Since the trap energy
E is inversely proportional to the half-width,* very
precise temperature values are required for accurate
values of E. For instance, if temperatures can be
measured with an experimental uncertainty of 1°K,
the resulting trap energy will be uncertain by about
25%.

The method of Booth® makes use of the shift of the
peak with heating rate. In this respect it is similar to the
method proposed here. However, the present method
makes use of the peak conductivity values while Booth
employs known heating rates. In either case an experi-
mental difficulty arises which is absent in other methods.
The use of different heating rates requires the repetition
of the experiment, starting from the same initial trap
population. In order to ensure this, the conditions of
excitation must be such that the degree of saturation
of trap population may be accurately reproduced. In
a typical case, the method of Booth® and the present
method should yield comparable accuracy.

The advantage of a method based on the use of
different heating rates over that of Grossweiner is that
for a given precision of temperature measurement one
can obtain more precise values for the trap energies.
Thus, for a typical case in which the shift of the tem-
perature maximum is 30°K and the uncertainty of a
temperature measurement is 1°K, the error in the
energy is of the order of 59, as compared with 259, for
the method of Grossweiner.



